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Résumé de la thèse ( version française) 

 

La biologie des systèmes, une opportunité pour les études évolutionnaires 

L’évolution, principe inhérent à toute forme de vie, est un aspect fondamental de la biologie. La vie ne connaît 

pas la stabilité et la fixité, toute espèce se transforme subtilement avec le temps. Les indices de ces 

transformations peuvent s’observer à tous les niveaux. Tout d’abord au niveau moléculaire, avec la fixation de 

mutations génétiques, la conservation/la modification de structure protéiques 3D, l’apparition/la perte de 

gènes ou de familles entières de gènes… Mais les principes de l’évolution ne s’appliquent pas qu’au niveau 

moléculaire, l’évolution induit des remodelages qui s’opèrent à tous les niveaux biologiques. La biologie des 

systèmes s’est beaucoup développée ces dix dernières années, confrontant plusieurs niveaux biologiques 

(molécule, réseau, tissu, organisme, écosystème…). Elle a démontré que le gène n’est pas seul responsable de 

l’apparition d’un phénotype. Notre compréhension du vivant s’est étendue au rôle des phénomènes 

épigénétiques, au rôle de la dynamique des processus intra et inter cellulaires jusqu’à une modélisation des 

interactions tissulaires. Toutes ces études se sont réalisés dans un contexte couramment appelé la biologie des 

systèmes, qui tente de décrire et de prédire le comportement d’un phénomène biologique en tenant compte 

de tous les niveaux biologiques.  

 

 

Figure 1. Vue générale des principaux omics utilisés en biologie des systèmes. 

 

Pour comprendre ces phénomènes, ce domaine en plein essor produit de très nombreuses données à haut-

débit, multipliant l’apparition de nouveaux « omics » et plaçant la bioinformatique comme une discipline 

indispensable à l’ère post-génomique (figure 1). Du point de vue de l’étude de l’évolution, la biologie des 
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systèmes offre de nombreuses possibilités. Les études évolutionnaires peuvent enfin ne plus se restreindre à la 

seul variation du gène mais s’étendre à la variation des systèmes cellulaires. Ce contexte a tout récemment 

donné naissance à un nouveau domaine, encore balbutiant, mais riches en opportunités : la « biologie 

évolutionnaire des systèmes » (evolutionary systems biology). Son but est de réunir la mécanistique détaillée 

de la biologie des systèmes avec le domaine plus ancien de l’évolution pour comprendre comment un 

organisme répond à des perturbations. En effet, ce qui est conservé par l’évolution est généralement essentiel 

pour le fonctionnement d’un organisme et les variations sont autant d’innovations potentielles. Etudier 

l’évolution d’un système biologique permet donc de comprendre la façon dont s’exercent les pressions 

évolutives au niveau des éléments d’un processus, les variations induisant ou non des transformations au 

niveau d’un organisme. 

 

La biologie évolutionnaire des systèmes 

Les premières études de « biologie évolutionnaire des systèmes » ont permis de mettre en évidence plusieurs 

tendances évolutives au niveau d’un organisme. Concernant la diversité inter-espèce,  la plasticité des réseaux 

biologiques a été mise en évidence : l’inactivation d’un gène peut être compensée par d’autres processus 

biologiques et les gènes d’un processus peuvent être recrutés dans de nouvelles voies selon les espèces 

considérées. A l’inverse il a été démontré que certains modules d’interactions biologiques sont conservés par 

l’évolution, indépendamment des mutations génétiques. Eventuellement dormant dans une espèce, des 

processus biologiques entiers peuvent être réactivés par mutagénèse ou lors de changements liés à 

l’environnement. Au niveau intra-espèce, la démocratisation des techniques de séquençage à haut-débit a 

permis de démontrer la grande diversité des transcriptomes liés à un même phénotype, et ce en particulier 

dans le cas des maladies génétiques multi-géniques. Ces quelques exemples reflètent le nouveau consensus qui 

commence à émerger de la biologie évolutionnaire des systèmes : la variation s’applique à tous les niveaux 

biologiques. De nombreuses études se sont alors intéressées à ces variations d’un point de vue de l’évolution 

et ont définies de nombreuses nouvelles variables décrivant un système : propension à la perte d’un gène, 

nombre de paralogues, niveaux d’expression, centralité dans un réseau d’interaction… Toutes ces variables 

biologiques sont interdépendantes et démontrent l’aspect multidimensionnel d’un système biologique 

complexe (figure 2). Etudier l’évolution d’un système biologique nécessite donc d’intégrer toutes ces variables 

multidimensionnelles de plusieurs espèces dans un cadre unificateur, exploitable par de puissantes méthodes 

formelles de fouille de données et d’extraction de connaissances. 

  



 

 

 

Figure 2. Corrélations du point de vue de l’Evolution entre plusieurs variables biologiques. 

Une corrélation positive est indiquée par un signe + et une corrélation négative par un signe - . CAI, 

codon adaptation index; EL, expression level; ER, evolutionary rate; GI, number of genetic interactions; 

KE, lethal effect of gene knockout; NP, number of paralogs; PA, protein abundance; PGL, propensity 

for gene loss; PPI, number of physical protein–protein interaction partners. ND, not determined; NS, 

not significant. Adapté de  Koonin and Wolf, 2006. 

 

Vers l’intégration multidimensionnelle en biologie évolutionnaire des systèmes 

Depuis la découverte de la structure de l’ADN, la génomique, très centrée sur le gène, a apporté de 

nombreuses réponses sur les mécanismes évolutifs qui induisent la lente transformation des gènes et leur 

transmission, mais peu de réponse pour les autres niveaux biologiques. Durant ma thèse, je me suis intéressé 

au développement de nouvelles méthodologies et de nouveaux outils pour étudier l’évolution des systèmes 

biologiques tout en considérant l’aspect multidimensionnel représenté par les variables liés à plusieurs niveaux 

biologiques (génome, protéome, réseau, phylum…). Pour la première fois, des techniques formelles 

d’extraction de connaissance sont appliquées à la fois au niveau génomique et systémique pour l’étude de 

l’évolution. De ce fait, cette thèse tente de palier un manque méthodologique évidant pour réaliser des études 

haut-débit dans le récent domaine de la biologie évolutionnaire des systèmes. La considération de l’aspect 

multidimensionnel des processus biologiques nous permet ainsi de décrire de nouveaux messages évolutifs liés 

aux contraintes intra et inter processus. En particulier, mon travail a permis (i) la création d’un algorithme et un 

outil bioinformatique dédié à l’étude des relations évolutives d’orthologie existant entre les gènes de centaines 

d’espèces, (ii) le développement d’un formalisme original pour l’intégration de variables biologiques 

multidimensionnelles permettant la représentation synthétique de l’ histoire évolutive d’un gène donné, (iii) le 

couplage de cet outil intégratif avec des approches mathématiques d’extraction de connaissances pour étudier 

les perturbations évolutives existant au sein des processus biologiques humains actuellement documentés 

(voies métaboliques, voies de signalisations…). 

 

(i) L’inférence, la visualisation et l’analyse des relations d’orthologie 

L’orthologie est une relation d’homologie liant deux gènes partageant le même ancêtre commun et issus d’un 

évènement de spéciation. Cette relation est centrale en génomique comparative et évolutionnaire car on 

considère généralement (mais pas exclusivement) que deux gènes orthologues sont fonctionnellement 

similaires. Définir les relations d’orthologie est donc une étape essentielle pour pouvoir comparer des 



 

 

caractères moléculaires entre espèces, ces caractères allant du résidu jusqu’au réseau de gènes décrivant un 

processus. J’ai donc développé OrthoInspector, une suite logicielle permettant l’inférence des relations 

d’orthologie existant entre de nombreux génomes. OrthoInspector intègre un nouvel algorithme dont 

l’originalité est de considérer l’inparalogie comme base pour détecter l’orthologie, cette approche étant 

applicable à grande échelle tout en gardant une bonne sensibilité/spécificité. De plus, contrairement à la 

plupart des méthodes existantes, OrthoInspector est accompagné de nombreux outils de visualisation et 

d’analyse de ces relations. Ce programme répond donc à un besoin de plus en plus pressant à l’ère post-

génomique d’outils intégratifs permettant l’analyse de très grandes quantités de données tout en fournissant 

des outils permettant de résumer ces données de manière efficace et informative. A partir de cet algorithme 

nous avons pu produire une base de donnée contenant les relations d’orthologies des protéomes complets de 

nombreuses espèces eukaryotes (Figure 3). Cette base de donnée est disponible en ligne pour la communauté. 

 

 

Figure 3. Les 59 espèces vertébrées composant la base de données OrthoInspector. Les 

couleurs correspondent aux principaux clades: viridiplantae (vert), fungi (jaune), choanoflagellida 

(violet), metazoa (bleu) autres eukaryotes (gris).   



 

 

 

(ii) Un formalisme original pour représenter l’histoire évolutive des gènes 

 

La seconde étape de ma thèse a été de développer une méthodologie originale permettant d’étudier le 

scenario évolutif d’un gène qui a aboutit à son état actuel. Ce travail a donné naissance au concept de 

l’EvoluCode (Evolutionary Barcode ou code barre évolutif) : un profil décrivant l’histoire évolutive d’un gène à 

une échelle évolutive donnée. L’EvoluCode est une représentation synthétique qui permet d’intégrer, de 

visualiser et d’analyser des paramètres diverses issus de multiples niveaux biologiques (génomique, protéique, 

réseau…) et de multiples organismes. Ces codes barres peuvent s’adapter à tout type de paramètre biologique 

et peuvent être facilement mis à jour. De plus, leur structure matricielle permet de les comparer facilement 

selon divers métriques et de façon automatique, permettant ainsi leur utilisation dans des études à haut-débit. 

Un travail particulier a été fourni pour décrire la typicité des différents paramètres utilisés dans leur « contexte 

évolutif ». En effet, pour chaque espèce, l’état particulier d’un paramètre peut être considéré comme typique 

ou atypique par rapport à la valeur communément observée chez cette espèce. L’intégration de multiples 

paramètres de différents niveaux biologiques définit alors une combinaison complexe de valeurs typiques ou 

atypiques et permet de décrire un scénario évolutif complexe qui ne pourrait pas être résumé, par exemple, 

par une simple analyse de séquences.  

Nous avons appliqué cette nouvelle méthodologie des EvoluCodes sur le protéome humain en reconstituant les 

histoires évolutives géniques au sein des vertébrés. Pour ce faire, nous avons compilé des variables de plusieurs 

échelles, telles que le contexte génomique, l’organisation et la conservation protéiques ou encore, la 

distribution phylogénétique à partir des données d’OrthoInspector (figure 4). L’intégration de toutes ces 

variables dans une structure facilement exploitable et l’étude au niveau du protéome complet nous a permis 

plusieurs conclusions. Premièrement, nous avons mappé nos EvoluCodes sur le génome humain et nous avons 

observé, grâce à un outil de visualisation dédiée, des clusters d’histoires similaires qui correspondent souvent 

avec des clusters de gènes connus. Deuxièmement, nous avons exploités notre formalisme pour appliquer une 

méthode d’extraction de connaissances, la classification non-supervisée, afin de regrouper les EvoluCodes 

similaires et d’étudier des enrichissements fonctionnels potentiels. Cette démarche nous a permis de mettre en 

évidence des tendances évolutives liées à des groupes de protéines partageant une fonction ou une localisation 

cellulaire commune. Cette seconde conclusion reflète l’intérêt d’étudier l’évolution des gènes dans le contexte 

de leurs processus biologiques et de ne pas se contenter du seul gène.  



 

 

 

Figure 8-4: Vue d’ensemble du processus de construction des EvoluCodes. Différents paramètres 

évolutionnaires sont compiles depuis différentes sources et sont organisés dans le formalisme du code barre. 

Parallèlement, la variation de ces paramètres est décrite statistiquement en les comparant avec la référence 

humaine. Le modèle statistique est utilisé pour coloriser les evolucodes, permettant ainsi une visualisation 

directe des différents profiles évolutifs caractérisant différant gènes.  
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(iii) Etude multidimensionnelle de l’évolution des réseaux biologiques humains 

Les résultats encourageants apportés par les EvoluCodes appliqués au protéome humain nous ont motivés à 

étudier l’histoire évolutive de l’ensemble des processus biologiques humains. Nous avons donc localisé 

typologiquement nos EvoluCodes sur les réseaux biologiques humains actuellement documentés. Nous ne nous 

contentons plus d’analyser l’histoire évolutive d’un gène, nous voulons explorer l’histoire d’un processus défini 

par un réseau de gènes et lié à une réponse biologique précise. Nous avons mis en place un protocole intégrant 

un algorithme de détection d’anomalies pour identifier les gènes présentant une histoire évolutive originale 

par rapport aux autres gènes impliqués dans un processus. Cette atypicité d’un gène est définie via nos 

EvoluCodes, elle intègre donc des paramètres de différents niveau biologiques dans l’étude de l’évolution des 

processus biologiques humains (figure 5).  

 

Figure 5. Méthodologie d’attribution d’un degrés d’aberration à l’histoire évolutive d’un 

gène dans le contexte de sa voie biologique. A. Les données de voie biologique sont extraites de 

la base de donnée KEGG. B. Les EvoluCodes des gènes correspondant à la voie sont extraits et 

définissent le contexte évolutionnaire de cette voie. C. Une méthode d’extraction de connaissance, le 

Local Outlier Factor (LOF), est utilisé pour mettre en évidence la discordance évolutionnaires existant 

dans la voie biologique. D. L’analyse du contexte évolutionnaire permet d’extraire de nouveaux 

messages évolutifs.   
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Une telle intégration multidimensionnelle s’est révélée puissante pour l’étude de l’évolution des réseaux 

cellulaires. Nous avons ainsi pu dégager plusieurs messages évolutifs liés aux systèmes humains. 

Premièrement, dans le cas des voies métaboliques, l’originalité des histoires évolutives est liée à la topologie 

du réseau. Par exemple, les gènes catalysant des réactions aboutissant à des composés impliqués dans de 

multiples voies, ou à l’inverse non métabolisables, se révèlent posséder des histoires évolutives très 

particulières relativement au reste de la voie. Nous nous sommes également intéressés aux gènes possédant 

un haut niveau de distribution et qui sont impliqués dans de nombreux processus cellulaires. L’histoire 

évolutive de tels gènes peut en effet être considérée comme typiques dans un processus mais atypique dans 

un autre. Leur référencement nous a permis de dresser une carte des processus cellulaires liés par le 

comportement évolutif différentiel de leurs gènes. Ce réseau représente notre premier aperçu des contraintes 

évolutives liées au maintien / à la modification des processus cellulaires, ainsi qu’un aperçu des recrutements 

de gènes qui se sont déroulés durant l’histoire des vertébrés entre ces processus. Comprendre ces contraintes 

est essentiel, car elles définissent le champ des possibilités d’évolution des processus cellulaires vertébrés. 

 

Conclusion et perspectives 

Les travaux décrits dans cette thèse représentent les premières étapes méthodologiques pour permettre une 

étude de l’évolution des processus biologiques à un niveau cellulaire. Nous avons développé un nouveau 

formalisme permettant de décrire de façon synthétique l’histoire évolutive d’un gène : les EvoluCodes. Le 

concept des EvoluCodes permet des analyses à grande échelle et l’utilisation d’outils formels d’extraction de 

connaissances. Nous avons ainsi généré les histoires évolutives pour l’ensemble du protéome humain à 

l’échelle des vertébrés. Contrairement aux études précédentes, construisant l’histoire évolutive de chaque 

famille protéique par la construction d’arbres phylogénétiques, nous avons créé un outil puissant, facilement 

exploitable et intégrable dans de nombreux projets. L’utilisation de techniques de classification super-

paramagnétique et d’autres méthodes d’extraction de connaissances nous ont permis d’étudier l’histoire 

décrite par nos EvoluCodes dans le cadre des processus cellulaires humains. Nous avons ainsi mis en évidence 

les premiers indices relatant la façon dont les réseaux biologiques des vertébrés ont évolués et en particulier 

comment cette évolution a aboutit aux processus cellulaires humains. Cette étape clé est importante pour 

comprendre jusqu’à quel point la modularité des réseaux biologiques et leur transformation au cours du temps 

peut modifier un phénotype de façon spectaculaire ou par contre, ne pas produire de phénotype. 

L’intégration de nombreuses données multidimensionnelles s’est révélée riche en message biologiques dès les 

premières analyses et nous a permis dans un premier temps de dégager des messages évolutifs globaux pour 

les processus biologiques humains. Tout d’abord, l’intégration d’autres types de donnés peut être imaginés. À 

l'avenir, un certain nombre d'améliorations est déjà prévu, telle que l'intégration d'autres types de données 

décrivant différents aspects des systèmes complexes. Par exemple, l’intégration de données décrivant 

l’expression des gènes pourrait être une étape clé pour comprendre le rôle du nombre de transcrits et des 

variations temporelles et/ou tissulaires dans le cadre de l’évolution des processus biologiques. D’ailleurs, de 

nouveaux EvoluCodes décrivant le protéome d’autres espèces permettraient également de comparer 

directement l’histoire évolutive des processus de différentes espèces.  

L’approche EvoluCode et son intégration dans un contexte de biologie des systèmes est riche en potentiel. Au 

sein du laboratoire, les EvoluCodes ont été intégrés dans une base de données dédiée aux liens existant entre 

mutation et maladies génétiques humains. Le module des EvoluCodes aide à la priorisation de gènes pour 



 

 

obtenir une liste de gènes candidats répondant à une question biologique précise. Au final, l’approche des 

EvoluCodes et leurs applications aux systèmes biologiques se révèlent un outil de choix pour mettre en 

évidence des messages évolutifs dans différents organismes et peuvent donc contribuer de manière 

significative à la biologie des systèmes et en particulier au domaine émergeant de la biologie évolutive des 

systèmes. 

 



 

 

Thesis summary 

Systems biology, an opportunity for evolutionary biology 

Evolution is a principle inherent to life and a fundamental aspect of biology. Life is not fixed or stable, 
instead all species are slowly transformed over time. These transformations can be observed at the 
molecular level, with the selection of genetic mutations, the conservation/modification of 3D 
structures or the gain/loss of new genes or gene families. However, evolutionary principles are not 

only restricted to the molecular level, they also induce a constant remodelling at all biological levels.  

Systems biology has developed enormously over the 10 last years, with studies covering diverse 
biological levels (molecule, network, tissue, organism, ecology…). In this context, the gene is no 
longer considered the sole element responsible for a phenotype. Our understanding of living systems 
has grown to incorporate the role of epigenetic phenomena, the role of intra- and inter- cellular 
processes, and even the modelling of tissue interactions. All these studies are regrouped in the field 

commonly known as systems biology, with the goal of deciphering and modelling biological 
phenomena at multiple biological levels.  

To understand these phenomena, high-throughput technologies are now employed on an everyday 

basis, producing a deluge of “omics” data, and making bioinformatics an essential discipline in the 
post-genomic era. From an evolutionary point of view, systems biology provides unequalled 
opportunities. Evolutionary studies are no longer restricted to gene variation, and can be extended 

to the study of variations in cellular systems. This context recently gave rise to a new field, still in its 
infancy but full of possibilities, the so-called “evolutionary systems biology”. The goal is to combine 

the detailed mechanistics of the recent systems biology with the more mature field of evolutionary 
biology in order to understand how organisms respond to perturbations. Indeed, what is 
evolutionarily conserved is generally essential for an organism, while variations represent potential 

innovations. Studying the evolutionary behaviour of a biological system is therefore the key to 
understanding how evolutionary pressures affect the individual components of biological processes 

and how variations induce potential transformations at the organism level. 

 

Evolutionary systems biology 

The first evolutionary systems biology studies emphasized several important evolutionary trends at 

the organism level. Inter-species comparisons have highlighted the plasticity of biological networks: 

the inactivation of a gene can be compensated for by other pathways and genes from one process 

can be recruited to another one in a given species. On the other hand, some interaction modules are 

conserved during evolution, in spite of genetic mutations. Entire processes of closely-related species 

can be inactivated during evolution and reactivated by mutagenesis or during environmental 

changes. In intra-species studies, high-throughput technological advances have allowed to observe a 

large diversity of transcriptomes associated with the same phenotype, in particular in the context of 

multigenic diseases. These examples reflect the new consensus that is now emerging from 

evolutionary systems biology: variation is experienced at all biological levels. Consequently, 

numerous studies have focused on these variations and have defined numerous new parameters to 

describe a system: propensity for gene loss, number of paralogs, expression levels, network 

centrality, etc. All these biological parameters are interdependent and demonstrate the 

multidimensional aspect of a complex biological system. Therefore, the evolutionary study of a 



 

 

biological system requires integration of all these data from multiple species in a unifying framework, 

thus enabling the application of formal data mining and knowledge discovery methods.  

 

Towards multidimensional integration in evolutionary systems biology 

Since the discovery of the structure of DNA, the biological sciences have been gene-centric and have 

provided numerous answers to questions concerning the evolutionary mechanisms that induce the 

slow transformation of genes and their transmission. However, so far they have produced little 

information about other biological levels. During my thesis, I have developed new methodologies and 

tools to study the evolution of biological systems, taking into account the multidimensional 

properties of biological parameters associated with multiple levels (genome, proteome, network, 

phylum...). For the first time, formal knowledge discovery techniques have been applied at both the 

genomic and systems level to study evolution. Thus, this thesis addresses the clear need for novel 

methodologies specifically adapted to high-throughput evolutionary systems biology studies. By 

taking account the multi-level aspects of biological systems, we highlight new evolutionary trends 

associated with both intra and inter-process constraints. In particular, my thesis work includes (i) the 

development of an algorithm and a bioinformatics tool dedicated to comprehensive orthology 

inference and analysis for hundreds of species, (ii) the development of an original formalism for the 

integration of multi-scale variables allowing the synthetic representation of the evolutionary history 

of a given gene, (iii) the combination of this integrative tool with mathematical knowledge discovery 

approaches in order to highlight evolutionary perturbations in documented human biological 

systems (metabolic and signalling pathways...). 

(i) The inference, visualisation and analysis of orthology relations 

Orthology is a homology relation linking two genes that share the same ancestor and that result from 

a speciation event. This relation is essential in comparative and evolutionary genomics because it is 

assumed that two orthologous genes generally share a similar function. Thus, defining orthology is a 

key step in the comparison of molecular characters between species, where the characters can range 

from the single residue to the gene network. This motivated the development of OrthoInspector, a 

software suite dedicated to the inference of orthology relations between hundreds of genomes. 

OrthoInspector is based on a novel algorithm that uses the inparalogy relation as the basis for 

orthology inference. This approach is applicable to large-scale studies and maintains a good balance 

between sensitivity and specificity. In contrast to most existing methods, the OrthoInspector suite 

also provides numerous tools for the analysis and visualisation of complex orthology relations. The 

program thus represents a complementary approach to existing methods, responding to the growing 

need for integrative tools for the analysis of large-scale data in the post-genomic era, at the same 

time providing tools to summarize the data efficiently and informatively. 

(ii) An original formalism for describing gene evolutionary histories 

The second stage of my thesis involved the development of an original methodology to describe the 

evolutionary scenario leading to the current state of a gene. This work led to the concept of the 

EvoluCode (Evolutionary Barcode): a profile describing the evolutionary history of a gene at a given 

evolutionary scale. The EvoluCode is a synthetic representation for the integration, the visualisation 



 

 

and the analysis of diverse parameters extracted from multiple biological levels (genomic, proteomic, 

network, etc.) and multiple organisms. The barcodes can be adapted to any kind of biological 

parameter and can be easily updated. Moreover, their matrix structure means that automatic 

comparisons can be easily performed with diverse metrics, thus facilitating their use in high-

throughput studies. A key feature of the barcode formalism is the ability to describe the specific state 

of the parameters in their “evolutionary context”. Thus, for each species, the state of a given 

parameter is defined as typical or atypical with respect to the generally observed state in the same 

species. The integration of multiple parameter types from different biological levels thus defines a 

combination of typical or atypical states, and allows to describe a complex evolutionary scenario that 

could not be resumed, for example, with a simple sequence analysis. 

We applied the EvoluCode methodology to the human proteome by reconstructing the evolutionary 

histories for all genes at the vertebrate level. To achieve this, we combined parameters from several 

biological levels such as the genome context, the organization and conservation of protein domains 

or phylogenetic distributions extracted from the OrthoInspector predictions. The integration of these 

data in the EvoluCode structure and their study at the complete proteome level revealed a number 

of interesting conclusions. First, we mapped our EvoluCodes onto the human genome and with a 

dedicated visualization tool we observed clusters of similar evolutionary histories, most of them 

corresponding to known gene clusters. Second, we exploited our formalism in a knowledge discovery 

protocol based on a super-paramagnetic clustering algorithm, to group similar barcodes and study 

their functional enrichment. This approach highlighted several evolutionary trends linked to groups 

of proteins with similar functions or cellular localizations. This second conclusion illustrates the 

potential of studying gene evolutionary histories, not only as independent objects, but also in the 

context of their biological processes. 

(iii) Multidimensional study of the human gene networks 

The encouraging results provided by the study of the EvoluCodes associated with the human 

proteome motivated us to explore the evolutionary history of all human biological processes. 

Consequently, we performed a topological mapping of our EvoluCodes on documented human 

networks. Here, we no longer restricted our study to the evolutionary history of a single gene, we 

wanted to explore the history of a biological process, defined by a gene network and corresponding 

to a particular biological response. We created a protocol that incorporates an anomaly detection 

algorithm to identify genes with an unusual evolutionary history compared to the other genes 

implicated in the process. This gene state (typical/atypical evolutionary history) is defined based on 

our EvoluCodes and thus integrates their multi-scale biological parameters in the evolutionary 

analysis of the human cellular networks. Using this powerful integrative approach, we were able to 

identify several evolutionary trends characterizing the human systems. First, in the case of metabolic 

pathways, evolutionary perturbations are linked to the network topology. For example, genes 

catalyzing metabolic reactions that produce either compounds implicated in multiple pathways or 

non-metabolised compounds have very specific evolutionary histories compared to others in the 

same pathway. Second, we studied a set of widely distributed genes, i.e. genes implicated in multiple 

cellular processes. The evolutionary histories of such genes can be considered as typical in one 

biological process but atypical in another one. We used this gene set to create a map of human 

cellular processes linked by the differential evolutionary behaviour of their shared genes. This map is 

the first overview of the evolutionary constraints governing the modification/maintenance of cellular 



 

 

processes, as well as an insight into the inter-process gene recruitments that operated during 

vertebrate evolution. Understanding these constraints is essential since they define the range of 

possibilities for the evolution of vertebrate cellular processes.  

 

Conclusion and perspectives 

The work described in this thesis represents the first methodological steps towards the study of the 

evolution of biological processes at the cellular scale. We have introduced a new formalism, the 

EvoluCode, to describe the evolutionary history of a gene in a synthetic manner. The EvoluCode 

concept facilitates high-throughput analyses and the use of formal knowledge extraction tools. We 

generated evolutionary histories for the complete human proteome at the vertebrate scale. In 

contrast to previous studies, which mainly described evolutionary histories of protein families by 

constructing phylogenetic trees, we have created a powerful tool that is easily exploitable and can be 

integrated in numerous projects. The use of super-paramagnetic clustering and other knowledge 

extraction techniques, allowed us to study the evolutionary histories described by the EvoluCodes in 

the context of human biological processes. This is a first step towards a better understanding of how 

these networks were modelled during evolution and how this evolution led to the current human 

biological processes. This knowledge should contribute to a better understanding of the modularity 

of biological networks and how their transformation over time can affect the final phenotype.  

The integration of multidimensional data performed here has allowed us to highlight several global 

evolutionary trends in the context of human pathways. In the future, a number of enhancements are 

already envisaged, such as the integration of other data types describing different aspects of complex 

systems. For example, the integration of gene expression data will provide insight into the role of the 

number of transcripts or temporal/tissue transcriptional variations in the context of the evolution of 

cellular processes. Another potential enhancement would the generation of EvoluCodes 

corresponding to the complete proteomes of other species , which would allow us to directly 

compare evolutionary histories between species.  

The EvoluCode approach has many potential applications in systems biology studies. In the 

laboratory, the human EvoluCodes have already been exploited in the KD4v database dedicated to 

the study of the relationships between genetic mutations and human genetic diseases. The 

EvoluCode module of the database is used to facilitate gene prioritization, i.e. the selection of the 

best gene candidates relevant to a specific biological question. This application illustrates the power 

of the EvoluCodes and their potential contribution to the emerging fields of systems biology and 

evolutionary systems biology. 
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1 EVOLUTION: AN ESSENTIAL PRINCIPLE FOR UNDERSTANDING LIFE 
 

1.1.1 Why study evolution? 

 

“In the whole history of thoughts no transformation in men’s attitude to Nature – in their 

‘common sense’ – has been more profound than the change in perspective brought about the 

discovery of the past” (Toulmin and Goodfield, 1965) 

Since the beginning of written history, the ‘question of our origins’ has been a central theme in all 

cultures. For thousands of years, metaphysical beliefs and religions provided the only answers. It is 

only in the last two centuries that humanity has experienced one of its most important revolutions: a 

new conception of our origins supported by scientific reasoning and called ‘Evolution’. This idea is 

young in the history of man and remains fragile, as testified by its many opponents. It is even more 

fragile since it conflicts with some of our more natural beliefs, such as anthropocentrism, 

essentialism or fatalism. The theory of Evolution implies that our natural attitude to explain things by 

“meaning” and “purpose” are merely human projections, simple expressions of the values we choose 

to give to our own existence. Such a revolution in human thinking is a tough task. The main challenge 

for the concept of Evolution may not be to explain the origins of life, but to withstand the species 

that created it. 

The evolutionary revolution has had a huge impact on science, particularly in the biological domain. 

By definition, biology focuses on living beings and in principle, all living beings are the result of 

millions of years of evolution. It is interesting to note that telling the history of life through evolution 

is a reverse process and what we observe is the end of the history; all the organisms currently living 

on Earth. Evolutionary principles underlie all biological studies, because they have fashioned the 

systems implicated in biological mechanisms at all levels, from the molecular to the ecological level. 

They are not even restricted to biology, since the current enrichment of oxygen in our atmosphere or 

the constant impact of Life on the Earth’s geology also result from Evolution. Thus, the study of 

Evolution increases our understanding of life and its environment. 

 

1.2 Birth of the theory of Evolution 
 

1.2.1 Classification and essentialism 

 

"L'histoire n'est que l'évolution de l'idée de Dieu dans l'humanité."  

 (Alphonse Esquiros, 1814-1876, Les martyrs de la liberté) 

The idea that living beings can be compared in some way originated in the ancient world with the 

first classifications. Theophrastus (Θεόφραστος, 371–287 BC) described the first taxonomy blueprint 

of the plant kingdom in ‘Enquiry into Plants’, a book classifying plants by their modes of generation, 

geographical localization, size or use. This work was partially reused by a naturalist of the Latin world, 
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Pliny the Elder (Gaius Plinius Secundus 23–79 AD), in his books ‘Historia naturalis’. These books 

covered several fields such as anthropology, botany, zoology, mineralogy or pharmacology, and 

extended the classifications from plants to animals.  

These ancient works were relatively untouched during the Middle Ages, with only sporadic additions 

by middle age botanists and zoologists. However, the consecutive addition of comments and new 

figures showed the limits of the proposed classifications. Finally, during the 16th century, three 

botanists - Fuchs (1543), Gesner (1541) and Camerarius (1586) – proposed a new classification based 

on alphabetical order of plant names! Despite its limitations, this decision broke 1500 years of an 

untouched classification. During the 16th and 17th centuries numerous classifications were developed, 

based on criteria such as size, leaf/root shapes… In 1694, Joseph Pitton de Tournefort (1656-1708) 

was the first to understand that species can be reunited into genus, introducing the concept of 

hierarchical levels. This hierarchy was then extended by Karl von Linné (Carl Nilsson Linnæus, 1707-

1778), who introduced the basis for the current traditional ranks: regna, classes, ordines, genera, 

species, synonymis locis. He also introduced the binomial nomenclature (genus species) in his major 

work ‘Systema Naturae’, a book classifying thousands of animals and plants.  

We note that these major advances in classification were achieved within a scientific community that 

was difficult to separate from theologians. Essentialism was predominant among botanists and 

zoologists, such as Karl von Linné, who believed in a world created by God and organized according 

to his will. Consequently, from this point of view, all species are seen as they were originally created. 

Variations within species or malformed animals were considered divine amusements or “Monsters”. 

This conception was first debated by paleontologists such as Georges Cuvier (1769-1832) or William 

Smith (1769- 1839). According to them, fossil species had totally disappeared and could not be linked 

to current species. This idea gave birth to the concept of ‘catastrophism’, which hypothesized that 

major natural disasters were regularly responsible for the extinction of several species and were 

followed by migrations of surviving populations. This theory was not accepted by naturalists who 

observed that mammals were absent from older geological layers. Thus, some of them reformed this 

hypothesis by arguing for a continuous creation of new species following major extinctions. Despite 

the idea that species could appear or disappear with time, the essentialist theory remained during all 

the first half of the 18th century. 

 

1.2.2 Birth of transformism 

 

"Nevertheless, it is even harder for the average ape to believe that he has descended 

from man." (Henry Louis Mencken / 1880-1956) 

During the second half of the 18th century, several botanists suggested that species might change by 

transmutation. Jean-Baptiste Pierre Antoine de Monet (1744-1829), better known as Lamarck, 

defended the idea that ancient species did not disappear and that a continuity existed between fossil 

and current forms of life. He supported his idea by introducing physical factors, responsible for a 

general progress and diversification of life with time. More precisely, he hypothesized that species 

transformed with time by the use or uselessness of their organs. This represented the birth of the 

‘transformist’ movement. Unfortunately, Lamarck missed the importance of intrinsic changes of the 
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species and gave no credit to intra-species variations for organism transformations. This is the 

fundamental difference between Lamarck and Darwin. Following Lamarck, the transformist theory 

progressively extended through Italy, France and England, but also inspired many opponents 

defending the essentialist idea. This was particularly true in England during the first decade of the 

19th century, with the work of the theologist William Paley (1743-1805) and his book ‘Natural 

theology’. According to him, God created a providential perfect world and the laws of Nature -

expression of its perfection- had to be deciphered by humans. Paley thus integrated science in 

theology, with the goal of proving God’s omniscience. It was in this intellectual environment that 

Charles Darwin performed his studies.  

 

1.2.3 Charles Darwin: the father of the theory of Evolution 

 

"Those whom we called brutes had their revenge when Darwin shewed us that they are our 

cousins." (George Bernard Shaw, 1856-1950) 

In 1859, Charles Darwin (1809-1882) published ‘The Origin of Species by the means of natural 

selection’. He developed a transformist point of view, but gave more credit to intra-population 

variations. The second hypothesis that he introduced was the process of natural selection and it was 

only in the 6th publication of his theory that he introduced the word ‘Evolution’. His arguments for 

the theory of Evolution can be resumed in 5 observations: 

1. There are variations (physical characteristics, capabilities) among sexually compatible 

individuals. Independently from the source of this variation, there is a natural variability 

inside what we designate as species. 

2. Humans can artificially select and model species for their needs. Consequently, there is a 

natural capacity for species to be selected. This implies a second notion: variations can 

be inherited, allowing artificial selection.  

3. Species can reproduce if they find necessary resources. When the reproduction rate 

reaches some limit, resources are exhausted or other factors such as predators will limit 

the size of population. Consequently, there is a natural capacity for overpopulation.  

4. A wild environment is populated with multiple species, despite the overpopulation 

capacity of species. Thus, there are natural equilibriums. Each species is limited by the 

extension of other species. Species can be selection agents.  

5. The success of reproduction for a species depends on physical and chemical optimums 

(temperature, humidity, pH, odorant molecules…). These factors are a second selection 

agent. 

These observations lead to the evolutionary hypothesis of Darwin (figure 1-1). Individuals with 

advantageous variations relative to the physical, chemical and biological environment will produce 

more individuals in the following generation. If these conditions are maintained, the frequency of the 

advantageous variations will expand to the entire population. The whole species will change slightly 

over time, i.e. it is not stable. If the environmental conditions change, new variants will be positively 

selected. This phenomenon was named ‘natural selection’ by Darwin and implied a differential 

reproductive success. 
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Figure 1-1. The reasoning proposed by Charles Darwin in ‘The origin of species’. 

Adapted from (Patrick, 2000) 

 

During the 70 years following the publication of ‘The origin of species’, Darwinian theory was 

progressively accepted in scientific communities and was extended with new ideas. Darwin wrote 

two other major books in 1871: ‘The descent of Man’ and ‘Selection in relation to sex’, in which he 

extended the transformist theory to the human species with the proposal that humans are rooted in 

the Tree of Life with catarhinian monkeys. Later, he extended the theory of natural selection from 

organic variations to instincts and social behaviours. 

 

1.3 Modern evolutionary synthesis 
 

1.3.1 Neodarwinian evolutions 

 

From 1860 to 1930, several key scientists greatly contributed to the extension of Darwin’s theory.  

Gregor Johann Mendel (1822-1884) performed the first agricultural experiment of heredity by 

crossing different varieties of beans and published the three fundamental laws of heredity in 1866. 

However, his results were mainly forgotten by the scientific community. At the beginning of the 20th 

century, the first genetic studies appeared, initiating new debates between naturalists and 

geneticists. At the same time, Mendelean laws were re-discovered independently in Germany, 

Austria and the Netherlands. In 1902, Walter Sutton (1877-1916) described the chromosome pairs as 

a potential physical basis for Mendelean laws. A few years later in 1909, he introduced the notions of 

‘gene’ and ‘mutation’. These discoveries created a new philosophical thinking in the geneticist 

community: ‘saltationism’. For geneticists, a ‘discontinuous’ variation was the source of Evolution: 
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genetic mutations induce speciation jumps and natural selection plays a minor role. On the other 

hand, the naturalist community continued to defend the natural selection hypothesis. 

These contradictory ideas were finally reunited with the experimental work of Thomas Hunt Morgan 

(1866-1945). His genetic studies on Drosophilia melanogaster demonstrated that most mutations 

have a limited effect and induce a gradual transformation of the population. In the 1930’s, the 

population genetics field appeared, definitively reconciliating geneticists and naturalists. The first 

neodarwinian synthesis appeared: mutations with limited impact appear randomly in populations 

and the modification of the mutation frequency in the population initiates speciation.  

 

1.3.2 Development of the modern evolutionary synthesis 

 

"Nothing in Biology Makes Sense Except in the Light of Evolution."  

 (Theodosius Dobzhansky, 1900–1975) 

The hundredth anniversary of Darwin’s theory provided the occasion to reunite all evolutionary 

knowledge into a consensus theory called the ‘Synthetic evolutionary theory’. From 1900 to the 

1970’s, numerous experimental works confirmed many aspects of this theory. We can cite the work 

of Bernard Kettlewell (1907-1978) who directly observed natural selection phenomena. He 

confirmed that dark populations of the butterfly Biston betularia were positively selected in a 

polluted environment due to lower bird predation. During the 1940’s, Maxime Lamotte (1920-2007) 

and Gustave Malécot (1911-1998) confirmed the role of random fluctuations of alleles in populations 

by studying populations of Cepea nemoralis snails. The smaller the population is, the higher the 

probability to randomly fix an allele in this population, without any natural selection intervention. In 

the 1950’s, Philippe l’Héritier and Georges Tessier confirmed many aspects of the Synthetic theory 

through several studies of Drosophilia melanogaster, in particular: 

 Selection creates novelty: when the environment is unstable, natural selection extends 

genotype variations and composition. The opposite is observed in a stable environment 

where a conservative selection is observed. 

 Allele selection depends on the genetic context: one gene can be advantageous depending 

on the other loci that are linked to it. Interestingly, this is the first systemic view introduced 

in evolutionary theory, but during the following decades these interactions were restricted to 

gene level studies. 

 Selection is frequency dependant: individuals exploiting a resource not used by the majority 

of the population are positively selected and escape competition. Consequently, rare 

genotypes are positively selected until their frequency grows because competition grows at 

the same time.  

In 1962, V.C. Wynne-Edwards (1906-1977) introduced the notion of ‘group selection’ to explain the 

altruism observed in animal species. Finally, mathematical tools derived from game theory were 

applied to genes by John Maynard-Smith (1920-2004) and George R. Price (1922-1975), launching the 

debate on levels of selections. All these studies contributed to a more complex and refined theory of 

evolution, the so-called ‘Synthetic evolutionary theory’. However, during the following fifty years, 
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most biological fields that elaborated this theory (anatomy, morphology, zoology, botany…) slowly 

declined. This fact can be partially explained by the frenzied emergence of molecular biology, 

accompanied by an all-powerful entity: the gene.  

 

1.3.3 Expansion of the theory of Evolution in gene-centric biology 

 

“Biology will relate every human gene to the genes of other animals and bacteria, to this 

great chain of being.” (Walter Gilbert) 

1.3.3.1 The Big Bang of molecular biology 

The second half of the 20th century was a revolution for evolutionary theories. The discovery of the 

structure of DNA by James D. Watson and Francis Crick (1916-2004) initiated in 1953 the beginning of 

the molecular biology era. This led to the development of biology focused on the gene and the 

genome, providing a common basis for comparisons of all life forms. In the evolutionary field, the 

first significant results were produced in 1977 by Carl Woese and Gary J. Olsen with the comparison 

of ribosomal genomes in prokaryotes, differentiating the Bacteria from the Archea. In 1977, Sanger & 

al. introduced the well known DNA sequencing technique (Sanger and Coulson, 1975). In 1983, Kary 

Mullis developed the PCR technique that would later become a routine technique for molecular 

analysis (Bartlett and Stirling, 2003). These multiple technical advances finally allowed complete 

genome sequencing. The very first complete genome was sequenced in 1976 by  Walter Fiers with 

the publication of the complete nucleotide sequence of the bacteriophage MS2 (Fiers et al., 1976). In 

1995, Haemophilus influenzae, was the first completely sequenced bacterial genome (Fleischmann et 

al., 1995). In 1996, the 16 chromosomes of the eukaryote Saccharomyces cerevisiae were sequenced 

(Goffeau et al., 1996). In 2001 the first draft genome of our own species was published (McPherson 

et al., 2001; Venter et al., 2001). Since the nineties, hundreds of genomes have been fully sequenced, 

providing incredible new opportunities for evolutionary studies and more remodelling of phylogenies 

in less than 30 years than 2000 years of classifications! Molecular innovation descriptions have 

complemented the physiognomic or physiologic innovations that were described during the 18th and 

19th centuries. Phylogenetic studies confirmed many genetic mechanisms of genome evolution. 

Many cross-validations were performed between phylogenetic, ecological and geologic studies, 

giving new insights into the common histories of Earth and Life. This booming of the molecular 

biology field thus gave rise to several new fields in the evolutionary domain. 

1.3.3.2 Phylogenetics and comparative genomics 

During the last decades, evolutionary studies have progressively shifted to a molecular description of 

Evolution, with DNA and protein sequences being the most studied biological entities. In 1927, 

Motoo Kimura (1924-1994) already observed the large number of enzymatic polymorphisms 

inherent to the same species. He proposed that modifications of macromolecules are “selectively 

neutral” and that modified genes can be fixed in the population if the mutation does not affect the 

global structure of the protein. For Kimura, what natural selection can “see” is not the sequence 

itself but the shape and the function of the molecule. This was the first intuition of the importance of 

the link between sequence/structure/function. When DNA and protein sequences became accessible 
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for most laboratories, the gene ‘function’ became a central subject and many biologists believed that 

understanding the function of all genes would be the key to understanding life. The evolutionist 

community made a link between the conservation/modification of molecular function and the 

process of natural selection, giving rise to the idea of functional adaptations. They understood that 

comparing DNA sequences between organisms is the key to understanding the functional 

adaptations that were selected during Evolution. This idea was the basis of phylogenetics. In 1937, 

Dobzhansky constructed one of the first molecular phylogenies by comparing chromosome 

rearrangements in 17 Drosophila Pseudo-obscura strains. In 1964, one of the first human DNA 

phylogenetic trees was published, highlighting the main migrations that human populations followed 

during prehistoric times (Edwards and Cavalli-sforza, 1964). Today, gene variation is used to decipher 

the molecular mechanisms of evolution and phylogenetic trees are an everyday tool for evolutionary 

biologists. Interestingly, this period was fruitful for interdisciplinary cross-validations of models of 

evolution. The model of tectonic plates, despite being hypothesized Alfred Wegener (1880-1930), 

was finally confirmed during the sixties. Animal phylogenies, fossils and models of continental 

surface fragmentations together explained the divergence of continental ecosystems and the 

appearance of endemic species. This kind of study now corresponds to the specific field of 

‘biogeography’ (Springer et al., 2011). 

Simultaneously with the expansion of gene related studies, new advances in physics during the fifties 

opened up a completely new view of biological systems. Several authors described the structural 

conformation of proteins (Edsall, 1956; Mizushima et al., 1949; Ramachandran et al., 1963). Rapidly, 

the relation between protein structure and function was recognized and the role of molecular 

structures was later integrated in evolutionary models (Goldstein, 2008). The evolution of the 

modular organization of proteins in 3D domains and the link between residue mutation and 3D 

structure modification were major breakouts in molecular evolutionary theory (Liberles et al., 2012). 

The role of key residues in catalytic sites or protein interfaces was discovered (Worth et al., 2009). 

Later, the identification of structured catalytic RNA molecules was another striking result. It initiated 

a new hypothesis for the origin of life in which pre-biotic life emerged in a RNA world, supporting 

both genetic code and biological functions (Melendez-Hevia, 2009). This hypothesis was 

complemented by the fact that most protein folds are found in bacteria, archaea and eukaryotes, 

hypothesizing a Last Universal Common Ancestor possessing a complex protein repository (Abeln and 

Deane, 2005). 

 

All these revolutions were accompanied by an increasing amount of gene and protein data for many 

species. Phylogenetic approaches were powerful but mainly restricted to a single protein family. 

With the help of the emerging bioinformatics sciences, performing a multi-species comparison of 

genomic data provided an opportunity to study genome evolution at a larger scale. This was the birth 

of comparative genomics, a field focusing on the relationship of genome structure and function 

across different biological species or strains. Such approaches exploit both similarities and 

differences in biological sequences to understand the evolutionary mechanisms that modeled 

genomes. The comparison of multiple organisms can highlight similarities conserved through time, as 

well as divergent elements. Contrary to phylogenies, comparative genomics is not restricted to 

similar sequences and is particularly useful for elucidating the functional and evolutionary aspects of 

biological systems (Hardison, 2003). For example, the genome-scale detection of homologous 
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relationships is used for the functional annotation of new genomes (homology and orthology are 

discussed in chapters 2 and 3). Functional regions of chromosomes can be detected by phylogenetic 

shadowing (Boffelli et al., 2003) and conserved DNA regulatory elements can by highlighted by 

phylogenetic footprinting (Aerts, 2012; Zhang and Gerstein, 2003). The structures of genes, in 

particular the differential conservation of intron/exon sequences, was also highlighted (Lander, 

2011). Today, many properties of genomes continue to be discovered by comparative genomics 

approaches. For example, the role of ultra-conserved non-coding regions in the human genome is 

beginning to be understood (Pollard et al., 2006). 

1.3.3.3 Emergence of the Evo-Devo field 

Interestingly, of molecular evolution concepts are central not only in molecular biology but also in 

developmental biology. This fact is a heritage of the anatomy and comparative embryology fields 

that compared body structures between animal embryos and slowly declined during the 19th century. 

The molecular knowledge of evolution is now giving a second life to this approach. The field of 

evolutionary developmental biology, named ‘Evo-Devo’, combines data concerning the genetic 

control of development with data from experimental and evolutionary comparative embryology. Its 

origin comes from the particular type of mutations observed in 1894 by William Bateson. He 

described ‘homeotic’ mutations in insects: mutations changing the position of appendix pairs along 

the body plan. Later in 1978, Edward B. Lewis (1918-2004) published a model of the evolution and 

function of several clusters of genes governing embryologic development: the bitorax complex (Dang 

et al., 1998). The Evo-Devo field now focuses on two main research axes: 

 The identification of the genes controlling embryogenesis and their functions. 

 The analysis of the repartition of these genes in the metazoan lineage by comparing their 

sequence and their expression. Effectively, genes controlling development have particularly 

conserved chromosomal localizations. Such analyses could lead to a new interpretation of 

organ homologies, parallelism and convergence between animals.  

Such approaches could highlight the importance of developmental constraints in evolution and 

explain the main morphological differences existing between zoological groups. In particular, some 

morphological characters can be conserved in animal phyla because of developmental constraints, 

despite a lack of apparent usefulness. One striking example is the origin of hiccups (Straus et al., 

2003). In mammals, the phrenic nerve describes a complex trajectory from the bottom of the skull to 

the diaphragm. This complexity can cause an inflammation of the nerve, inducing hiccups. This 

anatomical configuration is a legacy from the bony fishes and the functional aspect of hiccups, 

despite losing its meaning for mammals, can be found in early amphibians that gulp air and water 

across their gills via a motor reflex. Moreover, the same authors observed that the cellular pathways 

enabling hiccupping are activated prior to cellular pathways enabling normal lung ventilation during 

foetal development. 

1.3.3.4 (re)-discovering phenotypic  variation 

The gene-centric biology developed during the second half of the 20th century was highly motivated 

by biotechnological and biomedical research mainly focused on the mechanistic aspects of genes and 

proteins. Thus, the biology of the last 50 years was mainly focused on the gene ‘entity’, an immutable 

object that is present/absent, activated/inhibited in a cell and shared or not shared by species. It is 
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interesting to note how the variation intrinsic to any gene has often been ignored by molecular 

biologists who have focused more on the functional features and mechanistic aspects of biological 

processes. Consequently, Evolutionary mechanisms are not taken into account in many molecular 

biology studies, despite being the origin of this intrinsic variation.  

In the post-genomic era, new genetic and systemic knowledge is providing an opportunity to finally 

explain phenotypic variations at every biological level, from the genetic mutation to biological 

network dynamics. Today, with the democratization of high-throughput sequencing, the increasing 

role of epigenetic regulation, the role of ncRNA or the understanding of network dynamics, the gene 

is slowly losing its all-powerful role in biology. Genotype is no longer directly linked to phenotype and 

the attention given to intermediate biological levels is increasing. In particular, biology is 

reconsidering the importance of variations and their impact on function at all levels. Interestingly, it 

is biomedical research - one of the main motors of the functional view- that is motivating this new 

transition by providing new data about intra-population variation in humans. Biomedical research is 

also linking molecular studies and phenotypes, through new ideas such as personalized medicine 

(Neal and Kerckhoffs, 2010) or high-throughput sequencing as a routine diagnostic tool (Ku et al., 

2012). In this context, re-introducing evolutionary concepts at the system level is a great opportunity 

to study the importance of variations and their dynamics. By integrating evolutionary data from 

numerous biological levels (genomic context, protein level, interactions, pathways, signaling…), 

evolutionary systems biology can study numerous questions linked to specific phenotypes or 

syndromes. Finally, through evolutionary systems biology, evolutionary genomics is returning to the 

analysis of phenotype variation, a view that was partially overshadowed by the analysis of gene 

variation.  
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2 DEFINING HOMOLOGY, THE BASIS FOR EVOLUTIONARY STUDIES 
 

The evolutionary sciences have 150 years of history, evolving from a direct observation of Nature to 

the concept of genetic inheritance, followed by the molecular description of genetic mechanisms. 

Today, the theory of evolution is complemented by the mechanisms that model biological processes 

at the system level. A common factor in all evolutionary studies is that they compare multiple 

organisms based on a shared character. This shared character is sometimes referred to as a 

homology. Evolutionary studies first considered body shapes, physiology or life environments, but 

the molecular biology revolution has now placed the gene and the genome as the reference 

characters. Effectively, DNA is a common character of all Life forms, giving hope for the 

establishment of an evolutionary history of Life since its beginnings. 

 

2.1 Similarity and homology 
 

Etymologically, the word ‘homolog’ derives from the Greek word ‘homologos’, meaning ‘equivalent 

relation’. Use of homology to describe life is as old as comparative anatomy or paleontology, but its 

definition has changed over time. In 1843, Richard Owen coined the term ‘homology’ as ‘the same 

organ in different animals under every variety of form and function’. Owen noticed the similarities 

between certain structures in different organisms and imagined an ideal plan describing similarity 

structure among groups of animals. Its evolutionary meaning began to be accepted in the scientific 

community during the same period. However, because the term homology was coined in the pre-

evolution era, its meaning can be ambiguous and today most zoologists prefer the term 

‘synapomorphy’. Moreover, in an evolutionary framework, similarity in structure can be due to either 

from common ancestry or from convergent evolution. Convergence results from similar evolutionary 

pressures and constraints that induce similar structures in order to perform similar functions. Birds’ 

and bats’ wings are an example of convergence (figure 2-1). To test whether a characteristic is 

homologous or the result of convergence, the scientific reasoning is the following:  

 Assume homology and make a prediction based on that assumption (homology is a bet).  

 Search for sources of evidence that support the assumption or refute it (repeated tests 

confirming homology increase its confidence).  

The notion of homology was transferred from the organism level, based on anatomical characters 

such as number of legs or organ shapes, to the molecular level during the second half of the 20th 

century. It is now well established in all scientific communities that homolog refers to a character 

deriving from a common evolutionary ancestor. In the post-genomic era, homology is mainly used in 

comparative anatomy, evo-devo and molecular biology. There is no degree of homology: characters 

are either homologous or not (Tautz, 1998).  
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Figure 2-1. Differentiating homology and convergence. Pterosaurs, bats and birds 

produced wings with functionally similar shapes from the forelimb. The bones in each wing 

are homologous, but the arrangement of bones within the wing and the wing itself appeared 

independently in each group (convergence). Image by J. Rosenau. 

 

2.2 Homology in molecular biology 
 

In molecular biology, homology -a qualitative denomination- is mainly inferred by estimating a 

quantitative similarity, usually based on sequence residue identities. Indeed, as homologous 

sequences derive from a common ancestor, key residues and sequence motifs are often conserved 

during evolution (generally linked to function). Consequently, sequence similarities are used to 

describe the relatedness of sequences and infer homology. However, two sequences can be 

homologous without sharing significant residue similarity. It is important to note that sequence 

homology must be applied to the sequence itself and not to higher biological concepts such as genes. 

A gene could result from the fusion of several genes or the addition of new domains (portions of 

other genes). Following strictly the homology definition, such a gene is homolog to both genes 

sharing the same similar regions. This particular case highlights the fact that homology is not a 

transitive definition: the fused gene is homologous to two other sequences, but these latter 

sequences are not homologous.  

At the molecular level, homology was first used to describe similar functional phenomena. For 

example, myoglobin and hemoglobin were first described as ‘homologs’ based on their similar 

chemistry (Kendrew, 1961). This idea still remains in several biological fields, ignoring the 

evolutionary definition of homology and focusing on the functional implications. One of the pioneers 

of DNA and protein comparison in an evolutionary framework, W.M. Fitch, introduced the idea that 

nucleotide replacements account for the divergent descent of a set of genes, given a particular 

topology for the tree depicting their ancestral relations (Fitch, 1970). Since then, similarity 

measurement between biological sequences has become a standard means of establishing 

homology. Comparative analyses, functional annotation or evolutionary studies require a transfer of 
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information between organisms and homology is one of the most popular concepts used to address 

this problem. Beginning with small sets of genes, these analyses grew to large-scale analysis of 

complete genomes or meta-genomes. The increasing use of comparative studies based on homology 

highlighted the need for more specialized homology definitions, including orthology or paralogy. 

 

2.2.1 Orthology/paralogy 

 

Orthologs are homologous genes that diverged from a single ancestral gene in their most recent 

common ancestor via a speciation event. Paralogs are homologs resulting from gene duplications. 

The distinction between orthologs and paralogs refers exclusively to the evolutionary history of 

genes and does not have functional implications stricto sensu (Peterson et al., 2009). However, from 

an operational point of view, it is widely accepted that two orthologs generally share the same 

function (Brown and Sjolander, 2006). This hypothesis is supported by domain architecture 

conservation analysis showing that function conservation between orthologs demands higher 

domain architecture conservation than other types of homologs, relative to primary sequence 

conservation (Forslund et al., 2011). In contrast, it is generally considered that paralogs can diverge 

more rapidly and new functions can emerge as the result of mutations or domain recombinations. 

The most frequent outcome after a gene duplication is that one of the paralogous genes becomes a 

pseudogene. This phenomenon is known as nonfunctionalization (Lynch and Force, 2000; Maere et 

al., 2005). The sequence of a pseudogene degrades over time by including more and more mutations, 

until the gene is no longer recognizable by sequence similarity searches. Alternative fates for 

duplicated genes include a positive selection for both paralogous copies (neofunctionalization) or the 

specialization of one gene copy compared to the ancestral gene role (subfunctionalization) (Taylor 

and Raes, 2004). 

 

2.2.2 Inparalogy/Outparalogy 

 

The multiplication of available genomes in the post-genomic era has highlighted the necessity to 

distinguish two subtypes of paralogs: inparalogs and outparalogs (Koonin, 2005). Inparalogs are 

produced by duplication subsequent to a given speciation event, while outparalogs result from an 

ancestral duplication (relative to the given speciation event). To resume these relations, ‘in-paralogy’ 

and ‘out-paralogy’ are concepts relative to the species under comparison (figure 2-2). The distinction 

is crucial in evolutionary studies since sets of inparalogs derive from orthologs by lineage-specific 

expansions and thus can be considered to be co-orthologs, while outparalogs do not have 

orthologous relationships at all.  
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Figure 2-2.  Schematic representation of an inparalogy relation. Inparalogs are 

defined relative to a duplication event that occurred after a speciation event. Data from 

Manolis K., 2004. 

 

2.2.3 Xenology 

 

Xenologs are homologous sequences found in different species because of lateral gene transfer (LGT, 

also called horizontal transfer) instead of speciation. The term was introduced by E.V. Koonin in the 

context of prokaryotic LGT studies (Koonin et al., 2001). During the last decade, numerous cases of 

inter-prokaryotic xenology have been described, identifying LGT as a major contribution to 

prokaryotic evolution (Boucher et al., 2003; Ochman et al., 2000). Some rare cases of xenologs 

between mammals and bacteria (Goulas et al., 2011) or endosymbiont and host (Timmis et al., 2004) 

have been described, introducing a LGT role even in eukaryotic evolution (Andersson, 2005; Ros and 

Hurst, 2009). 

 

2.2.4 Functional aspects of orthology/paralogy 

 

The putative relation between function and orthology/paralogy is still actively debated in the 

Evolution field. However, it is generally accepted as proven in the molecular biologist community, 

which is an error considering that orthology has a strict evolutionary definition. In 2011, Gharid & 

Robinson-Rechavi reviewed literature cases of orthologs with functional divergence between mouse 

and human (Gharib and Robinson-Rechavi, 2011). They highlighted the lack of systematic exploration 

of functional differences between orthologs and the fact that this kind of research appeared only 
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recently in the scientific literature. Nevertheless, they estimated that a divergence of gene 

expression, alternative splicing or mutant phenotypes each affected about 10–20% of ortholog pairs. 

These human-mouse orthologs with strong differences would clearly affect many pathways and 

biological processes of interest (Gharib and Robinson-Rechavi, 2011). Another recent study by Nehrt 

et al. (Nehrt et al., 2011), comparing human and mouse functional genomic data concluded that 

paralogs are often a much better predictor of function than orthologs, even at lower sequence 

identities. This paper warned about the general use of the ‘ortholog conjecture’ (where orthology is 

synonymous to function conservation) and led to hot debate in the orthology community, with the 

subsequent publication of several new studies. GO consortium members demonstrated that the bias 

noted by Nehrt et al. between different classes of homologous genes in human and mouse, is more 

likely to reflect a global bias in the GO annotations for all human and mouse genes (Thomas et al., 

2012). In support of the orthology conjecture, other authors have shown that in general, small 

molecule binding is conserved for pairs of human to rat orthologs (Kruger and Overington, 2012). 

Finally, a recent paper moderates all these conclusions by demonstrating that orthologs generally 

have more similar functional annotations than paralogs, but the difference between orthologs and 

paralogs is weaker than expected under a naive understanding of the orthology conjecture, 

especially when GO Molecular Function and Biological Process are considered separately (Altenhoff 

et al., 2012). 

 

2.2.5 Some extended definitions: Ohnology, gametology 

 

Several other specialized homology definitions have appeared recently, but are mainly used in 

specific biological domains. Here are some examples: 

 Ohnology:  Ohnologs are paralogous genes that duplicated through a process of genome 

duplication (Wolfe, 2000). This term was originally introduced by K. Wolfe in honour of 

Susumu Ohno who proposed that whole genome duplications (WGDs) are key evolutionary 

transitions in chordate evolution (Ohno et al., 1968). Consequently, this homology definition 

is closely related to genome context and synteny conservation and is mainly used in 

evolutionary studies concerning species that are known to have experienced multiple 

genome duplications. Example studies include animal models such as Danio rerio, where two 

WGDs modelled the teleostei lineage (Postlethwait, 2007) or Saccharomyces cerevisiae 

where ohnologs represent 17% of genes (Byrne and Wolfe, 2005). 

 

 Gametology: This term was introduced to describe homologous regions in opposite sex 

chromosomes. Gametologous genes arise via non-recombination and differentiation of sex 

chromosomes (Garcia-Moreno and Mindell, 2000). Thus, genomic context is the key to 

differentiating gametologs in the particular case of recombination barriers occurring 

between portions of opposite sex chromosomes.  These barriers are considered similar to 

the lineage splitting and gene duplication that are used for orthology and paralogy inference.  
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2.3 Approaches to establish sequence homology 
 

As stated above, homology is a binary relation and two sequences are said to be homologous if they 

share a common ancestor. Unfortunately, we do not generally have access to information about the 

ancestors and therefore homology cannot be determined explicitly. Thus, sequence similarity is often 

used to predict ancestral states and to hypothesize homolog, ortholog and paralog relationships. 

Many bioinformatics approaches have been developed in genomics and phylogenetics to estimate 

sequence similarities. 

 

2.3.1 Sequence alignments 

 

During evolution, genes encoding RNA and proteins can be mutated. These mutations can concern 

only one residue or hundreds of residues if a whole part of sequence is deleted, inserted or 

undergoes recombination. These modifications can induce different consequences: no change in 

terms of function or expression, a loss of function or expression or the acquisition of new functions. 

Functional changes are closely related to the 3D structure of proteins and RNA. If a mutation changes 

the structure of catalytic sites or the structure of domains linked to molecular interactions, the 

function of such a protein can be lost or modified. Consequently, comparing sequences with their 

homologs is key to understanding functional properties of genes and the molecular evolution of 

RNA/protein families (Rustici and Lesk, 1994). In this context, sequence alignments are fundamental 

tools to compare DNA, RNA and protein sequences in molecular or evolutionary biology. They are 

used to understand which key residues and sequence motifs have been conserved during evolution. 

On the other hand, the search for non conserved regions in sequences can highlight functional 

loss/gains or specific genetic events (Lecompte et al., 2001). More explicitely, multiple alignments are 

now used for various purposes: 

 To analyze of protein organization: domains, insertions/deletions… 

 To validate sequences: detection of sequencing errors, frame shifts, start/stop codon 

prediction errors, intron/exon prediction errors… 

 To describe protein families and, by extension, their evolutionary context 

 To distinguish orthologs and paralogs 

 To analyze differential conservation of discriminating residues between sequence sub-

families 

 To predict 2D and 3D structures  

 To predict functions  

  

The alignment of sequences involves the creation of a matrix where the rows correspond to multiple 

sequences and conserved residues are placed in the same columns. When the sequences are of 

different length, insertion-deletion events (indels) are hypothesized to explain the variation and gaps 

are introduced into the alignment. Alignments can be produced by a wide variety of alignments that 

can be classified in four main categories (figure 2-3, adapted from (Lecompte et al., 2001)).Block 

alignments (figure 2-3A) represent only the most conserved motifs and do not contain any gaps. They 
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are used by the Probe program (Neuwald et al., 1997) and in the Blocks database (Henikoff et al., 

2002). Segment alignments (figure 2-3B) are used by a number of database search programs such as 

BLAST (Altschul et al., 1990) and PSI-BLAST (Altschul and Koonin, 1998), and in pattern/motif 

databases such as Pfam (Punta et al., 2012b) or ProDom (Bru et al., 2005). They contain the most 

similar regions of the sequences and may contain short gaps representing indels. Local and global 

alignments (figure 2-3C,D) both contain the complete protein sequences and are typically produced 

by multiple alignment programs such as Dialign (Morgenstern, 2007; Morgenstern et al., 1998) or 

ClustalW (Larkin et al., 2007; Thompson et al., 1994). In local alignments, the conserved motifs are 

identified and the rest of the sequences are included for information only. Thus, only a subset of the 

residues is actually aligned. In global alignments, all the residues in both sequences participate in the 

alignment. More recently, programs combining local and global alignment have been developed. We 

can cite Probcons (Do et al., 2005), TCoffee (Wallace et al., 2006a) and the most recent version of 

Mafft (Katoh and Toh, 2008b) or Clustal Omega (Sievers et al., 2011). These are generally more 

accurate than older methods based on global or local algorithms alone (Thompson et al., 2011). 

 

Figure 2-3. Four different types of multiple sequence alignment 

 

2.3.2 Alignments based on higher level criteria 

 

While useful for detecting homologies, multiple alignment techniques often fail when presented with 

a set of sequences sharing low identity (Thompson et al., 2011). To solve these drawbacks, the use of 

structural information, when available, has proved to be useful, because structures diverge at a 

lower rate compared to sequences (Abagyan and Batalov, 1997; Whisstock and Lesk, 2003). Several 
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aligners complete sequence homology with an additional comparison of 3D structures. This approach 

is exploited in the T-Coffee software suite (Di Tommaso et al., 2011) which includes two extensions, 

R-coffee (Wilm et al., 2008) and Expresso (Armougom et al., 2006) for the consideration of RNA and 

protein secondary structures respectively. Performing an alignment of 3D structures can require a 

considerable amount of CPU time. To address this, the authors of PROMALS3D make use of pre-

computed structural alignment databases (Pei et al., 2008). 

Another approach is not to complete classical sequence alignments with structural data but to 

directly consider the structural properties of sequence residues. Such alignment approaches can be 

roughly divided into three groups (Shealy and Valafar, 2012). Two groups use 3D data and optimize 

scores based on rigid-body superposition or tertiary interactions (distance matrices, contact maps). 

The last group includes 1D methods, which exploit the sequence itself by assigning residues to a 

vector of relevant properties and generally use faster string algorithms. For example, CLEMAPS 

(Friedberg et al., 2007) uses conformational letters coding probable conformational states of protein 

fragments (figure 2-4). Vorometric (Sacan et al., 2008) uses Voroni tessellations to determine the 

residue’s environment. YAKUSA (Carpentier et al., 2005) and 3D-BLAST (Yang and Tung, 2006) use 

conformational angles.  

 

 

Figure 2-4. The 3D structure of eukaryotic ornithine decarboxylase, in which 

residues are colored by their structural properties. Red hues designate fragments that 

have a high frequency in helices, blue hues those fragments that have a high frequency in 

strands. Adapted from Friedberg et al., 2007. 

 

Despite constant advances, 1D methods are mainly designed for fast database searching and have 

not compared favorably with 3D methods (figure 2-4) (Friedberg et al., 2007; Hasegawa and Holm, 

2009). Consequently, use of structural alignments based on sequence to establish sequence 

homology remains anecdotic.  
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2.3.3 Phylogenetics 

 

Phylogenetic-based approaches use alignment-based sequence similarity estimations in an 

evolutionary framework to predict the detailed evolutionary relationships between species or genes 

(Yang and Rannala, 2012). A phylogeny describes the ancestral states of a set of molecular sequences 

and the ancestral relations are generally represented by a phylogenetic tree. For example, the 

accepted universal tree of life, in which the living world is divided into three domains (bacteria, 

archaea, and eucaryota), was constructed from comparative analyses of ribosomal RNA sequences 

(Forterre and Philippe, 1999). Phylogenies can be used not only to describe molecular evolution but 

also complex evolutionary patterns. Some recent examples illustrated in figure 2-5 include the highly 

resolved tree of Life based on available complete genomes (Ciccarelli et al., 2006), the origin and 

spread of viral infection (Iyer et al., 2006) or the demographic changes and migration patterns of 

species (Grehan and Schwartz, 2009). 

 

Figure 2-5. Global phylogeny of fully sequenced organisms in 2006. The tree is based 

on a concatenated alignment of 31 universal protein families and covers 191 species. Green 

section, Archaea; red, Eukaryota; blue, Bacteria.  



Chapter 2. Defining homology, the basis for evolutionary histories 

 

 
20 

Since all methods of phylogenetic tree reconstruction use distance measures based on multiple 

alignments, strategies used to construct alignments can have a large influence on the resulting 

phylogeny (Wang et al., 2011; Wu et al., 2012). The methods for calculating phylogenetic trees fall 

into two general categories (Pevsner, 2009b). These are distance-matrix methods, also known as 

clustering or algorithmic methods (e.g. UPGMA or neighbour-joining), and discrete data methods, 

also known as tree searching methods (e.g. parsimony, maximum likelihood, Bayesian methods). The 

use of phylogenetic trees for the detailed characterization of homology relationships will be 

discussed further in the next chapter.  
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3 ORTHOLOGY INFERENCE IN THE POST-GENOMIC ERA 
 

In genomics studies, the classification of genes according to their evolutionary relationships is an 

essential step. In general, it is assumed that orthologous genes tend to conserve the same function, 

while paralogous genes can acquire new functions (the functional aspects of orthologs are discussed 

in paragraph 2.2.4.). The recent emergence of high-throughput sequencing and the dramatic increase 

of available complete genomes have increased the importance of orthology in functional annotation 

or comparative genomics. In this chapter we will review the current state of the art concerning 

computational methods for orthology inference and discuss future challenges. For readability 

purposes, we will refer to methods for detecting orthology relations, but obviously detecting 

orthology (resulting from speciation events) implicitly requires the inference of paralogy (resulting 

from duplication events). 

 

3.1 A multitude of strategies 
 

Automated detection of orthology relations between multiple organisms is a crucial issue in 

bioinformatics today, motivating numerous attempts to resolve methodological and computational 

issues. A profusion of methods has been developed during the last decade, most of them supported 

by pre-calculated orthology databases. A majority of these algorithms are based on protein 

sequences (single domain or complete transcripts) (described in 3.1.1). Other methods have also 

been developed that focus on protein domain-domain architecture (described in 3.1.2). More 

recently, the widespread use of omics approaches has introduced new potential characters for 

orthology inference, such as genomic context (described in 3.1.3) or conservation of molecular 

interactions (described in 3.1.4). Interestingly, the latter approaches rely strongly on the hypothesis 

of orthology functional conservation for their predictions, shifting the original definition from 

molecular evolution at the gene level to system evolution.  

 

3.1.1 Sequence based inference 

 

Today, dozens of orthology detection methodologies exist that are based on protein sequence 

homology. These approaches can be classified into four main classes,  based on conceptual and 

practical differences (Altenhoff and Dessimoz, 2012; Chen et al., 2007; Kristensen et al., 2011; 

Kuzniar et al., 2008) : tree-based methods, graph-based methods, hybrid approaches and integrative 

approaches (table 3-1). Tree-based methods use multiple alignments followed by phylogenetic tree 

construction and infer orthology from the topology of the latter. Graph-based methods mainly use 

BLAST to estimate sequence similarities and estimate orthology with heuristics based on BLAST hit 

scores. Hybrid methods are a mix of tree-based and graph-based methods, generally confirming tree-

based predictions with heuristic approaches. Finally, integrative approaches compile and score 
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results provided by several programs. Each approach has its own advantages and drawbacks, some of 

which are described in the following paragraphs.  

 

Database name 
Detection 
method 

Covered phyla Reference 

COGs/TWOGa/KOGs 

Graph Bacteria, Eukaryota 

(Tatusov et al., 2003; Tatusov et 

al., 1997) 

COGs-COCO-CL Tree Bacteria (Jothi et al., 2006) 
COGs-LOFT Tree Bacteria (van der Heijden et al., 2007) 
eggNOG 

Graph 
Bacteria, Archaea, 
Eukaryota 

(Powell et al., 2012) 

EGO Graph Eukaryota (Lee et al., 2002) 
Ensembl Compara Hybrid Eukaryota (Hubbard et al., 2007) 
Gene-Oriented 
Ortholog Database 

 Vertebrates (Ho et al., 2010) 

GreenPhylDB Tree Plantae (Rouard et al., 2011) 
HCOP Integrative Eukaryota (Seal et al., 2011) 
HomoloGene Hybrid Eukaryota (Wheeler et al., 2007) 
HOGENOM 

Tree 
Bacteria, Archaea, 
Eukaryota 

(Penel et al., 2009) 

HOVERGEN Tree Vertebrates (Dufayard et al., 2005) 
HOMOLENS 

Tree 
Bacteria, Archaea, 
Eukaryota 

(Penel et al., 2009) 

HOPS Tree Eukaryota (Storm and Sonnhammer, 2003) 
INVHOGEN Tree Eukaryota (invertebrates) (Paulsen and von Haeseler, 2006) 
InParanoid Graph Eukaryota (Ostlund et al., 2010) 
KEGG Orthology Graph Bacteria, Eukaryota (Kanehisa and Goto, 2000) 
MBGD Graph Bacteria (Uchiyama et al., 2010) 
MGD Graph Mammalia (Eppig et al., 2012) 
OMA 

Graph 
Bacteria, Archaea, 
Eukaryota 

(Altenhoff et al., 2011) 

OrthoDB Tree Eukaryota (Waterhouse et al., 2011) 
OrthologID Tree Plantae (Chiu et al., 2006) 
OrthoInspector Graph Eukaryota (Linard et al., 2011) 
OrthoMCL Graph Eukaryota (Chen et al., 2006) 
Panther 

Tree 
Bacteria, Archaea, 
Eukaryota 

(Mi et al., 2010) 

PHOG 
Hybrid 

Bacteria, Archaea, 
Eukaryota 

(Datta et al., 2009) 

PhylomeDB Tree Eukaryota (Huerta-Cepas et al., 2011) 
PLAZA Integrative Plantae (Van Bel et al., 2012) 
P-POD Integrative Vertebrates (Heinicke et al., 2007) 
ProgGMap Integrative Eukaryota (Kuzniar et al., 2009) 
RoundUp 

Graph 
Bacteria, Archaea, 
Eukaryota 

(DeLuca et al., 2012) 

TreeFam Hybrid Eukaryota (Ruan et al., 2008) 
YOGY Integrative Eukaryota (Penkett et al., 2006) 

 

Table 3-1 Non-exhaustive list of current orthology databases. Data compiled from 

(Kuzniar et al., 2008) and questfororthologs.org. 
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3.1.1.1 Tree-based approaches 

The standard definition for orthology was introduced during a phylogenetic tree analysis performed 

by Fitch W.M. (Fitch, 1970). It requires several steps. First, homologous sequences are collected and 

multiply aligned. Second, a gene or protein tree based on the alignment is constructed. Then, this 

tree is compared with a ‘known’ species tree to compare duplication nodes of the former with 

speciation nodes of the latter. This comparison is commonly called tree reconciliation (Page, 1994) 

and allows inference of speciation and duplication nodes. This standard protocol is widely used for 

low-throughput studies of gene family evolutionary histories, but requires manual intervention to 

check the reliability of the results. The post-genomic era has highlighted the need for automation of 

such analyses. As a consequence, several pipelines have been developed, focusing in particular on 

new algorithms for tree rooting and tree reconciliation, steps which have a large impact on the 

quality of orthology and paralogy prediction. The automated pipelines can take rooted or unrooted 

gene trees and species tree as inputs, or can use a set of sequences to create the multiple alignments 

and gene trees. Generally, such pipelines need the support of a computational grid.  

Several well maintained databases exist that provide tree-based orthology predictions. HOGENOM 

and HOVERGEN databases contain tree-based predictions based on the RAP – Réconciliateur 

d’Arbres Phylogénétiques – tree-reconciliation program. RAP can handle unresolved trees and takes 

into account bootstraps and branch length parameters (Dufayard et al., 2005; Penel et al., 2009). SDI 

– Speciation Duplication Inference – (Zmasek and Eddy, 2001) and Orthostrapper (Storm and 

Sonnhammer, 2002) are two other tree-reconciliation programs focusing on bootstrap 

improvements and calculation of scores based on these bootstraps. They are used in the RIO 

(Resample Inference Ortholog) and HOPS (Hierarchical grouping of Orthologous and Paralogous 

Sequences) databases respectively. Both of these databases were constructed by applying tree 

reconciliation restricted to single Pfam domains and not complete transcripts (Storm and 

Sonnhammer, 2003; Zmasek and Eddy, 2002). More recently, alternative methods were developed 

that replace the tree reconciliation step with their own algorithms. Berkley-PHOG defines orthologs 

as sequences in different species that are each other's reciprocal nearest neighbour (RNN) in the 

tree. It introduces the concept of super-orthologs, based on a sub-tree containing only RNN 

orthologs (Datta et al., 2009). The PhylomeDB database predictions are based on Neighbour Joining 

trees that are optimized through the comparison of likelihoods calculated by seven models of 

branch-length optimization (Huerta-Cepas et al., 2007). Currently, PhylomeDB can be considered as 

the only tree-based database providing high-throughput predictions as it currently contains about 

1,000 species and more than 2,000,000 trees, while new phylomes (complete collections of 

evolutionary histories of all genes in a genome) are regularly calculated. 

Tree-based inference is particularly suitable for detecting specific evolutionary events such as gene 

loss or horizontal gene transfers (Dufayard et al., 2005), which are common events in molecular 

evolution (Blomme et al., 2006). However they present a number of major drawbacks, most of them 

being inherent to phylogenetic tree reconstruction: 

 Need of a reliable species tree for tree-reconciliation, which can be difficult when studying 

unclearly defined phyla.  

 Different algorithms for multiple alignment and phylogenetic tree reconstruction can 

produce heterogeneous results. Indeed, the quality of the multiple alignments has a large 
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impact on the phylogenetic tree and fast evolving genes can induce problems of long branch 

attraction (Bergsten, 2005).  

 The root of the tree must be established, generally with the use of an outgroup. However, 

outgroups must be selected carefully, making the criterion less useful in automated large 

scale analysis, where some gene families may not be present in the outgroup species 

(Huelsenbeck et al., 2002).  

 Tree reconciliation is a complicated task because it assumes that gene and species trees 

contain no errors (Goodman et al., 1979). As a gene tree can be inferred only from its family, 

reconciliation uses a limited amount of information, reducing the confidence of the 

reconciliated tree. Some authors introduced bootstrap values to support orthology levels 

(Yuan et al., 1998). Despite these efforts, some consistent bias in such tree reconciliation 

methods is still present, with an overestimation of the number of duplicates placed near the 

root and an overestimation of the number of losses across the tree (Hahn, 2007). 

 Horizontal Gene Transfer (HGT) can be problematic for reliable phylogeny, in particular in 

prokaryote lineages. Despite some algorithmic corrections based on tree incongruence 

compared to the species tree, building phylogenetic trees taking into account HGT remains 

challenging (Philippe and Douady, 2003). 

 All steps are computationally expensive for large gene families. Thus, tree-based inference 

can be difficult to apply in large-scale analysis. 

 

Some authors have proposed alternative approaches to address these drawbacks. The need for a 

species tree can be avoided in two methods - COCO-CL: COrrelation COefficient based Clustering - 

(Jothi et al., 2006) and – LOFT: Levels of Orthology From Tree - (van der Heijden et al., 2007). 

Concerning the tree reconciliation steps, the bootstrap approach was complemented by a support 

value for all orthologous pairs by (Storm and Sonnhammer, 2002) and more recently tree 

reconciliation was adapted to Bayesian frameworks, improving correct assignments of horizontal 

gene transfers (Chung and Ane, 2011). Finally, some authors have focused on computational speed 

optimizations. For example, QuartetS decomposes polygenetic trees into quartet trees followed by 

the construction of a split network (Yu et al., 2011). The advantage of quartet trees is that they can 

adopt only 3 different topologies. Thus, decomposition of a tree into a set of quartets, estimation 

and filtering of the best bootstrap-supported quartet and finally reconstruction of a reconciliated 

tree are faster operations than the analysis of all possible topologies of a large phylogenetic tree.  

3.1.1.2 Graph-based approaches 

In principle, phylogenetic tree-based inference represents the most accurate way to determine 

orthology and paralogy (Brown and Sjolander, 2006; Gabaldon, 2008). However, it requires complex 

automated pipelines with extensive computational requirements, reducing their usability in genome-

scale studies. In order to cope with the constant influx of new complete genomes, new heuristic 

methods have been developed. They rely on the general assumption that orthologs are more similar 

than paralogs. They are all based on pairwise sequence similarity searches, mainly using BLAST or 

Smith-Waterman alignments.  

The first method using sequence pairwise comparison to detect orthologs is the Reciprocal Best Hit 

(RBH) (Tatusov et al., 1997). An RBH exists between two sequences belonging to two different 
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organisms if they are reciprocally the most similar sequences compared to all other sequences of 

both organisms. Consequently, this relation can only link 2 entities and cannot detect complex 

relations of co-orthology. Indeed, if a gene duplication event occurred after a speciation event, the 

orthology relation is complex and can link several inparalog genes (see section 2.2.2). In fact, for 

comparison of two organisms (O1 and O2), we have three types of pairwise entity relationships 

(figure 3-1). A 1-to-1 relationship is defined by a best hit between a protein of O1 and a protein of 

O2, complemented by a returning best hit from the protein of O2 to the protein of O1, known as a 

reciprocal best hit. A 1-to-many relationship is defined by a best hit from a given protein of O1 to any 

protein member of an inparalog group of O2, complemented by a returning best hit from any 

member of the inparalog group of O2 to the same protein of O1. Finally, a many-to-many 

relationship is defined by two best hits between proteins of two groups of inparalogs (a group in O1 

and a group in O2).  

 

 

Figure 3-1. Comparison of inparalog groups. BLAST best hits are used to define the 

potential relationships existing between inparalog groups. 

 

As for the tree-based methods, the availability of numerous genomes showed the limits of the RBH 

and its incapacity to predict complex co-orthology relations. Consequently, a large range of 

alternative heuristics has been developed to exploit pairwise gene similarities in large-scale studies. 

They use a dataset representing BLAST comparisons of all genes belonging to several species, 

commonly known as a BLAST ‘all-versus-all’. This procedure assigns similarity values to all possible 

gene pairs and provides the basis to infer orthology in the so-called graph-based methods, where the 

graph is made up of nodes corresponding to genes and edges representing BLAST best hits or other 

sequence similarity measures. We can distinguish three types of graph-based methods: direct use of 

pairwise distance calculations, construction of 3-way best-hits and clustering approaches. 

Inparanoid (Ostlund et al., 2010) was the first and only graph-based method based on pairwise 

distance calculations when we started development of OrthoInspector (see chapter 7). Inparanoid 

http://www.biomedcentral.com/1471-2105/12/11/figure/F3?highres=y
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predictions are based on a pairwise comparison between two organisms. The search for co-orthologs 

is centred on the RBH existing between two organisms. If a sequence is more similar to the 

sequences defining the RBH than to the similarity threshold defined by the RBH itself (in the 

respective organism), Inparanoid considers it to be an additional inparalog implicated in the 

orthologous relation. Consequently, Inparanoid can predict 1-to-1, 1-to-many or many-to-many 

relations between two organisms. This approach was later improved in the Ortholuge program to 

better handle gene-loss events by using phylogenetic distance ratios instead of BLAST similarities 

(Fulton et al., 2006).  

COG/KOG, OrthoDB and eggNOG are three representatives of the 3-way best-hits approach, the 

former establishing the original method and the two latter extending it. In COGs (Cluster of 

Orthologous Groups) or KOGs (eukaryotic clusters of Orthologous proteins) the 3-way best hits are 

defined as the symmetrical best hit linking the proteins of three organisms (Tatusov et al., 2003; 

Tatusov et al., 1997). This triangle specifies the minimal COG (the minimal cluster). Then, all best hits 

linking these three proteins to new proteins of other species are used to extend the cluster of 

orthologous proteins. This approach is useful to rapidly group proteins belonging to the same gene 

family. However, a COG cluster can mix proteins with both orthology and paralogy relations because 

it does not consider any hierarchy between the species. To address this limitation, the eggNOG 

algorithm was developed (Jensen et al., 2008). Using COG clusters as a basis, the algorithm first 

defines in-paralogous proteins, then assigns orthology between proteins by joining triangles of 

reciprocal best hits at a given cutoff. Gene fusion cases are handled by avoiding fusion of clusters 

defining two homolog families. Then, a new triangulation is done by reducing the threshold to reach 

a wider taxonomic range. This process is repeated to create a hierarchical clustering of homologous 

proteins at different taxonomic levels. The OrthoDB database was constructed using the same 

protocol with some adjustments (Kriventseva et al., 2008). While eggNOG defines hierarchical groups 

corresponding to major taxonomic levels, OrthoDB defines hierarchical groups corresponding to any 

split in their species tree. 

The third type of method uses clustering of the BLAST all-versus-all data to construct a best-hit 

graph. What differentiates clustering-based methods is the clustering algorithm they use. OrthoMCL 

(Li et al., 2003) applies a Markov Cluster algorithm on the graph to obtain clusters grouping orthologs 

and recent paralogs. Similarly, the DomClust algorithm (Uchiyama, 2006) performs a successive 

contraction of the graph using UPGMA clustering (Unweighted Pair-Group Method using arithmetic 

Averages). OMA uses a maximum-weight clique algorithm to cluster ortholog pairs into ortholous 

groups (Roth et al., 2008). SuperPartitions algorithm (Tekaia and Yeramian, 2012) first defines 

inparalogs using an in-house partitioning method and Markov Clustering of the intra-species 

reciprocal significant hits. Then, it links inparalog groups with classical inter-species RBH. The ReMark 

algorithm (Kim et al., 2011) first determines proto-clusters by a recursive method similar to 

Inparanoid, then confirms the clusters with Markov Clustering. Interestingly, most clustering-based 

approaches take into account the gene-fusion issues with heuristics, e.g. clusters should be fusioned 

if a fusion protein links them. 

Finally, the RSD – Reciprocal Smallest Distance - algorithm (Wall et al., 2003) cannot be classified in 

any of the three previous categories. It combines local and global sequence alignments and 

maximum likelihood estimation of evolutionary rates to predict orthologous proteins. This algorithm 

is the basis for the RoundUp database (DeLuca et al., 2012).  
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3.1.1.3 Hybrid approaches 

Hybrid methods use a mix of tree-based and graph-based methods at different stages in their 

pipelines. The tree concept is mainly used to refine ortholog groups or to guide ortholog clustering 

with the help of a phylogenetic tree. The goal of the method integration is to combine the 

phylogenetic resolution with the scalability of graph-based method (Kuzniar et al., 2008). 

Consequently, they can be applied to genome-wide analysis.  

Ensembl Compara (Hubbard et al., 2007), HomoloGene (Wheeler et al., 2007), OrthoParaMap 

(Cannon and Young, 2003), PhIGs (Dehal and Boore, 2006), PHOGs (Datta et al., 2009), PhyOP 

(Goodstadt and Ponting, 2006), TreeFam (Ruan et al., 2008) are all examples of hybrid methods. They 

all create clusters of homologous sequences, then infer orthology/paralogy relations in these clusters 

using different criteria for refinement. Ensembl Compara builds clusters based on BLAST best-hits, 

constructs a phylogenetic tree for each cluster, labels ortholog relations as 1-to-1, 1-to-many, many-

to-many between species pairs and completes predictions with new orthologs predicted from 

genome context through whole-genome alignments. Homologene, PhIGs and PHOGs use an 

incremental clustering of homologous sequences guided by a species phylogeny. OrthoParaMap 

integrates BLAST similarities, gene phylogenies and uses a tree-reconciliation step based on 

conserved gene neighbourhood and not species tree. PhyOP uses a clustering technique and a 

phylogenetic reconstruction that takes into account multiple transcripts of the same gene and can 

distinguish between functionally active orthologs and pseudogenes. TreeFam is a curated tree 

database whose originality,  similarly to the Pfam database, comes from its split into automatically 

generated trees (TreeFam-B) and manually curated trees (TreeFam-A). In both databases, orthologs 

are inferred with a hierarchical clustering and phylogenetic tree reconstruction procedure. 

 

3.1.2 Domain architecture based inference 

 

It has been proposed that domain architecture composition is likely to be conserved during evolution 

due to functional constraints (Vogel et al., 2004). For this reason, while the similarity between 

primary sequences of orthologs may decrease dramatically in distantly related species, the domain 

composition is more likely to be conserved through evolution. Based on this assumption, some 

authors have used domain architecture to detect orthologous relationships between distantly related 

species. In particular, Chen at al. developed the DODO - DOmain based Detection of Orthologs – 

algorithm. It groups proteins with the same domain architecture, then refines the orthologous 

relationships within each group by identifying RBH in this smaller protein set. This strategy has 

proven to be efficient for the large-scale analysis, because the sequence clustering based on domain 

architecture eliminates the need for the classical BLAST all-vs-all construction. However, as the DODO 

algorithm needs the support of an annotation database (Pfam is used in the current version), it 

strongly depends on the amount of information that this database contains, thus restricting its 

applicability to a few species. Proteins without Pfam domain information are all grouped in an 

uncharacterized cluster and must be analyzed independently from DODO. Another criticism is that 

domain architecture can evolve faster than domain conservation, restricting the analysis to closely-

related species. 
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3.1.3 Orthology and genomic context 

 

An alternative approach has been to use conservation of gene neighbourhood to infer orthology 

relations, in particular when homologs share low similarity (Simillion et al., 2004) or in the case of 

single copy paralogs obtained after the loss of a member of the paralogy pair (Scannell et al., 2007). 

However, such a comparison is restricted to closely related species (Huynen and Bork, 1998). Several 

hybrid methods consider gene neighbourhood conservation to refine sequence similarity based 

predictions, although sequence similarity remains the first criteria to detect a set of orthologs before 

refinement. Several groups attempted to directly infer the orthology relationship by looking at  

conserved gene context (Dewey, 2011). These methods can be classified into three classes.  

The first class is based on best hits between genomes to define ‘clear’ orthologs, i.e. only 1-to-1 

orthologs in most methods. For example, the EGM - Encapsulated Gene-by-gene Matching - 

(Mahmood et al., 2010) and SYNERGY (Wapinski et al., 2007) algorithms search for optimal matching 

between gene sets of two genomes, based on an objective function that takes into account gene 

neighbourhood conservation. EGM constructs a bipartite graph based on one-to-one orthologs 

between two genomes, where edge weights represent both similarity and neighbourhood 

conservation. Orthologs are then inferred by finding a maximum matching in the graph. SYNERGY 

uses a protein-level evolutionary distance and a gene neighbourhood similarity score to produce 

both cluster-based and phylogeny-based orthology predictions. IONS - Identification of Orthologs by 

Neighbourhood and Similarity – (Seret and Baret, 2011) is similar to SYNERGY but does not require 

dataset-dependant parameters. The OrthoParaMap algorithm (Cannon and Young, 2003) predicts 

orthologs and paralogs mainly with blocks of conserved gene order but is able to analyze only one 

gene family as input and not an entire genome. This is the only method in this class not restricted to 

1-to-1 relationships. 

The second class includes methods that reconstruct parsimonious gene order evolutionary scenarios 

using models of evolution. A first approach is to construct a history of the events that induced the 

observed genomic position conservations (Sankoff, 1999). A gene pair linking two genomes is 

selected in each gene family such that if unselected genes of a family are removed, the distance 

between the resulting gene orders is minimized. These pairs are estimated to be the best candidates 

for positional orthology between genomes. MSOAR 2.0 (Shi et al., 2010) is an orthology prediction 

method based on reversal distance that extends the evolutionary model to take into account 

duplications, translocations and chromosomal fusions/fissions. MultiMSOAR 2.0 further extends the 

method of neighbourhood comparison to multiple genomes (Shi et al., 2011). 

The third class of methods uses whole-genome alignments at the nucleotide level. They are generally 

limited to genomes with high linear colinearity, i.e. closely-related species (Blanchette, 2007). While 

they could in theory be used to estimate 1-to-many and many-to-many relations in the case of 

reference-based alignments, most of them are restricted to prediction of 1-to-1 orthologs and can be 

classified into hierarchical, local and hybrid approaches (Dewey, 2011). Hierarchical approaches first 

construct a high-level collinear orthology map between several genomes. This is a critical step 

referred to as the ‘synteny block’ finding problem that decomposes genomes into conserved blocks. 

Then, a nucleotide–level global alignment is computed for each block. Hierarchical methods thus 

combine two tools (conserved blocks search and aligner), for example: Mercator and MAVID (Dewey, 
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2007), Shuffle-LAGAN and LAGAN (Brudno et al., 2003) or Nucmer and SeAn::TCoffee (Angiuoli and 

Salzberg, 2011). Local methods follow the reverse sequence of operations; first small genome 

fragments are aligned, second a chaining of these fragments highlights longer collinear segments. 

Alignment of multiple genomes is obtained by a progressive merging of overlapping pairwise 

alignments. Some example methods use BLASTZ (Schwartz et al., 2003), MUMmer (Delcher et al., 

2003) or CHAINNET (Kent et al., 2003). ProgressiveMauve (Darling et al., 2010) is a hybrid method 

that performs several rounds of finding local alignments, identifying sets of 1-to-1e collinear 

segments and filtering of paralogous segments. 

 

3.1.4 Biological network-based inference 

 

Recently, the availability of large-scale protein-protein interaction (PPI) networks has motivated the 

idea to exploit higher biological levels for orthology inference. This idea is controversial because it is 

focused on the functional conjecture of orthologs and not on their evolutionary definition. Thus, 

authors developing these approaches use the term ‘functional ortholog’ to differentiate their 

inferred relations from the classical orthology definition. This denomination still remains confusing 

and contributes to the general misunderstanding of the orthology concept. Here we will briefly 

describe these methods inferring ‘functional orthologs’. 

One of the first network alignments used for orthology detection was performed by Ogata et al., who 

predicted orthologous groups of proteins corresponding to conserved metabolic pathway motifs 

(Ogata et al., 2000). This study combined gene neighborhood conservation and metabolic pathway 

data for 10 bacterial genomes. In each organism, groups of functionally related enzymes were 

formed with the help of both criteria. Then, corresponding enzymes were mapped between the 

different species by an EC number matching. Finally, the alignment wasmanually refined based on 

sequence similarity.  

Later, global interaction networks for model organisms became available, initiating algorithmic 

developments for a Global Network Alignment (GNA) of biological networks. The global scope of GNA 

enables species-level comparisons of biological networks. Bandyopadhyay et al. developed the 

PathBLAST algorithm to align conserved pathway segments in Drosophila melanogaster and 

Saccharomyces cerevisiae (Bandyopadhyay et al., 2006).  More recently, Towfic et al. expanded such 

approaches by simultaneously integrating PPI and gene co-expression networks in fly, yeast, mouse 

and human (Towfic et al., 2010). Their alignment of networks and orthology assignation is supported 

by decision trees and probabilistic frameworks (Naïve-Bayes and Support Vector Machine). They 

found that such orthology prediction provided good results by comparing their data to the KEGG 

orthology database. This result can be criticized because they validated their data in a cyclic way. 

Indeed, the KEGG database orthology predictions are based on a combination of features from 

phylogenetic analysis, sequence similarity and similar pathway topology (Mao et al., 2005). Finally, 

Park et al. created Isobase, the first PPI network alignment-based orthology database (Park et al., 

2011). However, this latter clearly mentioned the functional definition of its orthologs, which are 

described as ‘isologs’ (figure 3-2). These functional orthologs are derived from the multiple alignment 

based on the IsoRank algorithm (Singh et al., 2008) and performed for five major eukaryotic PPI 
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networks (yeast, fly, worm, mouse, and human). The latest version of the database also includes 

genetic interaction networks. 

 

 

Figure 3-2. Some examples of conserved PPI subgraphs extracted from the yeast-fly 

Global Network Alignment (GNA). The detection of conserved sub-graphs can be related 

to the detection of functional orthologs, also referred to as isologs. Node labels correspond to 

yeast/fly proteins. Adapted from Park et al., 2011. 

 

3.2 Limits of orthology inference 
 

3.2.1 Coping with the increasing data influx 

 

Orthology inference is essential for comparative and functional genomics. In the first decade of this 

century, the genomes of dozens of eukaryotic species and hundreds of prokaryotic species were 

completely sequenced. In this context, the development of graph-based methods for orthology 

inference allowed comparative analysis of these genomes. Today, technological advances in 

sequencing allow the publication of new complete genomes every day, providing incredible 

opportunities for comparative genomics and evolutionary studies at every taxonomic level. Despite 

being less computationally consuming than tree-based methods, graph-based methods are still based 

on sequence similarity tools such as BLAST. In particular, they require a BLAST all-versus-all as input, 

implying a quadratic number of sequence comparisons. Continuing to analyze all the available 

genomes with BLAST could rapidly become a critical limitation in terms of computational resources.  

Recent methods are therefore focused on algorithmic optimization to further reduce the 

computational costs of orthology predictions. For example, Proteinortho (Lechner et al., 2011) uses 

heuristics similar to Inparanoid with algorithmic and multi-threading optimizations. It reduces the 

number of pairwise sequence comparisons required by concentrating on the most informative 

comparisons. xBASE-Orth (Halachev et al., 2011) ) applies a "divide and conquer" algorithm to 

sequence similarity searches, avoiding the calculation of a BLAST all-against-all dataset. It creates 

pan-genomes - core genome shared by all species (Tettelin et al., 2005) - as proxies for the full 

collections of coding sequences at each taxonomic level and progressively climbs the taxonomic tree 

using the previously computed data. This interesting approach could be a first step towards the 

continuous incorporation of novel complete genomes that avoids the recalculation of all sequence 
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similarities. It should be noted that both of these approaches were used efficiently on thousands of 

genomes, but were restricted to bacterial and archaeal genomes. It would be interesting to apply 

such approaches to eukaryotic genomes where complex paralogy relations are more frequent. These 

optimizations could be complemented by BLAST sampling methods, such as that proposed by 

Friedrich & al., designed to significantly reduces the number of homologous sequences required for 

analysis and extraction of relevant information (Friedrich et al., 2007).  

 

3.2.2 Domain recombinations, gene losses and horizontal gene transfers 

 

Changes in domain architecture, produced by gene fusion/fission events and other evolutionary 

processes are a significant source of error in many genome annotation pipelines (Abascal and 

Valencia, 2003; Galperin and Koonin, 1998). In principle, all phylogenetic methods could handle such 

genetic events by resolving discrepancies in phylogenetic trees (Sjolander et al., 2011). However, the 

main limitation of domain-based phylogeny for orthology identification is the dependence of 

phylogenetic methods on sufficient site data, i.e. the length of the multiple sequence alignment. This 

drawback is particularly true for domain-based methods that exclude small domains with a length 

<50 residues (Moret et al., 2002). In the case of graph-based methods, in particular clustering-based 

methods, several algorithms have attempted to detect protein fusion/fission when detecting 

overlapping cluster of orthologous proteins (see 3.1.1.2). Nevertheless, for both approaches, multi-

domain proteins still require manual refinements in general.  

Horizontal gene transfer (HGT) is an important phenomenon, in particular in prokaryotes (Keeling 

and Palmer, 2008). It creates a particular homology relation known as xenology (see 2.2.3). Currently, 

few orthology inference methods explicitly take into account such relations because it requires a 

complex phylogenetic analysis, combining phylogenetic incongruence, atypical sequence 

composition and insertion/deletion patterns (Sundin, 2007). One solution may be to consider the 

phylogenetic distribution of predicted orthologs through visualization tools (Linard et al., 2011). 

Gene loss remains the most important potential source of error for orthology predictions. In cases of 

multiple gene loss, most graph-based methods cannot differentiate between out-paralogs and 

orthologs (figure 3-3). Graph-based methods are particularly sensitive to gene loss because they 

consider only ‘existing’ relations and do not compare them to a species tree (Kuzniar et al., 2008). In 

theory, tree-based methods should be able to detect such genetic events, although only Ensembl 

Compara and TreeFam explicitly address this problem in their algorithm.  
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Figure 3-3. Homology relations in gene families where gene loss occurred as seen 

by tree-based and graph-based methods. Contrary to graph-based methods, tree 

reconciliation between gene tree and species tree allows the detection of gene loss events in 

phylogenetic approaches. Sce1, cgl2 & sc2 are out-paralogs (duplicated prior to speciation), 

but are considered as orthologs by graph-based methods. D and S indicate duplication and 

speciation event respectively. Full lines represent existing genes, dotted lines represent lost 

genes. Adapted from Kuzniar & al.2008 , fungi data from Scannel & al.(2007) . 

 

3.2.3 The problem of alternative transcripts for ortholog prediction 

 

Most orthology prediction methods use a single reference sequence for each protein-coding gene, 

avoiding the complex problem of alternative transcripts. However, most multi-exon genes can 

encode multiple protein isoforms, which often have different functions and may even be disease-

related. In 2010, Jia et al. published a study extending orthologous groups predicted by Inparanoid to 

all alternate transcripts available in general sequence databases (Jia et al., 2010). Each ortholog 

group was divided into sub-clusters based on the sequence similarity of the isoforms. They observed 

that in considered species, functional similarity was higher within than between transcript-based 

sub-clusters for a single orthologous group. In other words, the function was more conserved 

between isoforms with the same exon structure in different species than isoforms with an alternative 

exon structure in the same species. This conclusion lead them to strongly recommend extension of 

the concept of orthology from the gene to the transcript level, by considering isoform sub-clusters of 

orthologous gene groups when available. Indeed, this would improve automatic propagation of 

functions from one isoform in a gene-based ortholog group to all equivalent isoforms in another 

species, thus limiting annotation and propagation errors. As an alternative approach, Fu and Lin 

produced a set of exon-level orthologous relationships from assigned gene ortholog pairs in the 

human and mouse genomes (Fu and Lin, 2012). First, they highlighted the current limits of orthology 

prediction at the exon level: about 26% of human and 11% of mouse genes in their dataset of 16545 

1-to-1 orthologs had alternatively spliced transcripts. This observation indicates a substantial lack of 

potential exons supported by various splicing isoforms when considering transcript information in 

http://www.sciencedirect.com/science/article/pii/S0168952508002278
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current database. However, for genes where multiple transcripts are available, 92% of united exons 

were associated within an orthologous pair and several cases of 1-to-many exon pairs were 

observed, illustrating an interesting evolutionary behaviour for exon generation. 

 

3.2.4 Performance of orthology predictions 
 

Orthology prediction is a complicated task because the analysed subject, the gene, can be subject to 

heterogeneous and atypical evolutionary mechanisms (multiple duplications, rapid sequence 

divergence, domain organisation change, gene loss…). Graph-based and tree-based methods have 

their own advantages and drawbacks (figure 3-4). Several independent studies have been performed 

to compare the performance of these different approaches (Altenhoff and Dessimoz, 2009; 

Boeckmann et al., 2011; Chen et al., 2007; Creevey et al., 2011; Linard et al., 2011; Salichos and 

Rokas, 2011; Sjolander et al., 2011; Trachana et al., 2011). The conclusions reached by these authors 

are diverse and sometimes contradictory, the main difficulty being to obtain comparable sequence 

datasets and to define comparison criteria that can be applied to all methodologies. Nevertheless, 

some main trends can be compiled from these studies. Tree-based methods tend to be more 

sensitive than graph-based methods, but at the expense of some specificity loss. Their evolutionary 

framework permits to describe distant paralogy and co-orthology relations. However, searching for 

distant relations has a huge computational cost. Graph-based methods are a trade-off between 

sensitivity and computational time, with relatively similar predictions for all methods. Here, wrong 

predictions are mainly due to gene loss and domain recombination events. In a recent paper, 

Boeckmann & al. concluded that none of the databases provides a fully correct and comprehensive 

protein classification, but that tree-reconciliation and hierarchical clustering-based methods have the 

potential to correctly describe a gene phylogeny (Boeckmann et al., 2011). Another work from 

Hellmuth & al., focusing on a  mathematical description of orthology in a graph theory framework, 

concluded that graph-based methods could improve their predictions with better mathematical 

modelling (Hellmuth et al., 2012). 

.  

Figure 3-4. Main trends in performance of orthology prediction methods. 

Phylogenetic-based approaches are generally considered to be more sensitive and can 

handle complex genetic events such as gene loss or domain recombination (if the phylogeny 

is domain-based). However, this choice is computationally intensive and is not suitable for 

very large-scale studies. 
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These general conclusions have been drawn from comparative studies based on heterogeneous 

datasets, representing heterogeneous species sets and protein families. There is clearly an urgent 

need for more standard evaluations using ‘gold standard’ community benchmarks of orthologs and 

for a clearer definition of orthology assessment criteria. Indeed, orthology being a homology relation, 

in general it is impossible to know a priori if the inferred evolutionary relation is correct or not. 

Therefore, such a relation can only be supported by multiple cross validations. The most reliable 

validation is to compare concordance of orthology predictions with reference trees of well-known 

protein families (phylogenetic assessment). However, the lack of such trees for hundreds of species, 

as well as their inconsistency for less well studied phyla, limits such a validation for genome-scale 

data. Chen et al. proposed two other comparison criteria based on the functional conjecture of 

orthologs: the consistency of protein function in orthologous groups and the consistency of domain 

architecture in orthologous groups (Chen et al., 2007). Again, these criteria (mainly based on GO 

annotations) can only be applied in well annotated gene families and assumes that the analyzed gene 

families have not experienced major genetic events, such as domain recombinations. Altenhoff et al. 

proposed three other criteria: similar Enzyme Classification (E.C.) annotations in orthologous groups, 

correlation in expression profiles and gene neighborhood conservation (Altenhoff and Dessimoz, 

2009). Except for neighborhood conservation, these criteria are again strongly based on the 

functional conservation between orthologs. Judging orthology prediction reliability with E.C. 

numbers is dangerous, as co-orthologs may undergo subfunctionalisation or neofunctionalisation. It 

is just as dangerous to use expression profiles, because expression is also regulated by genomic 

context and epigenetic factors. The problems associated with the useful assessment of orthology 

predictions have been discussed recently, in particular in the context of the Quest for Orthologs 

Consortium (Gabaldon et al., 2009), and efforts are now underway to address these issues in the 

orthology community (see 3.4.2).  

 

3.3 Integration Efforts  
 

3.3.1 Combining different approaches 

 

As described in the previous sections, each of the conceptual approaches for orthology inference has 

its advantages and drawbacks and the user is forced to choose between sensitivity and specificity. To 

exploit the advantages of the different methods, several authors have developed tools combining 

several alternative predictions. The idea is that the intersection of genes predicted as (co-)orthologs 

by several approaches can be used to reliably identify a set of ‘true’ orthologs or to describe a 

complex evolutionary scenario. Such comparisons highlight a need for efficient visualization tools, 

facilitating the analysis of the intersections/exclusions of multiple ortholog datasets. 

In 2005, the HGNC Comparison of Orthology Predictions (HCOP) (Seal et al., 2011) was the first 

database to integrate orthology predictions from different orthology-dedicated resources. Today, it 

integrates human gene orthology predictions from EnsemblCompara, Homologene, Inparanoid, 

OMA, Treefam and the model organism databases, Evola (Matsuya et al., 2008), MGI (Eppig et al., 

2012), OPTIC (Heger and Ponting, 2007), UCSC (Dreszer et al., 2012) and ZFIN (Bradford et al., 2011). 

In HCOP, the reliability of an orthologous relation is based on the number of occurrences in different 
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databases and synteny information, but this information is not supported by any visualization tool or 

informative scoring scheme. More recently, the authors of the ProGMap website (Kuzniar et al., 

2009) integrated predictions from COG, OrthoMCL and HomoloGene databases. They developed a 

graph-based tool to describe the correspondences and discrepancies between the predictions made 

by these methods (Figure 3-5). By constructing a network of links using a fast hashing/mapping 

method originally developed for document classification, they constructed a graph for each protein 

family describing the relationships existing between the various data sets. 

 

 

Figure 3-5. Comparing protein ortholog groups using the ProGMap network 

visualization tool. This screenshot describes the orthologous relationships between five 

mannose-binding lectins. Groups sharing at least one protein are connected with an edge. In 

this example, the HomoloGene database (yellow) divides the lectins into two groups. KOG 

(blue) regroups them into one group and OrthoMCL (orange) separates them in a different 

way. Adapted from Kuzniar et al., 2009. 

 

A second example of integration can be found in PLAZA (Van Bel et al., 2012), a platform dedicated to 

comparative genomics in plants. As for ProGMap, PLAZA combines a graph-based method with a 

phylogeny based method. It uses orthologous groups based on OrthoMCL and compiles them with in-

house phylogenetic predictions, gene neighbourhood conservation and inparalogy predictions using 

an OrthoInspector-like method. Then, a weighted voting scheme based on the sensitivity of 

individual tools is used to estimate orthology predictions. An online tool allows the visualization of 

paralogous sequence groups and describes which relations of a group are supported by several 

methodologies (figure 3-6). 

 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=2703891_gkp462f2.jpg


Chapter 3. Othology inference in the post-genomic era 

 

 
36 

 

Figure 3-6. Integrative Orthology Viewer of the PLAZA platform. The platform 

provides orthology relations between plant genomes based on OrthoMCL (green), 

phylogenetic inference (blue), gene neighbourhood (orange) and OrthoInspector co-

orthologs (purple). Adapted from Van Bel & al. 2012. 

 

Another database integrating multiple orthology predictions is MetaPhOrs (Pryszcz et al., 2011), a 

repository of phylogeny-based orthologs, combining resources from 7 phylogenetic orthology 

databases (PhylomeDB, EnsemblCompara, EggNOG, OrthoMCL, COG, Fungal Orthogroups, and 

TreeFam). MetaPhOrs predictions are based on a pipeline that uses the phylogenetic trees of the 7 

source databases, but not their final orthology predictions. For any given pair of sequences, all 

phylogenetic trees containing these sequences are retrieved. Then a species overlap algorithm is 

used on each tree to predict the type of homology relationship existing between this sequence pair. 

The MetaPhOrs authors performed an interesting comparison of their results with several tree-based 

databases, estimating specificity and sensitivity using a fungal ortholog benchmark. Currently, this is 

the only study demonstrating that method integration could provide better sensitivity and specificity 

for orthology predictions. 

 

3.4 Unifying orthology research efforts: achievements and perspectives 
 

3.4.1 Quest for Ortholog Consortium: a recent community initiative 

 

In 2009, some authors of the most perennial orthology databases decided to organize a ‘Quest for 

Orthologs’ meeting to discuss and address major limitations and the perspectives for orthology 

inference (Gabaldon et al., 2009). This meeting included experts in genome evolution, developers of 

orthology prediction methods and curators of general databases with a common goal of discussing 
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current orthology inference issues and main challenges. This initiative gave rise to the Quest for 

Ortholog Consortium and motivated a second meeting that gathered numerous research teams 

interested in orthology research (Dessimoz et al., 2012). Several orthology inference challenges 

highlighted by this consortium have been discussed in the previous sections and the two first results 

of this community effort are described in the following chapters. 

 

3.4.2 Benchmarking 

 

In computing, a benchmark is the act of performing operations, in order to assess the relative 

performance of a program by running a number of standard tests and trials against it. In the case of 

orthology benchmarking, the goal is to construct a dataset of reliable orthology relations and to test 

whether the predictions produced by an algorithm correspond to this ‘gold’ standard. Until recently, 

no specific benchmark existed for orthology relations; most authors produced their own benchmark 

with the publication of their methods, which meant that global comparisons between methods were 

very difficult.  

Thanks to the discussions initiated during the Quest for Orthologs meetings, significant efforts have 

been made during the last year to produce standard community benchmarks accepted by most 

research teams (publication n°5). An orthology benchmark should contain gene families representing 

heterogeneous evolutionary scenarios. Trachana & al. published a comprehensive orthology 

benchmark, representing 70 protein families, classified by biological characteristics (speed of 

Evolution, low complexity regions/repeats, domain shuffling/evolution, multigene families/paralogy) 

and technical characteristics (low/high alignment quality) (Trachana et al., 2011). A useful benchmark 

should also contain standard reference proteomes, with one representative sequence for each gene. 

This was previously done independently by each author. The EBI and in particular, the Uniprot 

database, now provide ‘complete proteomes’ (all non-redundant transcripts for the protein-coding 

genes) and ‘reference proteomes’ (one representative transcript per protein-coding gene) for all 

completely sequence organisms, offering a common dataset for all orthology databases. A specific 

sub-set of species based on these reference proteomes has been constructed to test orthology 

methods (http://www.ebi.ac.uk/reference_proteomes/) and an online benchmarking service for the 

Quest for Orthologs Consortium has been developed (http://linneus54.inf.ethz.ch:8080/cgi-

bin/gateway.pl).  

 

3.4.3 OrthoXML, an orthology ontology 

 

The large number of diverse algorithms and databases focusing on orthology relations has led to an 

increasing number of data formats, hindering efforts towards their integration. One solution to 

increase the interoperability of the data was to create an ontology dedicated to orthology relations. 

In computational sciences, an ontology is a data model, i.e. a formal, structured representation of 

the knowledge in a particular domain. Two years ago, Ostlund & al. introduced OrthoXML, a 

standardized data exchange format dedicated to the representation of orthologous relations 

(Ostlund et al., 2010). This standard was designed to support both graph-based and tree-based 



Chapter 3. Othology inference in the post-genomic era 

 

 
38 

definitions of orthology in a consistent way (figure 3-7). The OrthoXML format is now integrated in 

several major orthology databases, and is supported by several libraries and regular updates 

(http://orthoxml.org/).  

 

 

Figure 3-7. Example of an orthologous relationship in the OrthoXML format. The 

format identifies the ‘group’ level, including all co-orthologs relative to a specific taxonomic 

level and the orthologs/paralogs composing this group. 
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4 FROM GENE CENTRIC BIOLOGY TO SYSTEMS BIOLOGY 
 

A biological system is no longer considered as a simple collection of components, but as a whole. 

Thus, holistic thinking is expanding in biology and is replacing the reductionist perspective, motivated 

by the idea that the functions of a given system can only be understood by considering the interplay 

between its components. This idea is quite old, since the term ‘systems biology’ was introduced by 

Ludwig von Bertalanffy at the beginning of the 20th century (von Bertalanffy and Woodger, 1933). 

Despite its age, the concept was only integrated in the wider biological community from the year 

2000 onwards. Today, the majority of biological studies include a system biology approach.  

Recent technological breakthroughs have made the production of genome-scale datasets more 

accessible for many laboratories. Such datasets can help to provide a more global picture of 

biological phenomena and the so-called ‘omics’ approaches finally provide us with the opportunity to 

consider biological systems from a systemic point of view. Biological studies now often compile 

genome-scale datasets representing several biological levels (genomics, transcriptomics, proteomics, 

interactomics, etc.). This multi-scale approach is contributing to the socio-scientific movement 

referred to as systems biology. We can compare this movement to the discovery of the structure of 

DNA and the subsequent breakthroughs in molecular techniques that emerged (PCR, Sanger 

sequencing, etc.). Biology is thus shifting from the gene-centric to the systemic point of view. 

 

4.1 Defining systems biology 
 

4.1.1 A philosophy more than a research field 

 

It is currently difficult to provide a clear definition of ‘systems biology’. Looking at the scientific 

literature, various definitions have been proposed depending on the author’s sensitivity. The four 

following examples illustrate these differences: 

 “Systems biology studies biological systems by systematically perturbing them (biologically, 

genetically, or chemically); monitoring the gene, protein, and informational pathway 

responses; integrating these data; and ultimately, formulating mathematical models that 

describe the structure of the system and its response to individual perturbations.” (Ideker et 

al., 2001) 

 “To understand complex biological systems requires the integration of experimental and 

computational research — in other words a systems biology approach.” (Kitano, 2002) 

 “ […] the objective of systems biology [can be] defined as the understanding of network 

behavior, and in particular their dynamic aspects, which requires the utilization of 

mathematical modeling tightly linked to experiment.” (Cassman and Center, 2007) 

 “By discovering how function arises in dynamic interactions, systems biology addresses the 

missing links between molecules and physiology. Top-down systems biology identifies 

molecular interaction networks on the basis of correlated molecular behavior observed in 
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genome-wide “omics” studies. Bottom-up systems biology examines the mechanisms through 

which functional properties arise in the interactions of known components.” (Cassman and 

Center, 2007) 

Finally, a more general definition is given by Wikipedia (en.wikipedia.org/wiki/Systems_theory): 

 Systems biology is a term often used to describe a number of trends in bioscience research, 

and a movement which draws on those trends. Proponents describe systems biology as a 

biology-based inter-disciplinary study field that focuses on complex interactions in biological 

systems, claiming that it uses a new perspective (integration instead of reduction). [...] 

Systems biology refers to a cluster of peripherally overlapping concepts rather than a single 

well-delineated field. However the term has widespread currency and popularity as of 2007, 

with chairs and institutes of systems biology proliferating worldwide. 

Given such heterogeneous (but overlapping) ways of thinking, one cannot hope to define a 

consensual definition for systems biology. Nevertheless, a major aspect is conserved in all these 

definitions despite the diversity of opinions: a system-level study considers all the components of a 

system by integrating information about all biological levels. The systems biology related concepts 

discussed in the following sections will focus on three specific aspects relevant to the results 

described in chapter 8 and 9. First, the main omics approaches that recent technological 

breakthroughs have made available for current systems biology studies are resumed. Then, the 

subject of multi-scale data integration is discussed. Finally, a large part of this chapter focuses on the 

importance of biological network construction and representation in systems biology, including the 

current bioinformatics resources available to analyse biological pathways. All these subjects highlight 

how current biology is moving from a bottom-up to a top-down strategy for resolving systems 

architecture, functional properties and dynamics. 

 

4.1.2 Systems biology and systems sciences 

 

In systems biology, the large amount of data and their integration repesents an opportunity for the 

modelling of biological systems properties. The detailed knowledge produced for some particular 

biological networks, mainly metabolic pathways and signaling networks, has motivated the idea that 

biological systems can be represented mathematically (Feist et al., 2009).  

Such studies are generally based on a cyclic protocol of three steps: data integration, construction of 

a model and in vivo quantitative measures, followed by model refinement based on the newly 

collected data (figure 4-1). The studies are therefore multi-disciplinary and require different expertise 

such as chemical kinetics, control theory and mathematical modelling. Moreover, cellular networks 

are generally characterized by a large number of parameters and constraints. Consequently, network 

modelling is supported by computational techniques from graph theory to describe the behaviour of 

the systems. The computationally modelled systems can be used for numerous purposes such as 

bioengineering. For example, a biological pathway such as the biosynthesis of valine and leucine can 

be mathematically modelled to predict flux patterns of this pathway (Dreger et al., 2009; Lee et al., 

2012). The modelling aspect inherent to numerous systems biology studies, in particular the 
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mathematical modelling aspects, is not the focus of this thesis and will only be briefly mentioned in 

the following paragraphs. 

 

 

Figure 4-1. The ‘modelling’ view of systems biology. The use of dynamic systems theory 

is applied to molecular biology and supported by computer sciences. In this view, dynamics is 

the conceptual difference between ‘systems biology’ and classical bioinformatics. 

 

4.2 ‘Omics’ and multi-scale perspectives 
 

4.2.1 Producing global pictures of biological systems 

 

The ‘omics’ suffix is generally employed to describe the generation or study of genome-scale 

datasets. These datasets represent the high-throughput identification of large sets of representatives 

of a particular group of molecules or other biological objects. Omics approaches are now applied to 

all biological levels, ranging from the genetic to the ecological level. Omics studies can be divided into 

three main categories: the analysis of molecular entities (DNA, RNA, histone methylation states, 

proteins, molecular networks…), the study of biological communities (microbiomics, biomics…) and 

the medical sciences (pharmacogenomics, toxicogenomics…). In the following paragraph, only the 

molecular omics will be considered. 

Molecular omics mainly focuses on the inventory of all representatives of biological molecules. This 

inventory depends on the biological sample and its spatio-temporal characteristics (cell type, tissue, 

culture condition, developmental state…). Recent technological advances, such as Next Generation 

Sequencing (NGS), Mass Spectrometry (MS) or Nuclear Magnetic Resonance (NMR) facilitate the 

deployment of molecular omics strategies and provide many new opportunities for building an 

integrated description of complex biological systems. Figure 4-2 shows a non-exhaustive list of 

molecular omics, ranging from the molecular to the biological system level.  
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Figure 4-2. Overview of main molecular omics in the systems biology era. 

 

The system level, represented by interactomics, is extensively described in paragraph 4.3 through the 

example of biological networks, one the focuses of this thesis. In the following sections, other omics 

are briefly described by regrouping them into small molecule, DNA, RNA and protein-level categories: 

4.2.1.1 small molecule omics: 

Several omics approaches have been developed to study the chemical compounds that are used as 

substrates, products or cofactors by amino acid or nucleotide polymers. For example, metabolomics 

focus on the cellular metabolites that represent the chemical fingerprints of a specific cellular 

process. Metabolomics is still an emerging field as current technologies cannot provide a full 

collection of all the metabolites of a cell. The chemical complexity of biological samples limits 

metabolomic analyses to the quantification of a portion of the metabolome by mass spectrometry 

(MS) or the overview of metabolite compositions by nuclear magnetic resonance (NMR) (Patti et al., 

2012). However, major advances have been made in two specialized metabolomic fields, namely 

glycomics and lipidomics. A glycome describes a collection of sugars in a cell or an organism for 

example, whether they are free or present in more complex molecules. A lipidome describes an 

equivalent collection of lipids. Both fields have experienced a large expansion due to technological 

advances in mass spectrometry (MS), high performance liquid chromatography (HPLC) and nuclear 

magnetic resonance (NMR) (Aoki-Kinoshita, 2008; Wenk, 2005). 
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4.2.1.2 DNA-related omics: 

Genomics includes a large set of techniques to study the genomes of organisms. Genomics studies 

are based on DNA sequences and their by-products: genes, regulatory elements, protein products, 

etc. This vast field can be decomposed into three categories. First, comparative genomics focuses on 

the relationship between genome structure and function across different biological species or 

strains. It is generally supported by high-throughput sequencing techniques and well-implemented 

bioinformatics applications such as sequence alignment or phylogeny construction (Xie et al., 2005). 

Second, functional genomics studies the functions and interactions of genes or proteins. It is 

generally supported by high-throughput experimental techniques such as microarrays, siRNA 

screening, large-scale mutagenesis or SAGE (Pevsner, 2009a). The last genomics sub-field is 

metagenomics. This domain focuses on the environmental aspects of genetic material. Its goal is to 

understand how genes can be linked to the physico-chemical and biological properties of an 

environment and how genes can be viewed as fingerprints of biological diversity (Marco, 2011). 

Functional genomics and metagenomics are also well supported by bioinformatics techniques, such 

as homology predictions, phylogenetic profiling or protein domain searches to predict biological 

functions (Parks and Beiko, 2010). 

While genomic sequences provide the basis for many molecular studies, they cannot represent the 

dynamic DNA modifications that occur in biological systems. The analysis of these modifications has 

recently led to the creation of specialized genomics fields. For example, epigenomics attempts to 

identify the complete set of epigenetic modifications of specific genetic material, mainly DNA 

methylation and histone modifications in eukaryotes. The epigenome datasets are mainly produced 

using ChIP-Chip and ChIP-Seq technologies (Laird, 2010).  

4.2.1.3 RNA-related omics: 

Transcriptomics concerns the analysis of large sets of RNA molecules, including mRNA, rRNA, tRNA, 

and non-coding RNA. It should be noted that cellular transcriptomes are highly heterogeneous since 

they depend on developmental, environmental and physiological conditions. Individual 

transcriptomes were previously produced by hybridation-based or tag-based sequencing approaches. 

Today, the high-throughput RNA-seq sequencing technique is preponderant (Wang et al., 2009). A 

specific field called RNomics is dedicated to the analysis of small non-mRNAs (snmRNAs), also called 

non-coding RNA (ncRNA), especially small nucleolar RNAs (snoRNAs), microRNAs and small 

interfering RNAs. The field is still expanding as the cellular role of ncRNA is only beginning to be 

understood (Huttenhofer et al., 2002). In the case of mRNA, transcriptomics can be used to 

determine the transcriptional structure of genes (start sites, 5′  and 3′  ends, splicing, post-

transcriptional modifications) and quantify their expression. Recently, the developments in high-

throughput sequencing have also provided new opportunities for efficient analysis of the exon 

composition of a transcriptome. The corresponding dataset, an ‘exome’, can be used for example, for 

the analysis of intra-species genetic variation and its development is mainly motivated by promises of 

new ‘personalized’ medicine (Ng et al., 2008). 

4.2.1.4 protein-related omics: 

Proteomics approaches are used to perform large-scale studies of protein structures and functions. 

The field actually covers very different approaches. For example, proteomes are used to study post-
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transcriptional modifications such as ubiquitination, phosphorylation, methylation, acetylation, etc. 

For this purpose, protein sequence data are generated by mass spectrometry and modifications are 

highlighted by a bioinformatics comparison with genomic data (Reumann, 2011). Structural genomics 

is more focused on the structural properties and the molecular dynamics that characterize proteins 

and their interactions. This domain combines biophysical approaches, bioinformatics and molecular 

modeling to achieve this goal (Ghersi and Sanchez, 2011). Proteomics approaches can also be 

combined with genomics and bioinformatics for the simultaneous refinement of multiple genome 

annotations (Gallien et al., 2009). 

4.2.1.5 Phenomics 

This list of molecular omics can be complemented by ‘phenomics’. Phenomics is used to describe the 

molecular, physiological and physical traits of an organism and their variations after perturbations. 

Consequently, a phenome can be built by combining the different omics approaches and grouping 

the molecular information. RNA interference is also used to produce libraries of phenotypes for the 

same species. Nevertheless, the main challenge of phenomics is the development of high-throughput 

measurement systems and the automatic integration of many omics parameters (Vankadavath et al., 

2009). 

 

4.2.2 Multi-level data integration 

 

After a decade of developments, several omics fields are now shifting their main focus from 

technological development to exploitation of the datasets produced. For example, automatic 

transcriptomic protocols are now routinely used in the medical field for molecular or genetic 

diagnosis (Lamberts and Uitterlinden, 2009). The ever cheaper cost of omics is even opening the way 

for a direct-to-consumer diagnosis market, giving rise to new ethical and political debates (Caulfield 

and McGuire, 2012). The variety and complementary of different omics allow more extensive 

descriptions of biological systems. Nevertheless, despite the mature state of omics, the direct 

integration of multiple omic datasets representing different biological levels remains challenging. 

Strategies for integration are not keeping up with the technological developments. In some fields 

such as genomics, online databases contain so much data and are being updated so fast, that they 

can no longer be managed by current methodologies. With the rapid progress observed in all omics 

fields, this situation will soon become a reality in most biological domains.  

A major problem concerns the quality of omics data. Their high-throughput nature means that they 

generally produce a non-negligible quantity of noise. For the older high-throughput techniques such 

as micro-arrays, various routine approaches are now used to limit this drawback (Raffelsberger et al., 

2008; Zhang et al., 2009). For more recent technologies such as high-throughput sequencing, 

approaches for data quality assessment are still being developed (Bravo and Irizarry, 2010; Nothnagel 

et al., 2011). The dangers of producing more data to the detriment of data quality have been evoked 

on many occasions. For example, several studies showed the impact of low coverage genome 

sequencing on subsequent analyses (Milinkovitch et al., 2010; Prosdocimi et al., 2012). 
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Data management is a second major challenge in the omics era. The sharing of large datasets 

requires that similar data definitions should be used by the different data owners. To resolve this 

problem, several community efforts were initiated to create biological and biomedical ontologies 

(Smith et al., 2007; Thompson et al., 2005a). The data hierarchies and standard definitions defined by 

ontologies facilitate the integration of omics datasets. Based on these ontologies, several database 

engines or data warehouses have been developed for efficient retrieval of biological information 

(Kasprzyk, 2011). However, ontologies are often limited to the description of one type of entity at a 

time (DNA, multiple alignment, protein network…). Handling the wide variety of biological data in a 

single management system require lots of computational development. A few alternative approaches 

have been developed in an attempt to address this drawback. For instance, the database design of a 

high-throughput microscopy approach was adapted to biological data, allowing day-to-day evolution 

with no need for rigid standards (Millard et al., 2011). Another idea is to pre-compute database 

content graphs representing different views upon the data. The views can then be selected to rapidly 

regroup new datasets and to more efficiently answer new biological questions (Bard et al., 2010; 

Boyle et al., 2009).  

 

Figure 4-3: The ‘multi-way’ framework, an example of a multidimensional data 

integration and correlation analysis. A 3-way data structure X (IxJxK), is decomposed in 

several matrices. A (I×D), B (J×E) and C (K×F) represents the ways in which the information 

related to the samples can be compressed; G (D×E×F) is the core matrix, which explains how 

components of the different modes are related; R (I×J×K) is the residual matrix. G can be 

assumed to be an approximation of X, summarising the variation in X in terms of matrices A, 

B and C (adapted from Conesa et al., 2010).  

 

Nevertheless, the main challenge for systems biology is to develop efficient methodologies for the 

integration and selection of the most relevant data for a specific biological question. Many databases 

integrate multiple sources of data, but few authors provide an integration framework that facilitates 

the analysis of potential relationships between the data, such as correlations or divergences. The 

literature describes only a few developments addressing large-scale integration. For example, Hwang 

et al. developed a methodology that can handle multiple data sets differing in type, size, and 

coverage for biological networks. This methodology minimizes the number of false positives and false 

negatives (Hwang et al., 2005). Another interesting approach was proposed by Conesa et al. (figure 

4-3). They proposed a ‘multi-way’ approach, a technique performing a dimensional reduction of 



Chapter 4. From gene-centric biology to systems biology 

 

 
46 

multidimensional data structures in such a way that relationships between and within dimensions 

can be extracted and analysed (Conesa et al., 2010). Similarly, statistical component analysis can be 

used to describe global correlations of biological datasets (Wolf et al., 2006). Another multivariate 

strategy was developed by Bylesjo et al. for the integration of plant transcriptomics, metabolomics 

and proteomics data through the O2PLS methodology, a regression method separating predictive 

variation from the variation that is unique to each platform as well as residual variation (Bylesjo et 

al., 2007).  

Data integration and summarization is often supported by powerful visualization tools. For example, 

Srinivasan et al. developed a Bayesian approach to integrate co-expression, co-inheritance, co-

location and co-evolution data and to build the statistical interactomes of 11 species (Srinivasan et 

al., 2006). Their pipeline is complemented by a 3D representation of statistical correlations between 

the datasets (figure 4-4). Similarly, Secrier et al. developed a 3D visualization and integration package 

for the exploitation of temporal and tissue-related patterns (Secrier et al., 2012). Finally, Nguyen et 

al. developed a semantic map projection method to summarize biological annotation information in 

large datasets (Nguyen et al., 2009).  

 

 

Figure 4-4. An example of innovative visualization for the integration of 11 

microbial omics datasets. When comparing protein interactions over several species, 

protein pairs can be functionally unrelated (L=0, left 3D surface) or share the same 

functional pathway (L=1, right 3D surface). Transparent to opaque level sets describe 

posterior probabilities of similar functional interaction and are spaced at even volumetric 

increments, so that the inner most shell encloses 20% of the volume, the second shell 

encloses 40% and so forth. 3D surfaces reveals that functionally linked pairs (red, L = 1) tend 

to have higher coexpression and coinheritance than pairs that participate in separate 

pathways (blue, L = 0). Adapted from Srinivasan et al., 2006. 

 

These examples reflect the need for efficient tools to filter, store and integrate very large 

heterogeneous biological datasets. Despite being an advanced subject of research in fields such as 

geospatial imagery (Chen et al., 2003) or human imagery (Keator et al., 2008), developments are still 

in their infancy in biology. This assessment can be linked to the trends in data growth in these fields. 
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Survey telescopes now produce petabytes (PB) of data, while genome-sequencing machines can 

currently produce 1 TB per week of information. However, this latter will probably grow to terabytes 

per day soon and simulations could easily produce petabyte-scaled information (Council, 2010). 

In contrast to global integration, an alternative philosophy involves targeting the more pertinent 

information in a dataset when dealing with a particular biological question. This approach is generally 

referred to as ‘gene prioritisation’ (Tranchevent et al., 2011). The objective is to identify the best 

candidate genes that could be implicated in a particular biological process or a disease. To handle the 

current amount of biological data, developments have been performed to automate this task. Gene 

prioritisation can be resumed in four steps: (i) the creation of a training set of known genes and the 

extraction of gene characteristics to establish a typical gene ‘profile’ that describes a particular 

biological process or a disease, (ii) the extraction of the same characteristics for the candidate genes,  

(iii) the comparison of the candidate characteristics with the training set profile, (iv) the classification 

of the candidates, according to a score estimating the consistency of the candidate genes with the 

profile. The software developed for gene prioritisation now use multiple criteria to characterise 

genes, including gene annotations, interaction data, evolutionary frameworks, text mining, etc. 

(Tranchevent et al., 2008).  

 

4.3 A focus on biological networks 
 

4.3.1 Representing life with networks 

 

One of the first tasks requiring large scale integration of data from multiple biological levels was the 

description of biological networks. Network description started with the biochemical description of 

canonical metabolic networks. For instance, in 1957 the Krebs cycle was described and was later 

completed by the identification of implicated enzymes (Kornberg, 1987). Today, biological networks 

are used to represent many kinds of biological interaction, ranging from biochemical interactions in 

molecular biology to food webs in ecology. Networks have multiple advantages. They can represent 

the genome-scale complexity of interactions occurring in biological systems (Yu et al., 2008). Changes 

in their topology and parameters can be used to model the dynamics of biological systems (Rohwer, 

2012). A comparative analysis of network topology can decipher the constraints and flexibility with 

which biological systems respond to their evolution (Babu, 2010b). They can even model higher 

biological perspectives such as ecosystem interactions. For example, food webs are used to model 

food competitions in ecosystems (Guimera et al., 2010), while neuroendocrinologic networks proved 

to be useful in understanding the evolution of social behaviour (O'Connell and Hofmann, 2011).  

In molecular biology, genome-scale interactions can be generated for many cellular compounds 

(figure 4-5) (Zhu et al., 2007). Using elementary biological components and interactions, the bottom-

up approach of network reconstruction is now widely used to represent systems behaviour and 

dynamics (Barabasi and Oltvai, 2004) and hundreds of biological networks have been described in 

model organisms (Hyduke and Palsson, 2010; Yu et al., 2008). Moreover, networks are a way to 

categorize systems of very different origin within a single framework and many comparative and 

topological studies have investigated the general properties observed in all biological networks (Zhu 
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et al., 2007). Network studies are now performed in various domains based on molecular data. In 

biomedical research, they can be used to describe how a network perturbation can induce disease-

related responses (Vidal et al., 2011). In evolutionary studies, networks demonstrate the importance 

of the cellular context in protein evolution (Nehrt et al., 2011). Hundreds of databases have been 

developed to regroup different kinds of biological network data. A rapid overview on the website 

www.pathguide.org gives an idea of the diversity of these databases. Many of these databases focus 

on one model organism or on a specific kind of network (PPI network, regulatory networks…) or 

compile chemical dynamics data. 

 

Figure 4-5. Overview of major networks in molecular biology. (A) A yeast 

transcription factor-binding network built with large-scale ChIP–chip and small-scale 

experiments. (B) A yeast protein–protein interaction network identified by yeast two-hybrid, 

affinity purification and mass spectrometry approaches. (C) A yeast phosphorylation network 

identified using protein microarrays (D) An E. coli metabolic network with 574 reactions and 

473 metabolites colored according to their modules. (E) A yeast genetic network constructed 

with synthetic lethal interactions. Adapted from Zu et al., 2007. 
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4.3.2 The concept of biological pathways 

 

Biological networks are now a routine tool and are used as often as biological sequence data. Any 

kind of interaction can be represented with a network, explaining their diversity. A specific concept 

found in many studies is the biological pathway, particularly what is known as the canonical pathway. 

A pathway description is generally considered as canonical when it corresponds to a succession of 

biomolecular events that are observed in many biological conditions. In other words, a canonical 

pathway can be considered as a central, often essential, network module of biological systems. Such 

a path represents a succession of interactions leading to the control of a particular biological 

phenomenon. For instance, metabolic pathways correspond to a succession of catalytic reactions 

ending in the production of a particular metabolite.  Similarly, a pathway can correspond to the 

cascade of cellular interactions that controls the initiation of a specific event (mitosis, apoptosis, 

etc.). A canonical pathway can also correspond to a kernel of interactions that are implicated in many 

biological events. For example, the canonical MAPK signalling pathway describes a succession of 

kinase phorsphorylations influencing many other pathways and biological processes. It should be 

noted that this definition of canonical pathway is subjective as many metabolites or proteins of a 

pathway be implicated in many biological processes. Nevertheless, this concept helps the scientific 

community to consider a biological system as a patchwork of defined biological modules, one module 

being active under a specific condition.  

The results presented in chapter IX take advantage of this modular view and are based on the KEGG 

PATHWAY database. This database includes many different concepts, such as metabolic reactions, 

gene regulation and protein-protein interactions. The pathways defined in KEGG are consequently a 

compilation of several types of interactions, reunited in a single map to describe all the aspects of 

particular biological phenomena (energy production, kinase signalling pathway, endocytose, etc.). 

We can distinguish interaction data corresponding to three kinds of biological networks in KEGG: 

metabolic pathways, regulatory networks and protein-protein interaction networks. KEGG integrates 

principles of these three biological networks in a single framework (Ooi et al., 2010).  

4.3.2.1 Metabolic pathways 

A metabolic pathway describes a succession of chemical transformations that occur in biological 

systems. This chain of reactions is catalyzed by a cascade of biological enzymes that transforms 

dietary minerals (glucide, lipids, protids), vitamins, and other cofactors into metabolites that can be 

used as cellular material or converted to chemical energy. Many metabolic pathways are constructed 

de novo by the compilation of experimental data and genomic annotations in a step-by-step process 

(Covert et al., 2001). The description of a metabolic network generally regroups genomic, 

biochemical and physiological data. Metabolic networks can use different representations depending 

on their topological or dynamic exploitation (Larhlimi et al., 2011). Figure 4-6 shows the 4 most 

common metabolic network representations. All representations correspond to the following set of 

chemical equations: 1B → 1C; 1D → 2B; 2B → 1A + 1E; 1A + 1E → 1F; 1F → 2B; 1B + 1C → 1D. 

 The graph of complexes is the simplest representation (Deville et al., 2003). Reactions 

(edges) connect the substrate metabolite and the product metabolite complex (nodes).  
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 In a directed weighted hypergraph (Klamt et al., 2009) nodes represent the metabolites and 

the directed hyperedges represent the reactions. A weight representing stochiometry is 

generally assigned to the edges. 

 A bipartite graph is a simplification of a hypergraph, where only physical interactions are 

shown without stochiometry. Two types of nodes are differentiated in two partitions: the set 

of metabolites and the set of reactions. Edges are directed depending on whether 

metabolites are substrates (metabolitereaction) or products (reactionmetabolite). 

 A metabolic network can also be coded in a stoichiometric matrix, representing the structure 

of a metabolic network in terms of relationships between metabolites and reactions with 

metabolites as rows and reactions as columns. Given a reaction, the corresponding column 

contains the negative of the stoichiometric coefficients of the substrates, the stoichiometric 

coefficients of the products and zero values for the remaining metabolites. 

 

Figure 4-6. Several examples of metabolic network representations. The 

biochemical reactions of a metabolic network can be represented in different ways. (a) 

graph of complexes. Each side of a metabolic reaction defines a complex; (b) hypergraph 

where hyperedges correspond to reactions and nodes represent metabolites; (c) bipartite 

graph where reactions are indicated by rectangles and metabolites correspond to circles; 

and (d) stoichiometric matrix. Adapted from Larhlimi et al., 2011. 

 

These representations (except bipartite graphs) consider the dynamic properties of metabolic 

networks. Indeed, the modelling of metabolic pathway inputs and outputs is one of their main 

applications. Once the metabolic network model is build, its dynamic properties can be simulated. 

There are two main classes of metabolic network analysis. First, flux balance analysis and metabolic 

flux analysis rely on experimentally quantifying a set of metabolic fluxes in the network by analyzing 

substrate consumption or product excretion (Dal'Molin et al., 2010). These approaches complement 

the topological model with a complete dynamic model by resolving regions for which stochiometry is 

unknown (Rohwer, 2012). Subsequently, enzyme kinetics can be introduced to model concentrations 

of substrate and product metabolites. Metabolic pathways can then be used as predictive models in 

several fields such as nutrigenomics or biological engineering (see chapter 4.4). 
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4.3.2.2 Regulatory networks 

Gene regulatory networks (GRN) are network models where the inter-gene dependencies are 

described in a directed graph. Nodes represent genes and edges point from a regulator gene to its 

targets (Kim and Park, 2011). The edges ideally represent dependencies at the transcriptional level, 

generally a transcription factor (TF) and its influence on regulatory cis-element of the genes, this 

information being generally verified in wet-lab experiments. Consequently, the construction of a GRN 

requires three kinds of information: the spatio-temporal expression pattern of the TFs, the cis-

regulatory modules they bind to and the causal link between the TF activity and the target genes’ 

expression. Thus, reuniting experimental knowledge to construct edges and nodes in a reliable GRN 

is laborious and most GRN are small scale with a tradeoff between accuracy and completeness 

(Wilczynski and Furlong, 2010).  

Small GRN are particularly used in developmental biology, which benefits from the spatio-temporal 

resolution of GRNs (Levine and Davidson, 2005). However, complete GRNs at the cellular level have 

been constructed, mainly for Escherichia coli and Saccharomyces cerevisiae, for which regulatory 

data from the literature and large-scale DNA-binding data from chromatin immunoprecipitation 

experiments are abundant (Gama-Castro et al., 2011). Several authors have also proposed 

algorithmic approaches to automatically generate GRNs from time series of expression profiles (Li et 

al., 2005). Large-scale GRNs can shed light on the organization of transcriptional regulation. For 

example, Babu showed that the basic unit formed by a TF and its target gene is organized into a 

limited number of motifs (figure 4-7) (Babu, 2010b). Linking the motifs highlights larger modules of 

interactions that are nested and interconnected through local regulatory hubs. The sum of all the 

modules composes the transcriptional regulatory network of a cell.  

 

 

Figure 4-7. Structural organisation of transcriptional regulatory networks. (a) The 

‘basic unit’ comprises the transcription factor and its target gene. (b) Units are organised 

into network ‘motifs’, which comprise specific patterns of inter-regulation. (c) Network 

motifs can be interconnected to form semi-independent ‘modules’. (d) The entire assembly 

of regulatory interactions constitutes the ‘transcriptional regulatory network’. Adapted from 

Babu et al., 2010. 
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Depending on environmental conditions, only a part of the complete GRN network is activated. GRNs 

are exploited by mathematical models capturing system behaviour. The input can be viewed as a set 

of TFs, while outputs are expression levels. Such modelling generally associates Boolean 

(AND,OR,NOT) or discrete functions with the gene nodes. This mathematical representation allows 

the simulation of cell behaviour and can be used to predict cellular response to environmental 

changes (if TFs associated to the response are known).  

 

4.3.2.3 Protein-protein interaction networks 

Protein–protein interactions (PPI) networks compile the physical protein interactions of biological 

systems, regardless of whether this interaction occurs in a stable protein complex or a transient 

interaction. PPI networks are essential in biological systems as they are the basis for several signal 

transduction and transcriptional regulatory networks. They were the first networks to be massively 

produced at the genome-scale, with the first complete interaction map being achieved in yeast 

(Gavin et al., 2002; Schwikowski et al., 2000), followed by C. elegans (Li et al., 2004), D. melanogaster 

(Giot et al., 2003) and human (Rual et al., 2005). Construction of PPI networks can be done through 

many computational and experimental approaches. Large datasets of new protein interactions can 

be discovered in yeast-two hybrid, affinity purification/mass spectrometry and protein microarrays 

experiments (Kaake et al., 2010; Panchenko and Przytycka, 2008). However, they present a low 

reproducibility and while identifying some PPIs with a high confidence, many false positives can be 

generated. Computational approaches can complement experimental approaches or discover new 

PPI at a lower rate (Raman, 2010). Genomic methods for the detection of gene fusions, conserved 

gene neighbourhood and phylogenetic conservation profiles can highlight new PPIs. For example, 

protein co-evolution was used to detect potential new PPIs in a phylogenetic framework (Juan et al., 

2008). An original method of PPI inference based on large-scale text mining (He et al., 2009) was also 

developed. Despite this large choice of experimental and computational techniques, it is considered 

that our current knowledge covers only 30% of the yeast interactome and 10% of the human 

interactome, a fact mainly due to the time and context-dependent nature of interactions (Baker, 

2012). A recent article highlights this lack and claims that only a few studies have proposed new 

approaches for differential mappings in biological networks (Ideker and Krogan, 2012). Figure 4-8 

shows an example of differential mapping applied on an interaction network (Bisson et al., 2011).  

PPI networks can be used for many purposes. First, the exploitation of the context of a protein in 

cellular networks allows new functional predictions. For example, the interolog approach helps to 

understand the function of uncharacterized proteins, such as their moonlighting aspects (Janga et al., 

2011; Yu et al., 2004). Yet, this approach can be considered as dangerous because PPIs are thought to 

be more conserved within species than across species (Mika and Rost, 2006). 

The topological aspect of networks is also actively exploited. The analysis of the impact of deletion of 

gene nodes or edges in PPI networks is useful for gene prioritization (Chang, 2009). Network hubs 

can be used for the detection and the understanding of a particular class of proteins: the transient 

proteins i.e. protein with low binding affinity, for which behaviour and dynamics are relatively 

unknown (Perkins et al., 2010). Computational methods have also been developed to decipher how 

biological information is transmitted between different protein network modules by information 

flow analysis (Missiuro et al., 2009).   
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Figure 4-8. Example of a time-scaled differential mapping in a PPI network. The 

diagram represents the dynamic protein interaction network involving GRB2, an adaptor 

protein involved in multiple aspects of cellular function. Red-shaded nodes represent 

proteins that are recruited to GRB2 complexes after epithelial growth factor (EGF) 

stimulation irrespective of time, green-shaded nodes those that are decreased and blue-

shaded nodes those present in GRB2 complexes in nonstimulated cells. The thickness of the 

node border is proportional to the intensity of the change compared with control levels. 

Rectangles inside the nodes show the relative fold change for each time point. Adapted 

from Bisson et al., 2011. 

 

4.3.3 Biological network characterization 

 

As briefly mentioned in the overview of metabolic, regulatory and PPI networks, topology is an 

essential aspect of network analysis. Topological properties of biological networks were mainly 

inferred on PPI networks because they were the first networks available at the genome scale. Many 

parameters can be used to describe network characteristics (Ideker and Krogan, 2012). We can 



Chapter 4. From gene-centric biology to systems biology 

 

 
54 

differentiate two topological levels of descriptions: a low-level topology, describing local network 

characteristics and a high-level topology, related to the global structure of the network. Generally, 

high-level topologies are characterised by their distinctive low-level parameters. Supplementary 

topological characteristics linked to network evolution (network modules, robustness, evolvability, 

etc.) are discussed in chapter 5.  

 

4.3.3.1 Low-level topology: connectivity, redundancy and hubs 

First, network nodes can be associated with connectivity measures. The connectivity (or degree) of a 

node represents the number of links it has with other nodes of the network. This measure is the basis 

for two other connectivity measures: the ‘degree distribution’ and the ‘clustering coefficient’ (Watts 

and Strogatz, 1998b). The degree distribution is obtained by dividing the node connectivity by the 

total number of nodes and helps to differentiate between the different global network topologies 

(see 4.3.3.2). The clustering coefficient is a measure that characterizes the tendency of nodes to 

forms clusters. 

The second type of local descriptors concerns the different ‘paths’ that exist in the network. The 

‘shortest path’ (or characteristic path length) is defined as the minimum number of edges between 

two nodes and represents overall network navigability (Barabasi and Oltvai, 2004). In contrast, the 

‘network diameter’ is the greatest distance between two nodes of a network (the longer ‘shortest 

path’). Finally, the ‘betweenness’ measure represents the centrality of a node in a network and 

nodes with a high betweenness connect a large number of shortest paths in the network.  

 

4.3.3.2 High-level topology: hubs, random, small-world and free-scale networks 

Biological networks have been characterized by several high-level characteristics. One of the first 

observations was the presence of ‘hubs’, i.e. highly connected nodes in biological networks. Their 

role was determined in several model organisms. Hub proteins were found to produce larger 

phenotypic outcomes than less-connected proteins when deleted (Yu et al., 2008) and generally 

correspond to essential and more abundant genes (Ivanic et al., 2009; Jeong et al., 2001). These 

characteristics reinforce the role of hub proteins as potential candidates when searching for disease 

related genes (this aspect is discussed in paragraph 4.4.1). 

At a higher level, the profile of connections characterizing a network can be associated with different 

network models. First, random networks contain N nodes and connect each pair of nodes with a 

probability p. The node degrees follow a Poisson distribution indicating that most nodes have 

approximately the same number of links. Another topology corresponds to small-world networks, 

characterized by two properties: (i) individual nodes have few neighbours; (ii) most nodes can be 

reached from one another through few steps. Their characteristic path length is similar to random 

networks in that they have a higher clustering coefficient. The third topology observed in biological 

networks corresponds to scale-free networks. These are characterized by a power-law degree 

distribution (Barabasi and Albert, 1999). Scale-free networks have a high degree of robustness. The 

properties of a scale-free network are often determined by a relatively small number of highly 

connected hubs. The corresponding biological networks are considered as resistant against random 
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node failures, but are sensitive to the failure of hubs. The probability that a node is highly connected 

is statistically more significant than in a random graph.  

 

4.4 Practical exploitation of biological networks in systems biology  
 

Although biological networks are an active field of research, much work still needs to be done to 

reach a comprehensive picture of all the interactions and regulations that occur in biological systems. 

In particular, the topological analysis of biological networks is still ongoing. New interactions are 

regularly identified, allowing new insights on biological system structures and behaviours. However, 

biological network studies are not only restricted to network construction and modelling. Despite 

their incomplete nature, the current networks are used in many biological fields. Many newly 

generated omics data are now cross-linked with network knowledge to provide a system-level 

picture of biological phenomena. Referencing all the applications would be a colossal work. In the 

following paragraphs, some examples of the most recent applications of biological networks in 

biomedical research and bioengineering are discussed. 

 

4.4.1 The emerging concept of ‘network medicine’ 

 

A disease is rarely linked to the abnormality of a single gene. In many cases, no clear link can be 

directly drawn between genotype and phenotype. The decreasing cost of genome-wide association 

studies and full genome sequencing is now motivating the consideration of biological networks for 

many biomedical applications. In this context, systems biology is now expanding from theoretical 

research to a new field known as ‘personalized medicine’ (Chen and Snyder, 2012; Weston and Hood, 

2004). The idea that analysing biological network perturbations can help to understand disease is 

now clearly established (Barabasi et al., 2011). Specific sub-structures of a network are more prone 

to favour the appearance of disease if they undergo perturbations (figure 4-9). For example, several 

studies found that genes linked to diseases with similar phenotypes have a significantly increased 

tendency to interact directly with each other, forming ‘disease network modules’ (Gandhi et al., 

2006; Goh et al., 2007; Xu and Li, 2006).  

Several studies have focused on the effect that the perturbation of these disease modules could 

induce. For example, Engin et al. simulated the impact of drugs at the systems level by "attacking" 

network nodes or edges of a PPI network with a drug (Engin et al., 2012). Similarly, Wang et al. 

integrated 3D protein structure information with high-quality large-scale PPI data to examine the 

relationships between human diseases and synonymous/non-synonymous single nucleotide 

polymorphisms (SNPs) (Wang et al., 2012). Their analysis produced a prediction model where the 

mutation in protein interfaces can be related to a specific group of diseases. Network perturbations 

can also be induced by external pathogens, particularly viruses. Virus-host interactions evolved to 

rewire host cellular pathways to the advantage of the viruses (Tafforeau et al., 2012). These rewirings 

are mainly operated in PPI networks, sometimes called ‘virhostomes’: for example, virhostomes have 

been constructed for the influenza virus (Shapira et al., 2009) and HIV (Jager et al., 2011). These 
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networks showed that viral proteins preferentially target hubs in host interactome networks (Shapira 

et al., 2009). Interestingly, this systemic view of virus interactomes initiated the idea of a new virus 

classification mixing phylogeny and viral-host PPI profiling (Xu et al., 2011).  

 

 

Figure 4-9. Example prediction of disease-associated proteins based on a PPI 

network. (i) Proteins linked to genes known as disease-related are flagged as candidate 

genes. (ii) A graph clustering technique defines the disease modules of the interactomes, 

adding new potential candidates to disease-related proteins. (iii) Diffusion-based methods 

use a random walker that visits each node in the interactome with a certain probability. The 

outcome of the algorithm is a score assigned to each protein representing the likelihood that 

a particular protein is associated with the disease.Adapted from Barabasi et al. 2011. 

 

But one of the major current technological advances is the feasibility of time scale analysis of the 

regulatory networks that are dysfunctional in a given disease state (de la Fuente, 2010). One of the 

first experimental proofs of concept of personalized medicine was published recently by Chen and 

co-workers (Chen et al., 2012). They performed an analysis that combines genomic, transcriptomic, 

proteomic, metabolomic, and autoantibody profiles from a single individual over a 14 month period. 

Their analysis demonstrated the biological network changes that were the consequence of two 

consecutive viral infections. Moreover, this analysis showed how these perturbations favoured 
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unstable glucose blood levels and a type 2 diabetes predisposition. This striking result shows promise 

for a future personalized omics monitoring and a personalized medicine based on systems biology 

knowledge.  

 

4.4.2 Pathway engineering, a step towards synthetic biology 

 

The study of the structures and dynamics of hundreds of biological networks provides the basis for 

artificially modifying network topology or influencing network dynamics for a particular purpose. The 

large field of bioengineering is focused on this purpose and is strongly motivated by a technology 

transfer to biotechnology industries. Bioengineering requires a comprehensive knowledge of the 

biological systems involved. At the molecular level, protein expression can be modified by promoter 

enhancement or by RNA synthetic devices, and protein 2D or 3D structure can be modified to 

enhance its activity (Krivoruchko et al., 2011). At the network level, genetic modifications can be 

operated to introduce new protein activators or repressors to modify the regulatory network, or 

whole synthetic metabolic pathways can be engineered to enhance metabolic flux or produce new 

biochemical or chemical products (Felnagle et al., 2012; Krivoruchko et al., 2011). Saccharomyces 

cerevisiae and Escherichia coli are the most common organisms in bioengineering because their 

biological systems have currently the most complete description. However, recent developments 

show that algae and plants are good candidates for specific compound production (Larkum et al., 

2012; Shin et al., 2012). Bioengineering has been successful in several domains. Industrial cell 

reactors can now be used to produce pharmaceutical compounds (Shin et al., 2012), while many 

synthetic isoprenoid pathways are used in perfumes and food aromas (Misawa, 2011). Other 

developments are related to important societal problems such heavy metal bioremediation (Soares 

and Soares, 2012) or plastic polymer production (Penloglou et al., 2012). 

A decade of bioengineering development has created a specialized field that describes biological 

systems from an engineering perspective. Engineering-driven approaches of modularization, 

rationalization and modelling, have been slowly transferred to biological networks, creating the field 

of synthetic biology. This field uses frameworks established in electrical engineering and biological 

networks are “wired” to manifest logical forms of cellular control (Khalil and Collins, 2010). In the 

near future, synthetic biology aims to complement traditional genetic engineering (mutations which 

eliminate network nodes or chemical inhibition) with a set of research tools for a fully controlled 

investigation of biological networks (Weber and Fussenegger, 2012). Figure 4-10 illustrates such a 

device: a tunable controller (dial) can be turned on and off (switch) and is activated by a protein 

input (light sensor) (Bashor et al., 2010). An application of a similar circuit was designed by Levskaya 

and coworkers: the output of the module is connected to an actin polymerization function, allowing a 

light control of cellular cytoskeleton (Levskaya et al., 2009). 
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Figure 4-10. A synthetic biology pathway module. (A) The module contains switch and 

dial functionality. The circuit is activated by a light sensitive protein and can be connected to a 

specific biological function. (B) The circuit was adapted in a cellular system for the activation 

of actin polymerisation, allowing a light controlled polymerisation of the cytoskeleton. 

Adapted from Bash et al., 2010 and Levskaya et al., 2009. 

 

4.5 Bioinformatics resources for biological pathways 
 

4.5.1 An overview of pathway databases 

 

Pathway databases are heterogeneous in terms of organism content, pathway type content, data 

format and even in the conceptualization of pathways. One of the first pathway databases was the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kanehisa et al., 2012). KEGG is a fully 

manually constructed database compiling chemical and genomic data from many databases. It 

contains many types of pathways (metabolic, signaling, cell cycle, cell communication, etc.) and 

provides eukaryotic, archaeal and bacterial pathways through an orthology-based pipeline. Another 

example database is Reactome, a knowledgebase that describes human biological processes and 

specifically developed tools for computational analyses (Croft et al., 2011). Similarly to KEGG, 

Reactome contains manually constructed pathways, available for different species through the 

orthology predictions of Ensembl Compara. However, these maps can be easily extended by the 

biological community with user-friendly tools. Moreover, the different pathways are organized in a 

hierarchical fashion, a large pathway being considered as a patchwork of other pathway modules. 

The Reactome authors paid attention to the interfacing of the database with other computational 

A

B
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resources: the data structure is based on OWL standards (http://www.w3.org/standards/techs/owl) 

and the biomart database engine (www.biomart.org). A third general pathway resource is 

wikipathways (Kelder et al., 2012). This website provides a wiki-like interface to allow the community 

to create and edit biological pathways. Content is similar to KEGG and Reactome, but the open-

access and user-friendly interface currently make it the most complete pathway database with more 

than 1700 pathways, 21 species and more than 300 hundred active editors. Its main drawback is that 

the pathway querying tools are more limited than KEGG and Reactome. Finally, we can cite the 

BioCarta database developed by BioCarta LLC (http://www.biocarta.com). The content of BioCarta is 

similar to KEGG and Reactome, pathways can be edited or submitted after registration and validated 

by the BioCarta team. However, there is no way to directly access BioCarta data without a clear 

request to the company. 

KEGG, Reactome, Wikipathway and BioCarta compile pathways representing different types of 

biological processes. They are complemented by several pathway databases specialized in metabolic 

and signaling pathways. The NCI-Nature pathway database groups human regulatory and signaling 

networks available in different flat file formats and users can submit new pathway schemas (Schaefer 

et al., 2009). Similarly, the INOH database provides files describing metabolic and signal transduction 

pathways (Schaefer et al., 2009). INOH data can be visualized with in-house software. Some 

metabolic databases are not only based on a manual construction but use computational pipelines to 

build pathway models. For example, the Homo sapiens Recon 1 database constructs a genome-scale 

model connecting all human metabolic pathways by mixing manually curated pathways and in silico 

predictions based on literature mining and provides tools to model human metabolic phenotypes 

(Duarte et al., 2007). Similarly, the Edinburgh Human Metabolic Network (EHMN) mixes KEGG and 

Uniprot genome annotations with literature data to construct a high-quality genome-scale metabolic 

network in human (Ma et al., 2007). The most complete collection of metabolic networks is provided 

by the collection of Pathway/Genome Databases (PGDBs) (Caspi et al., 2012). This collection, known 

as Biocyc, groups several databases dedicated to human and animal models, plants and MetaCyc, a 

database compiling metabolism pathways for more than 2200 eukaryotes and bacteria. Biocyc 

databases contain metabolic pathways that are based on scientific literature. But in MetaCyc these 

high-quality pathways are automatically transferred by an automated electronic referencing of newly 

sequenced organisms. This pipeline uses several biological criteria such as phylogenetic profiling and 

the consideration of metabolic operons. All pathways can be manually edited by the scientific 

community. 

 

4.5.2 Computational representation of pathways 

 

The abundance of various pathway databases can be a technical problem for users because they use 

different pathway definitions, heterogeneous data structures and exchange formats. Two ontologies 

have been developed to describe biological pathway related content. The INOH ontology was 

developed synchronously with the INOH metabolic pathway database and is designed to annotate 

molecules in the scientific literature on signal transduction pathways (Yamamoto et al., 2004). The 

BioPAX - Biological Pathway Exchange – ontology is more general and offers a well-defined semantics 

for pathway representation (Demir et al., 2010). This standard is now integrated in most pathway 
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databases and the latest version officially supports metabolic pathways, signaling pathways, gene 

regulatory networks, molecular interactions and genetic interactions. The SMBL (System Biology 

Markup Language) is also used in metabolic pathway databases but is more adapted to systems 

modeling (Gauges et al., 2006). 

 

4.5.3 Integrating multiple pathway databases 

 

With the abundance of pathway databases, several authors have developed data warehouse systems 

to integrate pathway data from different sources. HiPathDB (Yu et al., 2012), HPD (Chowbina et al., 

2009) and integromeDB (Baitaluk et al., 2012) were developed for this purpose. IntegromeDB groups 

all pathway data from Reactome, KEGG, BioCarta, NCI-Nature pathways, WikiPathways and 

HumanCyc with gene-based searches and provides a dedicated visualization tool. HiPathDB and HPD 

provide more complex tools that decipher the overlap existing between the different database 

pathways. Moreover, HiPathDB infers a new network representation corresponding to a synthesis of 

all network databases. 

 

4.5.4 Consistency of pathway databases  

 

An interesting question in biological pathway analysis is which database provides the most 

exhaustive description of a particular process. Despite the availability of many reviews referencing 

the different databases, only one group has performed a critical assessment of pathway database 

content. Stobbe et al. compared the human metabolic pathway of EHMN, HumanCyc, KEGG, and 

Reactome (Stobbe et al., 2011). They compared several criteria such as genes, metabolites, EC 

numbers and reactions. Reactions were considered to be the same if all substrates and products 

matched. The global overlap of the databases is resumed in the following table: 

 

Criteria Gene EC number Metabolite Reaction 
Reaction without 

considering e-, H+, H2O 

# of common 
entities 

3858 164 4679 7758 6968 

Similar 
description 
coverage 

13% 51% 9% 1% 3% 

Table 4-1. Coverage of four metabolic databases for 4 different entities. 

 

These results illustrate the very low coverage that exists between pathway databases for metabolic 

pathways for all components of the pathway. A second publication of the same group focused on an 

in-depth analysis of the well-known TCA cycle to understand why database coverage is so limited 

(Stobbe et al., 2012). The analysis was extended to 10 metabolic databases. Surprisingly, only 3 of the 
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9 main reactions of the cycle were concordant over the 3 databases (figure 4-11). The succinate to 

fumarate reaction was the same in only half of the databases and secondary reactions catalysed by 

other enzymes were associated only in 1 to 4 databases, depending on the reaction. The TCA cycle 

has been well established for decades and a vast literature is available to support its reaction steps. 

Stobbe et al. highlighted several reasons explaining this result. First, several genes, found in one or 

more pathway databases, were suggested to be involved in the TCA cycle, but with no evidence in 

the literature. Second, several reactions of the TCA cycle are still actively studied and some parts of 

the cycle are still debated (unidirectional or bi-directional reactions, cofactors, etc.). These results 

demonstrate that (i) we still do not have a complete picture of the dynamics of biological networks, 

even for a metabolic network considered as a standard and (ii) the development of community 

standards for the description of biological pathways is now urgent. 

 

 

Figure 4-11. Pathway database consistency for the TCA cycle. The inventory of all 

genes, metabolites and reactions was done in 10 different metabolic pathway databases. 

Agreement between databases is represented by a colour gradient from red (no agreement 

between database) to green (full agreement in all databases). Adapted from Stobbe et al., 

2012. 
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5 EVOLUTION AND SYSTEMS BIOLOGY: BIDIRECTIONAL BENEFITS 
 

The systems biology era is an incredible opportunity for evolutionary studies: contributing multi-level 

approaches to complement the analysis of genomic and phenotypic variation. System-level variations 

can involve both the structure of a network and its dynamics, opening to way to finally linking 

genotypic and phenotypic evolution. This idea is not new. For example, the intra-species variation of 

endocrinal levels has already been observed in primates (Coe et al., 1992) and the evolution of 

corresponding steroid receptors was related to the origin of vertebrates (Baker, 1997). However, this 

example describes evolutionary innovations of an organism-level network of interactions. It is only 

recently, thanks to the technological omics developments, that biological network variations can be 

observed at the molecular level and in multiple organisms. In contrast to genomics, which is now 

supported by a complete evolutionary theory and numerous analysis tools, characterising higher 

biological levels in an evolutionary framework remains a challenge. In this chapter, I will briefly 

describe how the technological breakthroughs in genome sequencing have significantly modified 

evolutionary theories. Then, I will present the first ideas that have been proposed to exploit the 

currently available systems level data in an evolutionary framework. Such integrated analyses will not 

only extend our knowledge of evolutionary mechanisms, but also provide new evolutionary tools 

that will be useful in many systems-related fields. 

 

5.1 Recent evolutionary discoveries  
 

The huge volume of genomic data resulting from recent high throughput sequencing is a good 

example of how technological breakthroughs can revolutionise our view of Evolution. For example, 

during the last decade, many independent studies have been performed on hundreds of protist 

genomes, revealing a complex evolutionary history of unicellular eukaryotes and highlighting the fact 

that embryophytes, fungi and metazoan phyla do not represent the full eukaryotic diversity (figure 5-

1) (Brinkmann and Philippe, 2007).  

Another striking result discovered recently is the importance of horizontal gene transfers (HGT). HGT 

are preponderant in most bacterial phyla (Gupta and Griffiths, 2002) and also play a major role in 

eukaryotes (Bock, 2010; Keeling, 2009). For example, three independent HGT participated in the 

emergence of plant parasitism in the nematode lineage (Haegeman et al., 2011). An HGT between an 

algae and a sea slug even allowed the latter to perform photosynthesis (Rumpho et al., 2008). 

Nevertheless, eukaryotic HGT remains relatively rare. In contrast, HGT seems to be a major driver of 

evolution in bacteria and some authors have proposed that HGT have an impact similar to gene 

duplications in bacterial genome evolution (Boto, 2010). The consideration of these mechanisms has 

initiated new philosophical debates since classical phylogenies cannot accurately represent this 

‘bush’ description of bacterial evolutionary history. The classical tree of inheritance described by 

Darwin is not representative of their evolution and as a consequence, some authors are now 

developing concepts of 3D phylogenomic networks (figure 5-2) (Dagan, 2011). Interestingly, these 

observations are based on the currently available bacterial genomes, of which 60% are human 
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pathogens (www.genomesonline.org, menu ‘statistics’). Thus, massive genome sequencing has shed 

light on new evolutionary processes, and in turn, the elucidation of these processes contributes to 

our understanding of systems-level functions, such as the implication of HGT in bacterial 

pathogenicity and drug resistance (Dzidic and Bedekovic, 2003).  

 

Figure 5-1. A recent tree of eukaryotes updated with protists genomes. Adapted 

from kepticwonder.fieldofscience.com. 

 

These examples illustrate the bidirectional contributions of developments in sequencing technologies 

and new evolutionary theories. However, genomic data has been available for 50 years and many 

bioinformatics approaches have been developed during this time to extract the knowledge hidden in 

the sequences. In contrast, systems biology is based on recent methodologies that are only beginning 

to achieve a certain amount of maturity and system-level evolutionary analyses are still in their 

infancy. Such an analysis framework is sometimes referred to as ‘evolutionary systems biology’, an 

emerging field studying evolution and innovation at all levels of biological organisation, from genes 

and genomes, to biological networks and whole organisms as well as their communities. 
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Figure 5-2. A 3D phylogenomic network. This network combines classical phylogenetic 

tree representations (blue and clear green edges) with HGTs (red and dark green edges) for 

different bacterial and archaeal phyla. HGT are preponderant in bacteria, resulting in global 

pictures of gene evolutionary histories that are more complex than the classical gene-

inheritance based phylogenetic representation. Adapted from Dagan et al, 2011. 

 

5.2 Discovering evolutionary knowledge at multiple biological levels 
 

The modern evolutionary synthesis reconciled genetics with the Darwinian principles of Evolution, 

but so far few studies have characterized the evolution of higher biological levels. Today, advances in 

systems biology are opening the way to an assessment of the variation inherent to biological systems 

at multiple levels among different organisms. Here, we describe some recent results related to this 

multi-level variation and the corresponding debates that are on-going. The particular case of 

biological network and pathway evolution is more extensively described in paragraph 5.3. 
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5.2.1 Evolutionary role of non-coding RNAs 

 

Non-coding RNAs (ncRNAs) can interact with DNA, RNA and protein molecules and are involved in 

diverse structural, functional and regulatory activities. They play roles in nuclear organization and 

transcriptional, post-transcriptional and epigenetic processes (Morris, 2012). Compared with protein-

coding sequence, microRNA sequence tends to be weakly constrained and understanding their role 

in biological systems evolution is challenging. Nevertheless, new technologies are now available to 

study ncRNA in multiple species, providing new opportunities to elucidate their evolutionary roles. 

Current transcriptomics studies are producing a vast amount of data concerning ncRNAs, although it 

is difficult to assess whether they are functional or whether they represent noisy transcription. 

Initially, ncRNA evolutionary studies based on genome comparisons showed a poor conservation of 

the corresponding intergenic sequences and were not able to find evidence of their function (Wang 

et al., 2004). More recently, some conserved ncRNA subfamilies, such as long intervening noncoding 

RNAs (lincRNAs) have been described in mammals (Guttman et al., 2010) or fishes (Ponting et al., 

2009) with the help of RNA-seq technologies. Despite a rapid sequence evolution, a conservation of 

the functional role of lincRNAs was demonstrated, in particular for embryonic development (Ulitsky 

et al., 2011). A significant fraction of another ncRNA class, the miRNAs, is known to be conserved 

over many species (Hertel et al., 2006; Hoeppner et al., 2009). Interestingly, microRNAs have been 

used several times as phylogenetic markers to study the emergence of vertebrates (Heimberg et al., 

2010).  

 

5.2.2 Evolution of gene expression 

 

Phenotypic diversity can be partially understood by genome and protein-coding gene analysis. 

However, regulatory mutations affecting gene expression have been considered essential for 

understanding phenotypes for a long time (King and Wilson, 1975). Several studies have attempted 

to identify the differences in expression levels between closely related species, mainly human and 

apes (Khaitovich et al., 2006) and some authors have successfully extracted general evolutionary 

trends, such as the strong inverse correlation between a gene’s sequence evolutionary rate and 

expression level (Koonin and Wolf, 2006). Until recently, transcriptomes were mainly produced with 

microarray techniques, a technique requiring tissue specific probes, which made it difficult to apply 

to multiple organisms. The development of RNA sequencing (RNA-seq) now facilitates the 

determination of expression levels in multiple tissues. One of the first multi-species comparisons of 

expression levels was performed by Brawand and co-workers, who analysed the expression levels in 

brain, cerebellum, heart, kidney, liver and testis from nine mammalian species (human, apes, 

marsupials, monotremes and a bird as outgroup) (Brawand et al., 2011). Their results show many 

interesting evolutionary trends. For example, they observed large differences of expression patterns 

in primate brains, much larger than those observed in the corresponding genomes. In a separate 

study, they also highlighted the dosage compensation, i.e. the X-linked gene expression level, that 

characterizes the evolution of sex chromosomes in amniotes (Julien et al., 2012).  
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5.2.3 Evolutionary role of epigenetics 

 

An epigenetic effect is defined as one or several factors altering a phenotype that is heritable but not 

solely due to changes in DNA (Goldberg et al., 2007). In cells, chromatin modelling, such as DNA 

methylation or histone modification, is the main mechanisms of epigenetics and its role was 

confirmed as essential in cell differentiation and tissue development (Mohn and Schubeler, 2009). 

However, epigenetic inheritance can also be transmitted during gamete production, initiating a 

trans-generational inheritance. Conserved stability of chromatin modification has been described in 

many organisms. Bacteria can present an epigenetic based resistance to antibiotics (Adam et al., 

2008). In cultures of palm oil, somaclonal phenotypic variation was observed between clones, related 

to their retroelements, transposons and methylation status (Kalendar et al., 2011). In mice, 

environmental changes influence the locus responsible for the Agouti fur colour, a methylation state 

that can be inherited (figure 5-3) (Wolstenholme et al., 2011). Different versions of a heritable 

epigenetic modification can even be conserved in a population, a phenomenon similar to gene alleles 

and referred to as ‘epialleles’ (Maury et al., 2012). The inventory of human epialleles and the 

transgenerational inheritance of an aberrant epigenetic state could be a new key to understanding 

some diseases (Morgan and Whitelaw, 2008). Epigenetically mediated transgenerational inheritance 

is now considered as an important mechanism in Evolution. However, the exact evolutionary 

implications of epigenetic inheritance are unclear. Current debates  include the role of epigenetic 

effects in the generation of novel phenotypes, the mediation of transgenerational adaptive plasticity 

or the formation of additional inheritance channels in parallel with DNA (Jablonka and Raz, 2009; 

Shea et al., 2011). 

 

Figure 5-3. An example of epigenetic inheritance: DNA methylation changes at the Agouti 

locus. Environmental changes can change the DNA methylation at the mouse Agouti locus. Mice with 

a low level of Agouti methylation are yellow, while mice with a high level of DNA methylation are 

agouti. Treatment with bisphenol A or folic acid can shift coat colour distribution towards yellow or 

agouti, respectively. This coat color shift persists to the next generation indicating that the epigenetic 

change that occurs at the agouti locus is heritable. Adapted from Wolstenholm et al., 2011. 
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5.2.4 Towards an extended evolutionary synthesis 

 

The growth of systems biology and the multi-level view in evolutionary studies suggest that a new 

consensus is now necessary in order to construct an updated evolutionary synthesis. Conrad 

Waddington suggested the consideration of the epigenetic landscape in evolutionary studies over 5 

years ago (Goldberg et al., 2007). His concept of epigenetics was however only a metaphor for how 

gene regulation modulates development. Today, biology systems are beginning to be characterised 

at many levels and modern biology describes the coordinated activity of proteins within networks, 

rather than individual or even a few interacting gene products. The gap between the widely accepted 

first evolutionary synthesis, a synthesis mainly integrating genetics with evolutionary theories, and 

the current multi-level description of biological systems is growing. Consequently, more and more 

authors are highlighting the need for a modernized evolutionary synthesis integrating the increasing 

knowledge generated by systems biology (Bard, 2010; Brower, 2010; Chen and Wu, 2007). The 

integration of multiple genome-scale datasets has begun to uncover general evolutionary trends at 

the system level, studies that have been coined by several authors as ‘evolutionary systems biology’ 

(Gu, 2011; Koonin and Wolf, 2006; Loewe, 2009). Interestingly, similarly to the term ‘system biology’ 

10 years ago, many groups and institutes are now qualifying their teams as specialized in 

‘evolutionary systems biology’, these teams being originally specialized in comparative genomics, 

evolutionary bioinformatics and molecular biology. 

This modernization is still actively discussed in the evolutionary field, but some guiding threads are 

emerging. A first agreement is that the role of epigenetic inheritance should be integrated in classical 

evolutionary theories (Dickins and Rahman, 2012; Pigliucci, 2007). Second, the field of evo-devo (see 

chapter 1) and the particular evolutionary constraints that it describes in metazoa should also be 

considered (Pennisi, 2008). Another problem is that some recent discoveries contest some well-

established principles of the current evolutionary theory. For example, there is evidence that the 

LUCA (Last Universal Common Ancestor) might have been dramatically different from modern cells: 

possibly, a loose collection of virus-like genetic elements that could be denoted as LUCAS, a Last 

Universal Common Ancestral State (Koonin, 2009b). The ‘bush’ description of bacterial evolution also 

contests the linear properties of classical phylogenetic trees, one of the pillars of Darwinian theories. 

Indeed, in bacteria, gene inheritance is not the only basis for molecular evolution and HGT plays a 

major role. These new hypotheses are initiating an interesting debate about Life and Evolution: are 

they really ‘law-like’ and can we hope to describe a single unified model of Evolution? (Weiss and 

Buchanan, 2011). 

 

5.3 Evolution of biological networks 
 

One of the greatest successes of systems biology has been the development of a large knowledge 

base describing biological networks and their dynamics (see chapter 4). Omics approaches are now 

facilitating the production of network data and several genome-scale networks have been 

constructed in model organisms (figure 5-4). These networks provide an opportunity to decipher how 

network architecture evolves over time.  
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Figure 5-4. The available interactome networks in model organisms. Adapted from  

Pennisi, 2008. 

 

The existing studies of biological network evolution can be divided into two main approaches. First, 

many authors are interested in a mathematical description of networks and how their structure 

changes and grows over time (Gibson and Goldberg, 2011). Such work is generally based on 

simulated networks that are submitted to external changes. For example, mathematical models were 

developed to explain the modular aspects of networks (Pfeiffer et al., 2005). The concept of network 

evolvability has also been proposed (Crombach and Hogeweg, 2008), stating that networks are 

evolvable while their robustness to mutations is maintained and delimitating a landscape of network 

evolution. A second type of study concerns the inference of evolutionary knowledge from real 

biological network datasets. In th rest of the chapter, I will focus on these approaches. These include 

bottom-up approaches, to investigate how the nodes and edges of a specific network are modified 

through time, and top-down approaches to study the global network properties that characterize 

network evolution. 

 

5.3.1 Mechanisms of network evolution 

 

Although the mechanisms of biological network evolution are clearly complex, network modifications 

can be resumed in three basic operations: node gain/loss, link gain/loss. These events are often 

coupled to genetic events such as deleterious mutations, domain recombinations, 3D structure 

modifications, gene duplications/deletions or HGTs. But they can also be linked to modifications of 

regulatory elements or epigenetic modifications (Koonin and Wolf, 2010). We can illustrate all these 

events by looking at the example of the Notch signalling pathway, for which a complete evolutionary 

analysis has been performed  (Aravind et al., 2009) (figure 5-5). 
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Figure 5-5. A representation of the Notch signalling network and the evolutionary 

events that shaped it. Boxes indicate gene co-functional linkages. The network is widely 

annotated with labels indicating the evolutionary history of different components. Adapted 

from Aravind et al., 2009.  

 

The network includes a gene horizontally transferred from bacteria (Sno), the recruitment of a 

complete network module (the secretase complex), some innovations specific to animals (Numb) and 

gene family expansions. The functional repurposing of cellular machines seems quite important for 

network plasticity and the use of conserved machines in different pathways with different 

input/output has already been observed in vivo in fungi and mammals (Frost et al., 2012).The 

complexity of these network evolutionary scenarios is complemented by the complexity of the gene 

expression patterns. For example, a study of transcript and isoform diversity showed that nearly 20% 

of the human genes possess alternative interaction potential, suggesting that transcriptional 

variation can significantly rewire human interactomes (Davis et al., 2012).  

 

5.3.2 Comparing biological networks from multiple species 

 

The comparison (or alignment) of biological networks from multiple species can be performed to 

analyze network evolution, using a philosophy similar to protein or genome alignments. Network 

alignment is however a more complicated task. Several methods have been developed that focus on 
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finding similarities between the structure or topology of two or more networks, including both local 

and global network alignments. Interestingly, most of these methods are based on sequence 

homology (mainly orthology) to make a correspondence between nodes in networks from different 

species. Local methods are generally based on similar path scores, conserved protein clusters or 

conserved subnetworks defined by arbitrary structures (Flannick et al., 2006; Kalaev et al., 2008; 

Kelley et al., 2004). Global network alignments provide a unique correspondence between every 

node in the smaller network to exactly one node in the larger network. They are based on heuristics 

aimed at maximizing the overall match between the two networks or on learning algorithms that use 

a training set of known network alignments coming from closely-related species (Flannick et al., 

2009; Shih and Parthasarathy, 2012; Singh et al., 2007). 

 

 

Figure 5-6. Some examples of conserved network modules in yeast, worm, and 

fly. The PATHBLAST tool was used to discover conserved topologies over the three species 

PPI networks. Yeast proteins are represented by orange ovals, worm proteins by green 

rectangles and fly proteins by blue hexagons. They are connected by direct (thick line) or 

indirect (connection via a common network neighbour; thin line) protein interactions. Dotted 

lines link sequence homologs which are horizontally aligned. Adapted from Sharon et al., 

2005. 
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Network alignments have produced many interesting results. For example, it was observed that 

some large modules of interactions are conserved over multiple species (figure 5-6) (Sharan et al., 

2005). Network alignments have also been used to predict functional orthologs (Bandyopadhyay et 

al., 2006). Regulatory networks have been observed to be more plastic and evolve more rapidly than 

PPI networks, probably linked to a faster evolution of transcription factors compared to their target 

genes (Babu, 2010a). This picture seems to be reinforced in bacteria, which present an extreme 

plasticity in their transcriptional regulatory networks (Lozada-Chavez et al., 2006). Finally, global 

alignments have been used to produce distance matrices representing the differences between 

species networks for the reconstruction of a network-based phylogenetic tree (Kuchaiev et al., 2010).  

 

5.3.3 Discovering global network properties 

 

The multi-species comparison of biological networks is not only used to highlight which components 

of the system are conserved or to construct system-based trees. The availability of genome-scale 

networks in multiple species has led some authors to search for general properties governing 

biological networks and several models have been proposed. For example, the networks are qualified 

as ‘scale-free’ and can be characterized by a ‘small world’ structure (Watts and Strogatz, 1998)(Watts 

and Strogatz, 1998a), meaning that they can be considered as a collection of interconnected hubs 

and each node can be reached from any other by a short path. Furthermore, the number of links to 

each node in biological networks has been associated with a power law distribution (Barabasi and 

Albert, 1999). Such studies have motivated some authors to propose that ’cellular networks are 

governed by universal laws’ (Barabasi and Oltvai, 2004). Two other parameters have been used to 

characterize network evolutionary changes: their robustness (Zhang and Zhang, 2009) and 

evolvability (Chen and Lin, 2011). Robustness represents the conservative forces of the networks 

between generations under the influence of random perturbations. In contrast, evolvability 

represents the tolerated perturbations induced by genetic and epigenetic modifications, 

perturbations that could eventually be positively selected during evolution. However, the properties 

(power-law, small-world) used in network modelling have been contested recently, with the 

availability of more and more networks. The corresponding data do not always fit the expected 

theoretical models, and the cases where a good fit has been observed may often result from 

sampling artefacts or improper data representation (Lima-Mendez and van Helden, 2009). 

 

5.4 Limits of current methodologies 
 

5.4.1 How to integrate multiple biological levels in an evolutionary framework? 

 

Currently, the main challenge in evolutionary studies is to develop an efficient framework for 

integrating data from multiple biological levels at the same time. As discussed in the previous 

paragraphs, this is essential because system-level phenomena have an important influence on 

evolutionary outcomes. Most evolutionary theories and principles are however related to a single 

level (e.g. genome or network topology evolution). Some general system-level trends have been 
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discovered, such as the correlation between expression levels, protein abundance, network centrality 

of genes (figure 5-7), but these conclusions were mainly extracted from a manual compilation of 

several independent studies (Koonin and Wolf, 2006). Classical evolutionary tools are not adapted to 

studying such large-scale correlations. 

 

 

Figure 5-7. Evolutionary correlations between multiple biological parameters. The 

plus signs indicate positive correlations, and the minus signs indicate negative correlations. 

CAI, codon adaptation index; EL, expression level; ER, evolutionary rate; GI, number of 

genetic interactions; KE, lethal effect of gene knockout; NP, number of paralogs; PA, protein 

abundance; PGL, propensity for gene loss; PPI, number of physical protein–protein 

interaction partners. ND, not determined; NS, not significant. Adapted from Koonin and 

Wolf, 2006. 

 

In fact, to our knowledge, no standardized approaches exist for integrating heterogeneous multi-

scale evolutionary data in a single framework. Moreover, no tools exist to describe gene or network 

evolutionary histories based on genome-scale multilevel datasets. 

 

5.4.2 How to formalize evolutionary variation in biological networks? 

 

Systems biology  constantly producies new genome-scale datasets and managing this flux is a major 

challenge for evolutionary biology, like other domains. Some attempts have been made to manage 

the data with high-throughput genome-scale phylogenies (Levasseur et al., 2012a; Ruan et al., 2008; 

Wapinski et al., 2007). However, these trees only consider genomic data. Moreover, they are binary 

trees, based on genomic distances and the problem of estimating systems-level distances between 

multiple organisms remains. The classical tree representation can also be a limiting factor in itself, as 

demonstrated by the upgrade of phylogenetic trees to phylogenomic networks in bacterial studies. 

Indeed, the high plasticity of biological networks is difficult to formalize. Some inspiration could come 

from the systems biology attempts to represent the spatiotemporal dynamics of interactomic 

networks (Goel et al., 2011), but this representation is still based on static networks and is generally 

manually constructed. New tools are clearly needed to automatically generate  system-level 

evolutionary histories. 
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6 MATERIAL AND METHODS 
 

The results described in chapters VII to IX were obtained using numerous methods and algorithms for 

data retrieval, software development, sequence alignment and biological knowledge extraction. This 

work was performed using the existing infrastructures and computer resources of the Laboratoire de 

Bioinformatique et Génomique Intégratives (LBGI), the Plate-forme de Bioinformatique de 

Strasbourg (BIPS) and the Décrypthon computing grid (Bard et al., 2010). The BIPS is a high-

throughput platform for comparative and structural genomics, member of the Réseau National des 

plates-formes Bioinformatiques (ReNaBi). 

 

6.1 Computing resources 
 

6.1.1 Servers 

 

Computational power was provided by the central servers of the Institut de Génétique, Biologie 

Moléculaire et Cellulaire (IGBMC). In 2010, the institute renewed its computational infrastructure, 

implementing a ‘blade centre / master server / storage server’ architecture (figure 6-1). 

 

 

Figure 6-1. The “blade centre / master server / storage server” architecture at the 

IGBMC.  
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In this architecture, a master server controls all input/output user connections and allows 

interactions between the different elements of the architecture. Storage is centralized in a dedicated 

server. Computational power is provided by a set of ‘blades’, i.e. a set of physical cards dedicated to 

CPU computational power (4x quad core processors per blade). An interactive batch job 

management system, the Sun GridEngine, runs on the master server and is accessible for registered 

users. Using this queuing system, jobs can be sent directly to the server and the master server 

automatically shares available CPUs depending on job requirements. This allows a balanced sharing 

of CPU resources between users.  

 

6.1.2 Décrypthon Grid 

 

The Décrypthon is a computational grid supported by the French Muscular Dystrophy Association 

(Association Française contre les Myopathies: AFM), allowing seamless access to computation and 

storage resources for application developers and scientists (Bard et al., 2010). The project is a 

partnership between 3 organisms: the AFM and IBM, who have been partners since 2001, and the 

CNRS, who joined the project in 2005. Currently, the grid computational power is based on several 

supercomputers installed by IBM in 6 French universities providing a total of 500 Gflop (Bordeaux 1, 

Lille 1, Paris 6 Jussieu, ENS Lyon, Crihan in Rouen, Orsay) and individual personal computers via a 

world community grid. The first ortholog dataset built using OrthoInspector, presented in Chapter 

VII,  is based on a BLAST all-against-all of 60 eukaryotic species calculated on this grid. We also used 

the Décrypthon grid services during the multiple alignment construction for the EvoluCodes (Chapter 

VIII), since they required data from 20 vertebrate proteomes (> 500 000 sequences). 

 

6.1.3 Database systems 

 

A database can be defined as a structured collection of data. The data are organized according to a 

data model describing reality concepts, objects and relations. The data model is thus an abstract 

structure that provides the means to effectively describe the specific data structures required by an 

application. A database is generally supported by a DataBase Management System (DBMS). The data 

collection together with the DBMS is called a database system. In computer sciences, the relational 

model is now the most widely used data model and is supported by a standard querying language, 

called SQL (Structured Query Language), facilitating database interoperability. 

6.1.3.1 General database systems 

Three relational database systems were used in the different software and methods developed 

during this thesis: MySQL (www.mysql.com), postgreSQL (www.postgresql.org) and IBM DB2 

(http://www-01.ibm.com/software/data/db2/). Both MySQL and postgreSQL are open source 

systems, widely used in computer engineering and web development. IBM DB2 is proprietary 

software developed by IBM Corporation and is business oriented. OrthoInspector implements an 

intrinsic support for PostgreSQL and MySQL, allowing automated installation of a new orthology 

database with these systems. The pipeline used to produce the EvoluCodes is supported by a 
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PostgreSQL database. The IBM DB2 system was used for EvoluCode exploitation and analysis, due to 

the fact that his system includes a wide set of tools for data mining, modeling, scoring and 

visualization: the Intelligent Miner software suite.  

6.1.3.2 BIRD database system 

The BIRD system was developed in the laboratory by Ngoc Hoan Nguyen and is designed to manage 

and integrate heterogeneous biological data. BIRD is a software layer, creating and managing 

genomic, transcriptomic and proteomic resources with the help of a configurable data model. It 

integrates an ontology driven API and a set of database rule analysers. The integration rules allow the 

user to easily create a database based on these semantics and his specific needs. BIRD is based on 

the initial ideas and concepts developed in the Saada project (http://www.projet-

plume.org/fiche/saada) devoted to the management of astronomical data. The system has been 

developed using Java technology. In its current version, BIRD uses IBM DB2 to store data and operate 

with a powerful full-text and XML data model. The web application can be hosted by a Tomcat server 

or an IBM WebSphere Application Server. In addition, BIRD is supported by a biology oriented search 

engine called BIRD-QL that was developed to facilitate access to databases and the extraction of 

relevant information. It allows the biologist to easily express queries and to extract knowledge by 

classical constraints and scientific functions. Many routine scripts developed during this thesis use 

the BIRD system for data retrieval. 

 

6.2 Bioinformatics resources 
 

6.2.1 Biological databases 

6.2.1.1 General sequence databases  

We used three well-known biological databases to extract sequence data: Uniprot (Apweiler and 

constortium, 2012), RefseqP (Sayers et al., 2012) and Ensembl (version 54) (Hubbard et al., 2007).  

The Universal Protein Resource (UniProt) is a comprehensive resource for protein sequence and 

annotation data. It is composed of several databases, mainly the UniProt Knowledgebase 

(UniProtKB), the UniProt Reference Clusters (UniRef), and the UniProt Archive (UniParc). UniProt is 

the result of a collaboration between the European Bioinformatics Institute (EBI), the SIB Swiss 

Institute of Bioinformatics and the Protein Information Resource (PIR).  

The National Center for Biotechnology Information (NCBI) provides the Reference Sequence (RefSeq) 

database, a collection of taxonomically diverse, non-redundant and annotated sequences. Each 

RefSeq release is constructed from sequence data submitted to the International Nucleotide 

Sequence Database Collaboration (INSDC). A portion of the RefSeq dataset is then curated by NCBI 

staff and collaborating groups. The RefSeq section dedicated to protein sequences in commonly 

referred to as RefSeqP.  

The goal of the Ensembl database is to automatically annotate genomes, integrate the annotation 

with other available biological data and make all this publicly available via the web. Originally, 
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Ensembl focused on vertebrate genomes with 64 consecutive releases of the database. Today, 

Ensembl has expanded to include all phyla, with 5 new databases (EnsemblBacteria, EnsemblProtists, 

EnsemblPlants, EnsemblFungi, EnsemblMetazoa) accessible via a common entry point called 

EnsemblGenomes (http://www.ensemblgenomes.org/). Ensembl is a joint project between the 

European Bioinformatics Institute (EBI) and the Wellcome Trust Sanger Institute (WTSI).  

The first and second versions of the OrthoInspector database are composed of eukaryotic proteomes 

downloaded from Uniprot, RefseqP and Ensembl (version 54 and 64) databases. In the first version, 

we avoided multiple transcript issues in two different ways. For Ensembl data, the longest protein 

sequence was selected for each predicted gene annotated as ‘protein-coding’. For Uniprot and 

RefseqP data, each sequence was compared to all others from the same organism using BLAST and 

excluded if a longer sequence was found sharing more than 99% identity. Manually-annotated 

entries from Swissprot were preferred over TrEMBL and RefseqP entries. The second version of 

OrthoInspector uses the same protocol for data from Ensembl. However, for other available 

genomes, we selected complete genomes referenced in the new ‘reference_proteome’ dataset 

provided by Uniprot. The ‘reference_proteome’ database references organisms with completely 

sequenced genomes and provides curated reference proteomes, i.e. proteomes with one 

representative transcript for each protein-coding gene. 

The EvoluCodes are based on a human protein set retrieved from the Human Protein Initiative (HPI) 

project (O'Donovan et al., 2001). This project defined a master human proteome set with quality 

standards based on UniprotKB/Swiss-Prot databases. To construct the EvoluCodes, we chose 16 

vertebrate proteomes, by selecting species that best represent major vertebrate phyla, i.e., fish, 

batracia, sauropsida and mammals. The complete proteomes for these organisms were downloaded 

from Ensembl (version 51) and a local database was created with more than 500,000 vertebrate 

sequences.  

6.2.1.2 Annotation database 

The MACSIMS annotation process (see 6.2.3.2) used in the construction of the EvoluCodes 

incorporates Gene Ontology (Ashburner et al., 2000) annotations and protein domain definitions 

from the Pfam database (Punta et al., 2012a). Functional enrichment analysis of EvoluCodes was also 

based on GO annotations. 

The Gene Ontology (GO) project aims to create consistent descriptions of gene products in different 

databases. The project has developed three structured controlled vocabularies (ontologies) that 

describe genes in terms of their associated biological processes, cellular components and molecular 

functions in a species-independent manner.  

The Pfam database is a collection of protein domain families. Each family is represented by multiple 

sequence alignments and hidden Markov models (HMMs). The Pfam database is divided into two 

parts: Pfam-A and Pfam-B. Pfam-B families are generated automatically with sequences from most 

major databases and are un-annotated. Pfam-A entries contain computational predictions inferred 

from the most recent release of UniProtKB at a given time-point. Each Pfam-A family is seeded on a 

curated alignment containing a small set of representative members of the family, from which a 

Hidden Markov Model profile (profile HMMs) is built. This profile is then used to aggregate new 

sequences and to build a new, more comprehensive alignment. 
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6.2.1.3 Pathway database 

The system-level analysis presented in chapter IX explores human pathway maps defined by the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) knowledge base (Kanehisa et al., 2012). KEGG 

aims to build computer representation of biological systems, consisting of molecular building blocks 

of genes and proteins (genomic information) and chemical substances (chemical information). These 

blocks are combined with biological knowledge of molecular wiring from the literature to form 

diagrams of interaction, reaction and relation networks (systems information, figure 6-2).  

 

Figure 6-2. The different types of biological information integrated in the KEGG 

database. Adapted from http://www.kegg.jp/.  

 

Today, the knowledge base is composed of seventeen databases categorized into systems 

information, genomic information and chemical information. The EvoluCode analysis was performed 

in the context of the KEGG PATHWAY database. This is a collection of manually drawn pathway maps, 

representing molecular interactions and reaction networks for different biological processes, such as 

metabolism, genetic information processing, environmental information processing, cellular 

processes or organismal systems. KEGG data were retrieved with the help of the KEGG SOAP (Simple 

Object Access Protocol) server (http://www.kegg.jp/kegg/soap/). 

 

6.2.2 Sequence aligners 

 

The BLAST (Basic Local Alignment Search Tool) includes a sequence comparison algorithm providing 

local pairwise alignment for biological sequences (McGinnis and Madden, 2004). There exist 

specialized versions of the algorithm dedicated to protein or nucleotide query sequences and 

sequence libraries (BLASTn, BLASTp, tBLASTn …). The complete software suite of BLAST tools has 

been recently rewritten in C++ for better performance and compatibility with state-of-the-art 

software systems. This update is named BLAST+ and will eventually replace the traditional BLAST 
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tools that were written in C (Camacho et al., 2009). We exploited this new version for the creation of 

the BLAST all-against-all used for OrthoInspector predictions. 

 

6.2.3 Expert systems 

 

6.2.3.1 PipeAlign: a protein family analysis tool 

PipeAlign is a tool developed in the LBGI for the automated analysis of protein families (Plewniak et 

al., 2003) through the construction of multiple alignment of complete sequences (MACS). The 

pipeline integrates a six step process, corresponding to six different sequence analysis programs, 

ranging from the search for homolog sequences in protein and 3D structure databases, to the 

construction of hierarchical relationships within and between families (figure 6-3).  

 

Figure 6-3. Overview of PipeAlign pipeline. Adapted from Plewniak et al., 2003. 

 

To produce the MACS (Multiple Alignment of Complete Sequences) used in the construction of the 

EvoluCodes, we used a modified version of the published PipeAlign, where DbClustal was replaced by 

the MAFFT program (Katoh et al., 2002) since the computational speed of MAFFT is better suited to 

high throughput projects. Thus, the pipeline can be summarized as follows: 
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1. Database searches with BLASTp and post-processing of results with Ballast: 

Given an input sequence, a BLASTp search of the Uniprot database is performed. Ballast then 

builds a conservation profile of the database sequences detected by BLASTp with an E-value 

<10. The contribution of each database hit is proportional to its E-value. Then, Local 

Maximum segments (LMSs) are identified, corresponding to sequence segments that are 

more conserved than their neighbouring regions. The position of the LMSs in the query and 

database sequences are identified and are stored in a file as a list of anchors for input to 

MAFFT. 

 

2. Construction of the MACS with MAFFT: 

Mafft is a suite of programs offering various multiple alignment strategies, of which two 

complementary versions were tested: a rapid, less accurate version (fftns2) and an iterative 

refinement (linsi) (figure 6-4). See publication n°4 for more details concerning MAFFT 

performance.  

 

 
Figure 6-4. Principle of the linsi alignment strategy of MAFFT. 

 

In linsi, alignments are scored using an objective evaluation function combining a weighted 

sum-of-pairs (WSP) score (Katoh and Toh, 2008a) and a COFFEE-like score (Wallace et al., 

2006b), which evaluates the consistency between a multiple alignment and a predefined set 

of pairwise alignments (Katoh et al., 2005). The alignment is progressively refined until the 

score reaches a defined threshold. The linsi method is particularly suitable for aligning sets of 

sequences that contain large non-homologous regions, such as multi-domain protein 

families. 

 

3. Correction of errors with RASCAL: 

The RASCAL program is designed to detect and correct local errors introduced in the MACS 

(Thompson et al., 2003). The multiple alignment is divided horizontally and vertically to form 

the blocks of a lattice in which the well aligned regions are differentiated. For an efficient 

refinement strategy, alignment correction is limited to the less reliable regions. Thus, 

potential alignment errors are detected by comparing profiles of the different blocks. RASCAL 

then performs a single re-alignment of each badly aligned region using an algorithm similar 

to that implemented in ClustalW (Larkin et al., 2007).  

 

4. Alignment-based homology evaluation with LEON: 

The LEON program (Thompson et al., 2004)detects sequences that are unrelated to the query 

sequence. This step is necessary because we include all sequences detected by BLASTp with 

E-value <10. Although this allows us to incorporate very divergent sequences, it also 
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introduces some unrelated ones. LEON uses the conserved blocks detected by RASCAL and 

chains them into longer conserved regions that may correspond to homologous 

structural/functional domains. Then, sequences with no homologous regions are removed 

from the MACS.  

 

5. Quality evaluation with NorMD: 

NorMD is an objective function for MACS quality evaluation (Thompson et al., 2001). It 

combines the advantages of both column-scoring techniques and residue similarity scores 

and is based on the Mean Distance (MD) scores introduced in ClustalX (Thompson et al., 

2002). The score is normalised for various factors, including the number of sequences, the 

alignment length and the presence of gaps, and allows us to define a cutoff above which a 

MACS is considered of high quality.  

 

6. Sequence clustering with Secator: 

The Secator algorithm clusters sequences in a MACS into potential functional subgroups 

(Wicker et al., 2001). First, it creates a phylogenetic tree from a distance matrix based on the 

MACS. Then, it assigns a dissimilarity value to each node of the tree and collapses branches 

to automatically detect nodes joining distant subtrees. The remaining subtrees represent 

sequence families in the alignment. 

The final output of this pipeline is a high-quality MACS with sequences clustered into potential 

functional sub-families. The whole procedure is available online at http://bips.u-strasbg.fr/PipeAlign. 

 

6.2.3.2 MACSIMS: comprehensive annotation of multiple alignments 

MACSIMS (Multiple Alignment of Complete Sequence Information Management System) is an expert 

system for the management of all the information related to a protein family (Thompson et al., 

2006). It provides an environment that facilitates knowledge extraction from a MACS and the 

presentation of the most pertinent biological information. This extraction can be split into 4 main 

parts: data retrieval for sequence features, homology analysis, data validation and data propagation 

(figure 6-5).  

The homology analysis is similar to that integrated in PipeAlign (see 6.2.3.1), using Secator and 

RASCAL to define high quality aligned regions. Sequence features are compiled from several 

databases such as GO annotations (Ashburner et al., 2000), Pfam (Punta et al., 2012a) and Prosite 

domains (Sigrist et al., 2010), PDB secondary structures (Velankar et al., 2012), etc. These are 

augmented with ab initio calculated characteristics, such as GES hydrophobicity (Engelman et al., 

1986), coiled coil predictions, etc. Then, the homology and annotation data are combined to verify 

and validate all annotated features in the context of the multiple alignment and with the help of a 

first decision tree (figure 6-6 A). Briefly, each feature associated with each sequence is compared 

with features for the other sequences in the same sub-group and, based on the first decision tree, 

the reliability of the feature is investigated. The reliable features are then propagated in the 

alignment, using a second decision tree (figure 6-6 B). The extended annotation is saved in an XML 

format, following the MAO (Multiple Alignment Ontology) schema (Thompson et al., 2005b). The 
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interoperability provided by the MAO format facilitates the analysis and visualisation of propagated 

features, for example in the Jalview alignment editor.  

 

 

Figure 6-5. Overview of the MACSIMS modules. Adapted from Thompson et al., 2006. 
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Figure 6-6. MACSIMS decision trees. (A) A first decision is made to validate or discard a 

particular feature associated with each sequence included in the MACS. (B) Validated 

features can be propagated to other sequences based on the homologous block definition 

using the rules of a second decision tree. Adapted from Thompson et al., 2006. 

 

6.2.4 Data visualisation 

6.2.4.1 Jalview 

Jalview is a multiple alignment editor written in Java (Waterhouse et al., 2009). It is used widely in a 

variety of web pages (EBI ClustalW server, Pfam protein domain database, etc.) but it is also available 

as a general purpose alignment editor and analysis workbench. It contains numerous tools to view, 

edit, analyse (e.g. alignments, phylogenetic trees, etc.), annotate (e.g. secondary structures, colour 

schemes for features) and publish (image, web) MACS related data. We used Jalview to display MACS 

annotated by MACSIMS on the EvoluCodes website. In the display, each sequence feature provided 

by MACSIMS is associated with a colour code, allowing human analysis of conserved blocks, domains 

and key residues. 

 

6.2.4.2 OrdAlie 

OrdAlie (Ordered Alignment Information Explorer) is developed in the laboratory by Luc Moulinier. It 

is a Tcl/Tk program designed to allow a comprehensive analysis and exploration of protein 

sequences, structures and functions, as well as their evolutionary relationships. Sequences can be 

clustered automatically into sub-families and a hierarchical analysis of residue conservation can be 

A. B.Feature validation Feature propagation
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performed in each family. Moreover, this information can be viewed in the context of the 3D 

structure, using the RasMol structure tool (Goodsell, 2005). 

 

6.2.4.3 Cytoscape 

Cytoscape is an open source software platform for visualizing complex networks and integrating 

these with any type of attribute data (Smoot et al., 2011). Cytoscape is particularly efficient for large-

scale network visualization and can produce publication quality annotations. Another advantage of 

Cytoscape is its plugin system. Many authors regularly publish new Cytoscape plugins dedicated to 

specific biological network analysis protocols or add new interfaces to other software. Cytoscape was 

used to analyse and visualize the evolutionary networks described in chapter 9. 

 

6.2.5 Methods for knowledge extraction 

 

6.2.5.1 GoMiner for GO enrichment analysis 

We performed a functional enrichment analysis to analyse clusters of Evolucodes describing a similar 

evolutionary history (see chapter XIII). To do so, we used the GoMiner program, a tool for biological 

interpretation of 'omics' data, including data from gene expression microarrays (Zeeberg et al., 

2003). GoMiner exploits the Gene Ontology (GO) to identify the biological processes, functions and 

components represented in a gene list. This software contains several clustering and visualisation 

tools in a graphical interface. For our analysis, we used the command-line version of the program as 

we were mainly interested in the quantitative and statistical significance of functional enrichment in 

EvoluCode clusters. 

 

6.2.5.2 IBM Intelligent Miner for data mining 

Intelligent Miner is an IBM software suite designed for data mining in IBM DB2 databases. It enables 

users to mine structured data stored in conventional databases or flat files. Its mining algorithms aim 

to address business problems in such areas as customer relationship marketing or fraud and abuse 

detection. We used this software suite to investigate the presence of some data structures or models 

in our EvoluCodes because the 2D matrices can also be represented as database tables. In particular, 

we analysed our data with self-organizing maps, also known as Kohonen maps, a type of artificial 

neural network that classifies the training data without any external supervision and produces a low-

dimensional representation of the input space of the training samples (Kohonen, 1988). The 

advantage of this approach is the ability to represent complex multi-dimensional data in a low-

dimensional representation (typically 2D maps, see figure 6-7). The topology of the 2D 

representation is important, since a self-organizing map uses a neighbourhood function to preserve 

the topological properties of the input space. Similarly, the local density of data is conserved as a 

data space with more data corresponds to a larger area of the map. 
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Figure 6-7. Schematic representation of the self-organising map (SOM) 

projections. The SOM defines a mapping of the input data space of dimension n to a two-

dimensional (X x Y) array of nodes. Adapted from http://www.lohninger.com/helpcsuite/. 

 

6.2.5.3 LOF: Local Outlier Factor for outlier analysis 

In chapter 9, we define ‘outlier’ EvoluCodes, i.e. outlier evolutionary histories in the context of their 

biological network using the Local Outlier Factor (LOF) score (Breunig et al., 2000). The LOF assigns to 

each object a degree of ’ outlierness’, depending on how isolated the object is with respect to the 

surrounding neighbourhood (Figure 6-8). The idea of the LOF is to compare the local density of a 

point's neighbourhood with the local density of its neighbours. The LOF algorithm takes as input the 

distance from all entities to their k nearest neighbours. Consequently, it can be used with high 

dimensional spaces, if the user can provide such distances. The 2D projection of figure 6-8 is an 

example of a LOF calculation for a 2D dataset containing one low density Gaussian cluster of 200 

objects and three large clusters of 500 objects each, illustrating the notion of degree of outlierness. 

 

 

Figure 6-8. Local outlier factor score for points in a sample dataset. The LOF score 

attributes a degree of outlierness based on the local point density. Each point of the dataset 

(left plot) is associated with one LOF score (right graph). Adapted from Breunig et al., 2000. 
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6.3 Software development 

6.3.1 Java programming 

6.3.1.1 Java language 

Java is an object-oriented programming language developed by Sun MicroSystems, a filial of Oracle 

Corporation. It is widely used in mobile applications, games, web-based content and enterprise 

software. Java applications are semi-compiled to bytecode that is run by an interpreter program 

generally called ‘JAVA Virtual Machine’ (JVM) for their execution. This characteristic allows a system-

independent run of JAVA programs and a faster portability to different systems, but at the expense 

of a small loss of performance (ex: C code is 1.5x faster than equivalent java code). 

6.3.1.2 Netbeans platform 

Netbeans is an open-source Integrated Development Environment (IDE). It has a built-in support for 

Java platforms, as well as for C/C++, PHP, JavaScript and Groovy. Netbeans is particularly useful for 

creating visual interfaces because it integrates a standards-based user interface with the NetBeans 

Swing GUI Builder (figure 6-9).  

 

Figure 6-9. Screenshot of the Swing GUI Builder. The builder facilitates the addition of 

new components in the interface (middle panel) by a direct drag-and-drop of these elements 

from a palette (right panel). 
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This builder facilitates and accelerates the creation of user-friendly graphical interfaces. Most of the 

work presented in this thesis was developed in the Netbeans environment. 

 

6.3.1.3 Java Libraries 

JAVA programs developed during this thesis include several open-source libraries. The following table 

lists these libraries. 

Library 
Ortho-
Inspector 

Evolucode Usage Reference 

GradientPainter  yes 
Colour gradient scaling for 
EvoluCode biological 
parameters 

users.erols.com/ziring
/java-samp-jgd.html 

Jacksum yes  
Checksum transformation of 
sequences for faster access 

sourceforge.net/proje
cts/jacksum/ 

Jdom yes yes 
Reader/writer for XML 
format 

www.jdom.org 

Jung yes  
Graphical and mathematical 
library for graph analysis and 
visualisation 

jung.sourceforge.net 

mysql-connector yes yes 
MySQL database 
connection driver 

www.mysql.com/prod
ucts/connector 

OpenCSV yes  
Reader/writer 
for CSV format 

opencsv.sourceforge.n
et 

OrthoXML yes  
Reader/writer 
for XML file format based 
on OrthoXML ontology 

(Schmitt et al., 2011) 
orthoxml.org 

postgresql-jdbc yes yes 
PostgreSQL database 
connection driver 

jdbc.postgresql.org 

prefuse yes  
Dynamic graph display and 
visualisation tools 

prefuse.org 

rJava  yes 
Interface between Java 
and R processes 

www.rforge.net/rJava 

venneuler yes  
Venn and Euler diagram 
calculation and display 

(Wilkinson, 2012a) 

Table 6-1. Java libraries used in software development. 

 

6.3.2 R programming 

6.3.2.1 R language 

R is a language and environment for statistical computing and graphics (www.r-project.org/). A 

compiled installation of R is maintained worldwide by a huge contributor community and provides a 

wide variety of statistical and graphical techniques. R is particularly useful for rapidly producing 

publication-quality plots, including mathematical symbols and formulae where needed. Its native C 

sources allow fast computations and regular updates with new statistical packages produced by 

users.  



Chapter 6. Materials and methods 

 

 
89 

6.3.2.2 R librairies 

The creation and exploitation of Evolucodes use R scripts that incorporate several libraries. The 

following table lists these libraries: 

Table 6-2. R libraries used in software development. 

 

6.3.3 Web development 

6.3.3.1 HTML / PHP / CSS 

HTML (HyperText Markup Language) is a standard and the main markup language for displaying web 

pages and other information that can be displayed in a web browser. The main purpose of a web 

browser is to read HTML documents to transform them into visible web pages. CSS (Cascading Style 

Sheets) is a standard for defining the appearance and layout of text and other material in a web 

page. The W3C (World Wide Web Consortium) maintains both the HTML and the CSS standards. 

PHP (recursive acronym for PHP: Hypertext Preprocessor) is a widely-used open source general-

purpose scripting language that is especially suitable for web development and can be embedded 

into HTML pages. In contrast to other web-related language such as javascript or java, PHP is 

executed on the server side and the results of its execution are sent back to the client, saving 

computational operations for the users. The combination of HTML, CSS and PHP code is the 

prominent state of the art for web development. Both OrthoInspector and EvoluCodes websites are 

coded with this combination. 

6.3.3.2 Javascript, JQuery and Ajax 

JavaScript is a multi-paradigm scripting language, supporting object-oriented, imperative and 

functional programming styles. JavaScript is mainly used on the client-side for web communication, 

allowing programmatic access to computational objects within the host environment. Ajax 

(Asynchronous JavaScript and XML) is a group of web development techniques used on the client-

side to create asynchronous web applications. It allows to send and retrieve data in an asynchronous 

manner without interfering with the display and operations of the current web page. 

jQuery is a cross-browser open-source JavaScript library. It is designed to facilitate HTML document 

navigation, create animations or handle events and develop Ajax applications. It is generally used to 

create dynamic content in web pages, such as multiple process searches in a database with a roller 

animation that runs until the data fill the current web page, or the query propositions that appear 

Library Usage Reference 

FactoMineR 
Multivariate analysis to decipher most 
informational parameters in barcodes 

(Le et al., 2008) 

factominer.free.fr 

rLOF 
Density-based estimation of outlierness 
degree for Evolucodes (scoring) 

(Breunig et al., 2000) 

cran.r-project.org/web/ 

packages/Rlof 
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when typing text in a textfield. The OrthoInspector and EvoluHHupro projects use these technologies 

for efficient website navigation and to limit long database searches. 

 

6.4 Analysis protocols 
 

6.4.1 Construction of the BLAST all-vs-all 

 

A BLAST all-vs-all is the complete set of BLAST searches corresponding to a set of proteomes. In the 

context of the OrthoInspector orthology predictions, we first constructed a database containing all 

proteomes for the studied organisms. Prior to the BLAST all-vs-all construction, redundant sequences 

were removed. Each sequence was then compared to all others from the same organism using 

BLAST. For sequences sharing more than 99% identity, manually-annotated entries from Swissprot 

were preferred over TrEMBL and RefseqP entries, otherwise the longest sequence was retained. The 

new NCBI-Blast+ package (Camacho et al., 2009) was used to perform BLAST all-versus-all searches 

between the proteomes with an E-value cutoff of 1e-9. For the first version of OrthoInspector, the 

searches were executed on the Décrypthon grid resources (Bard et al., 2010). 

 

6.4.2 Local genome neighbourhood conservation for EvoluCodes 

 

The chromosomal localization of all genes coding for the protein sequences was obtained from 

Ensembl. Locally developed software was used to identify conserved local synteny between the 

human genome and each of the 16 other vertebrate genomes. To do this, the chromosomes in each 

genome are represented as a linear sequence of genes. For each human reference sequence, the 

local syntenic homolog HREF was defined at position i on the human genome and its upstream and 

downstream neighbours (HREF-1and HREF+1 respectively) were identified. For each of the 16 

vertebrate genomes, the sequences with the highest similarity to HREF-1 and HREF+1 were selected 

from the MSA, and denoted Vn_Sim-1 and Vn_Sim+1 respectively, where Vn refers to one of the 16 

vertebrate genomes. A local synteny homolog, exists for HREF and genome Vn if: 

 homologs were found in Vn for HREF-1 and HREF+1, 

 the separation between the highest similarity homologs, denoted Vn_Sim-1 and Vn_Sim+1, 

on the genome was less than 5 genes, 

 a homolog of HREF was found on the genome between Vn_Sim-1 and Vn_Sim+1. 

The homolog of HREF localized between Vn_Sim-1 and Vn_Sim+1 with the highest similarity to the 

human reference sequence was then defined as the syntenic homolog. Genes with ambiguous 

genomic locations, such as scaffolds etc, were discarded since the synteny relationship could not be 

reliably established. In addition, local or tandem duplications were excluded since the genome 

contexts of the two gene copies were similar. 
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7 ORTHOINSPECTOR: COMPREHENSIVE ANALYSIS OF ORTHOLOGY 

RELATIONS 
 

7.1 Introduction 
 

In the systems biology era, the gene continues to play a central role in large-scale biological studies. 

This is at least partly due to the fact that, with the ever-increasing performance of sequencing 

techniques, the gene is now a cheap entity for multiple species comparisons. Genome sequencing 

has reached new scales and is providing unprecedented opportunities to compare multiple genomes 

from the same species (intra-population variation) or to perform phylogenetic studies between a 

rapidly growing number of phyla. In particular, the gene is essential for the exploration of new 

genomes and their structural and functional annotation.  

In this context, homology-based functional inference systems are the most widely used approaches 

for genome annotation. In particular, the orthology relation represents the most reliable 

phylogenetic relation for functional annotation. Indeed, orthologous genes are generally assumed to 

retain similar functions, while paralogous genes are free to evolve differently. Nevertheless, high-

quality automated inference of orthologs remains a challenge, because numerous genetic events can 

produce a complex gene evolutionary history (gene loss, gene fusion, different evolutionary rates…). 

Moreover, coping with the constant arrival of new genomes on a daily basis requires tremendous 

computational power, especially in the case of classical phylogenetic inference methods. 

Consequently, heuristic algorithms such as graph-based methods were developed as an alternative, 

less computationally intensive approach (for a complete review of orthology inference approaches 

see chapter III). Unfortunately, heuristic methods are used at the expense of resolution and have a 

limited sensitivity in the analysis of large gene families and distant species. Another issue is the lack 

of tools for comprehensive analysis and visualization of orthology predictions. Phylogenetic methods 

produce individual phylogenetic trees for each protein family, while graph-based methods generally 

produce flat files containing orthologous relations. Visualisation thus becomes a limiting factor for 

meaningful biological analyses, as more data require more summarization and better representation 

in order to highlight interesting evolutionary scenarios. 

To address these problems, we developed OrthoInspector, a complete software suite for orthology 

inference and for comprehensive analysis and visualisation of the resulting data. OrthoInspector is a 

graph-based method based on a new algorithm which is focused on improving prediction sensitivity. 

It includes a graphical interface providing an intuitive user interface and several comparative 

genomics tools. The goal of OrthoInspector is to offer a fast and accurate solution for gene family 

studies or inter-species gene set analysis. 
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7.2 Design of OrthoInspector 
 

7.2.1 Inparalogy as a basis to detect orthology 
 

Numerous heuristic methods, generally known as graph-based methods, have been developed (see 

chapter III). For example, Inparanoid and OrthoMCL are well established orthology inference 

programs based on pairwise organism comparison and best-hit graph clustering respectively. In both 

algorithms, the orthology search space is based on the BLAST Reciprocal Best Hits (RBH) existing 

between genomes. Although RBH guarantees a high specificity, it is also too stringent when co-

ortholog genes exist in large protein families. This is particularly true when comparing 

phylogenetically distant species in which multiple duplication events occurred. For this reason, we 

decided to consider the in-paralogy relation as the basal homologous relation for detecting orthology 

(rather than the RBH). The OrthoInspector approach is similar to Inparanoid in that it performs 

pairwise organism comparison. However, the search for inparalog genes (first step) in each species is 

done prior to the pairwise organism comparison (second step). Thus, inparalogs are clustered into 

groups, which are then compared based on the best hits linking them, assigning 1-to-1, 1-to-many or 

many-to-many relations orthologous relations. The third step uses a decision tree to exclude 

inconsistent relations. A benchmark study using more than 10 large protein families (e.g. CMGC and 

TKL kinase families) demonstrated that the OrthoInspector algorithm achieved its goal with a 

significant gain in sensitivity compared to Inparanoid and OrthoMCL, and a performance close to the 

phylogeny-based method used in Ensembl Compara (see publication n°1). 

The OrthoInspector algorithm is implemented as a Java application and can be accessed via a 

command-line or a graphical interface. Both of these interfaces allow orthology inference, the 

installation of an orthology database and querying of the database via textual searches or BLAST 

sequence searches. The graphical interface is further complemented by novel representations that 

were developed for a comprehensive analysis of the predicted relations. OrthoInspector includes a 

number of tools for complex orthology queries, data summarization and data visualization. Two of 

these tools were described in the publication of the OrthoInspector algorithm (phylogenetic pattern 

queries and presence/absence diagrams). Other tools have been developed more recently,  

illustrating the fact that OrthoInspector, initially developed in 2009, is constantly maintained and 

updated with the integration of new concepts and software libraries. 

 

7.2.2 Facilitating data extraction 
 

Data extraction can be a difficult task when dealing with genome-scale datasets. For the particular 

case of orthologous genes, the user may want to focus on the phylogenetic patterns of a subset of 

genes or gene families related to a specific biological function. In OrthoInspector, high-throughput 

queries can be constructed in a dedicated menu using presence/absence criteria. For example, one 

can retrieve all genes of an organism A, that are shared by species B and C, but absent in species D 

and E. Using such combinations allows to retrieve genes corresponding to a specific phylogenetic 

pattern. Moreover, the user can choose which kind of orthology relation (1-to-1, 1-to-many or many-

to-many) corresponding to the pattern should be retrieved. Selected data can be later exported in 

CSV, FASTA, XML (an OrthoInspector specific XML format). More recently, the OrthoXML 
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specification has been integrated in OrthoInspector with the help of the java OrthoXML library 

(Schmitt et al., 2011). Orthology predictions can be saved in XML files constructed with the ontology 

rules in most OrthoInspector tools. For more details of the OrthoXML format, see paragraph 3.4.3. 

 

7.2.3 Automated processes for data visualization 
 

The phylogenetic pattern queries in OrthoInspector are supported by several visualization tools 

facilitating human exploration of the data. The phylogenetic distribution of a gene family is a 

powerful representation for summarizing the duplication and loss events that occurred during the 

family’s evolutionary history. OrthoInspector currently includes three visualization tools allowing a 

comprehensive analysis of these relations.  

The first tool is designed to elucidate the potential sub-families that compose a larger gene family. In 

order to determine orthologous relations based on BLAST hits, one must choose a BLAST  score or E-

value threshold to limit the sequence search space for homologs. However, it is impossible to choose 

a threshold that fits all gene families, as some families are strongly conserved in many phyla and can 

be delimited by a stringent threshold while other gene families evolved at higher rates and require a 

more tolerant threshold.  

 

Figure 7-1. A BLAST threshold analysis in the OrthoInspector interface. The BLAST 

score or E-value threshold is modified on the fly allowing a human visualization of the 

sequence similarity levels that separate different phyla in a given gene family. In this 

example, the score threshold is increased.  

Increasing BLAST
score (or E-value) 

threshold

S > 68

S > 374

S > 956

fungi

tetrapoda teleostei

other bilateria

other eukaryotic
groups

viridiplantae
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To analyse this phenomenon and to better delimit gene sub-families, we created a graph 

representation of BLAST best hits linking the genes of a protein family. This representation is dynamic 

and allows to modify the BLAST score and E-value thresholds on the fly. As shown in figure 7-1, it is 

particularly useful for the identification of the threshold separating large phylum (plants, fungi, 

protists…) for a given gene family. This example corresponds to the BLAST hits of the myotubularin-

related protein family retrieved using the human myotubularin MTMR1_HUMAN as a query. With a 

small threshold score (S>68), myotubularins in all phyla are linked by BLAST hits. Increasing this 

threshold (S>374) separates viridiplantae, fungi and bilateria genes. Increasing this threshold again 

(S>956), links only fish and other vertebrate myotubularins and highlights two inparalogs in Danio 

rerio that have the highest sequence similarity between animals and fishes. A similar delimitation 

based Blast E-value can be performed. 

 

Figure 7-2. An extract from the phylogenetic distribution diagram corresponding 

to MTMR1_HUMAN. Species are shown in rows and gene family members are in columns. 

Fusion of a row indicates a single gene co-ortholog for all inparalogs of the query. Several 

gene IDs in a single box indicate a lineage independent duplication.  



Chapter 7. OrthoInspector: comprehensive analysis of orthology relations 

 

 
95 

A second visualization tool for gene families is the phylogenetic pattern diagram tool. OrthoInspector 

can automatically generate such diagrams by using a single gene query and expanding the ortholog 

search to all related inparalog groups in the compared species. The example in figure 7-2 shows the 

phylogenetic distribution diagram constructed from the MTMR1_HUMAN query. All 8 human 

myotubularins are inparalogs compared to the unique myotubularin of fungi and protists. With the 

help of such relations, the diagram is automatically expanded to the whole myotubularin family (8 in 

humans, 3 in fishes, 1 in fungi and protists, etc.). The generated diagram identifies, for example, a 

myotubularin loss in rodents, several duplications prior to the metazoan appearance and an 

independent duplication in the Arabidopsis thaliana lineage. All these events were manually 

validated in a previous publication deciphering this family (Lecompte et al., 2008). 

 

 

Figure 7-3. An example of a Venn diagram calculated by OrthoInspector. To produce this 

diagram, we calculated: all possible intersections between the three fungi (L. Bicolor, N. Crassa 

and M. brevicollis), all possible intersections between the three vertebrates (H. sapiens, E. 

caballus and G. gallus) and the intersection between H. sapiens and L. bicolor.  

 

Finally, a tool is provided for visualization of phylogenetic patterns, namely Euler/Venn diagrams, one 

of the most common representations used to visualize the genes shared by different species. This 

tool extends the visualization of phylogenetic patterns to the organism level. Venn diagrams are 

specialized Euler diagrams in which, for n components, all 2n hypothetically possible zones 

corresponding to the various combinations are represented. Euler diagrams do not represent all 

intersections, but only the possible zones in a given context. OrthoInspector incorporates the 

VennEuler library (Wilkinson, 2012b) to calculate Euler and Venn diagrams. This library allows to 

choose which intersections should be represented in the diagram. Consequently, we can represent 

gene intersections between multiple species corresponding to a particular biological message. Figure 
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7-3 illustrates this capacity and demonstrates the fact that the fungi L. bicolor shares as many genes 

with humans as it does with other fungi. In contrast, vertebrates share the majority of their genes. 

This diagram highlights how different the evolutionary distances are between fungi and between 

mammals. The Venn/Euler diagram calculations are supported by a statistical framework that 

provides the user with two quality scores estimating the fitness of the data to the proposed 

representation. Indeed, the fitness may not be complete, since some intersection combinations 

cannot be completely projected in a 2D plane when comparing a large number of species. A mouse 

click on any intersection allows to retrieve all orthologs of the corresponding phylogenetic pattern. 

 

7.3 OrthoInspector database 
 

Following the publication of the OrthoInspector software, we created an OrthoInspector database 

supported by a website. This work was partially performed by a master student, Marc Bigler who 

contributed especially to the jQuery and Ajax development. The website allows the user to search for 

orthology relations by textual or BLAST searches.  All data and results can be downloaded by users.  

 

7.3.1 Current database content 
 

The first version of the OrthoInspector database (current online version) includes 59 eukaryotic 

species from the main eukaryotic phyla in Protists, Fungi, Plants and Animals. This represents 

940,855 protein sequences. We generated 2,073,328 validated inparalog groups ranging from 1 

to 30 proteins. The pairwise comparison of inparalog groups leads to the determination of 

8,649,287 1-to-1 relationships, 2,648,403 1-to-many relationships and 469,810 many-to-many 

relationships. The repartition of these relationships is summarized in figure 7-4.  
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Figure 7-4. The 59 eukaryotic species in the OrthoInspector database. It contains 6 

viridiplantae (green), 9 fungi (yellow), 1 choanoflagellida (purple), 23 metazoa (blue) and 10 

species belonging to other eukaryotic groups (grey). The normalized proportion of one-to-

one (red), one-to-many (green) and many-to-many (blue) relations is represented by bar-

charts. The tree is based on the NCBI taxonomy classification and was generated with the 

iTol tool (Letunic and Bork, 2007). 

 

7.3.2 Extending the database to all available eukaryote genomes 

 

A second version of the OrthoInspector database is currently under construction. This update 

extends each phylum with all the current eukaryotic genomes that have been published, are 

available in public sequence databases (Uniprot, RefSeq, Ensembl) and have a genome coverage 

more than 7x (figure 7-5). In particular, we include species that are at the frontier between the main 

reigns of the tree of life and species that are representative of a recently sequenced phylum. For 

example, Capsaspora owczarzaki is classified in an uncertain phylum between metazoan and fungi. 

Batrachochytrium dendrobatidis, a genome sequenced recently, is the unique representative of the 

poorly explored Chytridiomycota fungi phylum. Daphnia pulex and Ixodes scapularis are respectively 

the first crustacean and arachnidan genomes. The three first steps needed for the database update 

have been completed: species selection, BLAST all-against-all calculation and orthology computation. 

The remaining steps are the migration of the data to the online database and an update to the 

website and the software interface. This latter step requires the development of an interactive 
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species tree interface to facilitate phylum/species selection for a particular analysis. Indeed, dealing 

with 270 species from very heterogeneous phyla can be difficult for a comprehensive analysis. This 

work is currently underway, with the help of two master students, Schneider Raphaël and Mörel Can. 

 

Figure 7-5. The 270 eukaryotic species in the second version of the OrthoInspector 

database. It contains 19 viridiplantae (green), 118 fungi (yellow), 79 metazoan (blue) and 51 

species belonging to other eukaryotic groups (grey). The tree is based on the NCBI taxonomy 

classification and was generated with the iTol tool (Letunic and Bork, 2007). 
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7.4 OrthoInspector applications 
 

7.4.1 A comparative survey of the TFIIH multiprotein complex 

 

TFIIH is a multiprotein complex composed of two subcomplexes, the CAK and the core-TFIIH. While 

the CAK, composed of 3 subunits, is mainly involved in the cell cycle and transcriptional regulation, 

the core, containing 7 subunits, plays a crucial role in both transcription and DNA repair (Zurita and 

Merino, 2003). An expert phylogenetic distribution of the core-TFIIH in 63 eukaryotic organisms has 

been performed recently in the laboratory. This analysis revealed that some non-catalytic core-TFIIH 

subunits were absent in some organisms. To understand the functional significance of these 

subunits, OrthoInspector was used in a subtractive analysis of the corresponding proteomes. The 

basic assumption of the subtractive approach is that proteins that function together in a pathway or 

structural complex tend to co-evolve, i.e. to be present in the same set of species (Pellegrini et al., 

1999). Genes sharing a pattern of presence/absence similar to the respective subunits were 

identified and complemented by a functional analysis. This in silico result suggested for the first time 

a functional link between the p34 subunit of TFIIH and the U1snRNA, but also led to the hypothesis 

that p34 might be involved either in the earlier first step of mRNA splicing or in the U1 snRNA 

enhancement of transcription (Alexander et al., 2010). An article describing these results have been 

submitted (Bedez F, Linard B, Brochet X, Ripp R, Moras D, Lecompte O, Poch O. Functional insights 

into the core-TFIIH from a comparative survey. Genomics, 2012). 

 

7.4.2 Knowledge extraction for macromolecular complexes  

 

One of the aims of the Puzzle-fit project (funded by the French National Research Agency) is to 

implement a computational protocol for the integration of diverse data for the structure 

determination of macromolecular assemblies (figure 7-6). In this context, a pilot study involved the 

integration of diverse structural information for the elucidation of the molecular architecture of the 

general transcription factor TFIID. This transcriptional factor has been implicated in several human 

diseases by virtue of its binding properties with transcriptional activators or repressors or by the 

histone acetyl transferase (HAT) activity of one of its subunits (Cler et al., 2009). One of the key 

components of the computational model was the exploitation of the evolutionary context of the 

TFIID subunits to predict protein-protein interactions at different levels of resolution: protein, 

domain and residue. Different approaches were used, such as the construction of MACS or the 

construction of high-quality phylogenetic profiles. OrthoInspector was therefore an important 

component of the Puzzle-fit pipeline, handling the generation of phylogenetic profiles. The profiles 

were then used during the knowledge extraction process for the macromolecular complex 

reconstruction. 
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Figure 7-6. Overview of the Puzzle-Fit project pipeline. An automatic process of 

knowledge extraction compiles 3D models, phylogenetic and interactome data to predict 

macromolecular complexes. 

 

7.4.3 OrthoInspector and Quest for Orthologs Consortium 

 

In 2009, authors of the most perennial orthology databases decided to organize a ‘Quest for 

Orthologs’ meeting to discuss and address major limitations and the perspectives for orthology 

inference (Gabaldon et al., 2009). The LBGI participated in this meeting and joined the consortium 

(see publication n°5). Subsequently, we implemented several recommendations of this newly formed 

community. We added the OrthoXML format in OrthoInspector (see sections 3.4.3 & 7.2.3). We also 

tested OrthoInspector with the ‘reference proteome’ benchmark provided by Uniprot and made our 

benchmark predictions publicly available in CSV and OrthoXML format on 

lbgi.igbmc.fr/orthoinspector/ (section reference proteomes). Calculations for a second and updated 

version of the benchmark are ongoing. 

Following the creation of the first ‘reference proteomes’ benchmark, Dr. Christophe Dessimoz 

developed an online benchmarking service allowing the comparison of orthology predictions from 

several methods with multiple criteria (http://linneus54.inf.ethz.ch:8080/cgi-bin/gateway.pl). We 

submitted our predictions to the service and obtained the results shown in figures 7-7 and 7-8. 

  

Filtering for reliable
interactions

Interactions

Orthoinspector
Multiple 

alignment

3D 
Structures

3D 
Structures

3D 
Structures

MACSIMS
Annotated multiple 

alignment

Disordered
region

Phylogenetic

Characterization of subunits

Subunit sequences

InteractionsModelling

PuzzleFit-DB



Chapter 7. OrthoInspector: comprehensive analysis of orthology relations 

 

 
101 

 

Figure 7-7. Agreement with Reference Phylogeny for 6 protein families. Orthology 

predictions from several methods are compared to reference phylogenetic trees. The 

agreement between phylogeny and orthologous pairs from 8 methods is resumed by true 

positive (sensitivity) and false positive (specificity) rates. 

 

Figure 7-8. Agreement with semi-automated Reference Phylogeny (TreeFam A). 

Orthology predictions from several methods are compared to Treefam A trees. The 

agreement between phylogeny and orthologous pairs coming from 8 methods is resumed by 

true positive (sensitivity) and false positive (specificity) rates.   
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In the dataset corresponding to reference phylogenies (figure 7-7), OrthoInspector has a similar false 

positive rate interval compared to other methods (0%>rate>17%). However, OrthoInspector 

performs better than all other methods in terms of the true positive rate (73%), followed by 

Inparanoid (68%) and OMA pairs (63%). Concerning the agreement with the semi-automated 

phylogeny dataset (figure 7-8), OrthoInspector predictions correspond to a reasonable false positive 

rate (<8%). Other methods show similar false positive rates between 2% and 8%. In this second 

dataset, the gain of sensitivity provided by the OrthoInspector approach is again demonstrated, since 

our method again achieves the highest true positive rate. Taking into account these results and our 

published test (publication n°1), we conclude that OrthoInspector has successfully improved 

orthology inference sensitivity, at the same time retaining a simple and fast graph-based algorithm. 

 

7.5 Conclusions 
 

In the current context of fast and inexpensive genome sequencing, we need powerful algorithms to 

infer orthology relations on a high-throughput scale and new tools to analyze and visual such 

relations at the genome-scale. We designed OrthoInspector for this purpose. OrthoInspector 

predictions perform well compared to other orthology inference methods, finding new co-ortholog 

relations particularly for large protein families and large evolutionary scales. In contrast to many 

software systems, OrthoInspector does not only provide flat files with orthology relations. It is a 

complete software suite and includes several tools to extract, summarize and visualize orthology 

data from the gene family scale to the multi-genome scale. Such tools are urgently needed in a 

period when extracting and visualizing data can be extremely time consuming. Reducing this time will 

facilitate the discovery of more biological knowledge at larger evolutionary scales. 

 

 

7.6 Publication 1. OrthoInspector: comprehensive orthology analysis 

and visual exploration.  
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OrthoInspector: comprehensive orthology analysis
and visual exploration
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Abstract

Background: The accurate determination of orthology and inparalogy relationships is essential for comparative
sequence analysis, functional gene annotation and evolutionary studies. Various methods have been developed
based on either simple blast all-versus-all pairwise comparisons and/or time-consuming phylogenetic tree analyses.

Results: We have developed OrthoInspector, a new software system incorporating an original algorithm for the
rapid detection of orthology and inparalogy relations between different species. In comparisons with existing
methods, OrthoInspector improves detection sensitivity, with a minimal loss of specificity. In addition, several
visualization tools have been developed to facilitate in-depth studies based on these predictions. The software has
been used to study the orthology/in-paralogy relationships for a large set of 940,855 protein sequences from 59
different eukaryotic species.

Conclusion: OrthoInspector is a new software system for orthology/paralogy analysis. It is made available as an
independent software suite that can be downloaded and installed for local use. Command line querying facilitates
the integration of the software in high throughput processing pipelines and a graphical interface provides easy,
intuitive access to results for the non-expert.

Background
New sequencing technologies are dramatically increasing
the number of predicted protein sequences available for
high throughput comparative analyses, functional anno-
tation or evolutionary studies. All these studies involve a
transfer of information between organisms and homol-
ogy is one of the most popular concepts used to address
this problem. In particular, the studies rely on an accu-
rate determination of orthology and paralogy relation-
ships. According to the seminal definition of Fitch [1],
orthologs are homologous genes that diverged from a
single ancestral gene in their most recent common
ancestor via a speciation event, whereas paralogs are
homologs resulting from gene duplications. The distinc-
tion between orthologs and paralogs refers exclusively to
the evolutionary history of genes and does not have
functional implications stricto sensu [2]. However, from
an operational point of view, it is widely accepted that

two orthologs generally share the same function [3]. In
contrast, paralogs are generally considered more diver-
gent as new functions can emerge as the result of muta-
tions or domain recombinations. Nevertheless, the
multiplication of available genomes has underlined the
necessity to distinguish two subtypes of paralogs: inpara-
logs and outparalogs [4]. Inparalogs are produced by
duplication(s) subsequent to a given speciation event,
while outparalogs result from an ancestral duplication
(relative to the given speciation event). In other words,
in-paralogy and out-paralogy are concepts relative to the
species under comparison. The distinction is crucial in
evolutionary studies since sets of inparalogs derive from
orthologs by lineage-specific expansions and thus can be
considered to be co-orthologs, while outparalogs do not
have orthologous relationships at all.
Today, the most commonly used approach for the

prediction of homology relationships between genes and
proteins (and thus orthology and paralogy relationships)
involves some kind of similarity measure, which can be
linked to different types of data, such as sequences,
domains or even 3 D structures. In principle, phylogenetic
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tree-based inference represents the most accurate way to
determine orthology and paralogy [3-5]. However, its use
at the complete proteome scale is computationally expen-
sive and, given the rate at which new genomes are now
being sequenced, cannot be considered as a viable option
for most laboratories at the present time. As a conse-
quence, alternative algorithms based on graphs or on a
combination of tree and graph representations [6], have
been developed to infer homology relationships. Most of
them involve protein Blast all-versus-all searches and use
pairwise distance calculations [7], 3-way best-hits [8-10] or
clustering-based approaches [11-13]. In general, compara-
tive studies [14,15] have shown that phylogenetic recon-
structions have higher sensitivity and lower specificity
than graph-based methods, particularly for distant organ-
isms. Nevertheless, these methods provide good results for
both sensitivity and specificity with some datasets [16,17].
However, each of the methods has advantages and disad-
vantages, and the most appropriate method will depend
on the user’s purpose [6,18]. Apart from the detection
accuracy, other factors need to be taken into account, for
example the availability and ease-of-use of the programs.
Most of the methods commonly used today are made
available as public software binaries and data browsing for
the non-specialist is limited to web interfaces that allow
remote querying of pre-calculated databases. For the more
computer literate, large-scale queries can be performed
and results can be retrieved in the form of flat files,
although this requires a certain level of programming
expertise to parse the data. To address this problem, some
efforts have been made to facilitate the querying of data
through presence/absence constraints and to provide glo-
bal views of results via phylum-related tables [10]. Never-
theless, the tools are still available as web-based interfaces
and cannot be retrieved locally to support or maintain in-
house databases.
Here we describe OrthoInspector, a new software

system incorporating an original algorithm for the rapid
detection of orthology and in-paralogy relationships
between different species. In comparisons with existing
methods, it improves detection sensitivity, with a mini-
mal loss of specificity. Moreover, OrthoInspector has a
modular design and is provided as an independent soft-
ware suite that can be downloaded and installed for
local use. Command line querying facilities have been
developed to allow fast information selection for high
throughput studies and to facilitate the integration of
the software in other packages or processing pipelines.
An enhanced graphical interface is designed to automate
the complete software installation and data generation
process for non-specialists. Finally, different visualization
tools have been designed specifically to allow the in-
depth exploration of the complex inter-species orthol-
ogy/in-paralogy relationships detected.

Implementation
The OrthoInspector suite is coded in Java 1.6.x, which
means that it can be run on all Java-supporting platforms
(UNIX, Windows, Mac....). Several java packages are incor-
porated: (i) the Jacksum package is used to encoded
sequence data, (ii) the JDOM and opencsv packages are
used to format sequence and orthology/paralogy data, (iii)
the Jung and Prefuse packages are used to support the
visualization tools. OrthoInspector also requires a back-
ground database to handle the huge amount of data
produced by a Blast all-versus-all analysis. Support for the
main “relational database” compatible engines (MySQL,
PostgresSQL, Oracle...) is provided via definition of the
corresponding java drivers in a configuration file. The only
constraint is the predefined database schema that is
needed by OrthoInspector. The software suite provides
two different user interfaces, a command-line client and a
graphical interface that can be used to perform the three
steps involved in the complete analysis process (Figure 1):

Figure 1 OrthoInspector Suite overview. OrthoInspector provides
two user interfaces: a command-line client and a graphical
interface. Installation operations include the creation of the
database, the calculation of ortholog/inparalog groups and an
optional creation of pre-calculated data. Queries include
orthologous relationship searches, with or without advanced criteria:
textual searches access results trough sequence accession numbers
or sequence descriptions, batch queries allow submitting of
multiple sequences in FASTA format and constraints of presence/
absence of orthologs in specific organisms can be considered.
Visualization tools provide different views for comparative studies.

Linard et al. BMC Bioinformatics 2011, 12:11
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1. Command-line and graphical versions can be used
to perform Blast all-versus-all sequence searches and
to generate a database containing the search results.
Currently, the package is designed to allow the use
of both raw and tabbed outputs produced by the
classical NCBI Blast package and the recent NCBI
blast+ package [19]. Other Blast data formats can be
easily added with the help of the Blast parser inter-
face included in the package. OrthoInspector pro-
poses options (i) to directly fill the database with the
produced data or (ii) to create intermediate data
dumps allowing a considerable speed-up. Sql scripts
to use these dumps in mySQL and postgresSQL
engines are provided in the OrthoInspector website.
2. After database installation, the command-line ver-
sion allows fast information retrieval for high
throughput studies and the use of the software in
other packages. Textual queries (accession numbers,
description...), batch queries (Fasta sequences in a
file) or queries defining presence/absence of an
ortholog in specific organisms can be performed.
Both command-line and graphical versions allow
the user to export data in FASTA, CSV and XML
formats. New output formats can be easily coded
with the help of the output interface provided.
3. The graphical version facilitates data querying for
non-specialists. In addition, it provides a set of use-
ful tools to retrieve clusters of orthologs covering
multiple species, to produce comparative genomics
results and to visualize the data.

The whole software suite is available at http://lbgi.
igbmc.fr/orthoinspector. Furthermore this website con-
tains tutorials and database dumps for test purposes.

Methods
OrthoInspector algorithm
The OrthoInspector algorithm is divided into three
main steps. First, the results of a Blast all-versus-all
(proteomes are blasted against each other) is provided
by the user and is parsed to find all the Blast best hits
for each protein and to create the groups of inparalogs.
Second, the inparalog groups for each organism are
compared in a pairwise fashion to define potential
orthologs and/or in-paralogs. Third, best hits that con-
tradict the potential orthology between entities are
detected.

Inparalog group formation and validation
The first step involves the parsing of the Blast all-ver-
sus-all results to find all best hits for each protein and
to create the groups of inparalogs, i.e. paralogs produced
by duplications subsequent to a given speciation event
(Figure 2). Inparalog groups are organism-dependant,

which means that a given protein (pn) can be in differ-
ent putative groups of inparalogs and we will denote
these groups as organism-dependant lists: {p1, p2, ...,
pn}/organism. Given a Blast search result for a protein of
organism A, all proteins of A with an E-value inferior to
the E-value of the best hit in the organism B will define
a potential group of inparalogs in A with respect to the
internal node where species A and B coalesce (we will
refer to a group of inparalogs in A “with respect to B”).
The putative list of inparalogs is then validated if the
same minimal hypothesis of inparalogy is verified in the
Blast searches for each protein in the list. As an exam-
ple, we can consider a group of three putative inparalogs
in organism A with respect to B (denoted {A1, A2, A3}/B)
that has been defined by the Blast output of the protein
A1. The entire group will be validated if the Blast out-
puts of A2 and A3 result in the same group. Thus, vali-
dation requires that the groups {A2, A1, A3}/B or {A2,
A3, A1}/B are defined by the Blast output of A2 and
that the groups {A3, A1, A2}/B or {A3, A2, A1}/B are
defined by the Blast output of A3. If the above condi-
tion is not verified, the existence of two-member groups
is checked. In the example, if the Blast output of A1
defines the group {A1, A2, A3}/B but the Blast output of
A3 defines a group of two proteins {A3, A1}/B, only this
A2-deleted paralog group will be retained in the subse-
quent steps of the algorithm. Using this method, if norga
organisms are used to create the Blast all-versus-all,
each Blast search can define ngroup < = norga putative
groups of inparalogs, each one being delimited by a best
hit in another organism.

Organism A

Blast output
of the protein A1

Hit1    :   protein A1  : Organism A

Hit2    :   protein A2  : Organism A

Hit3    :   protein B1  : Organism B

Hit4    :   protein A3  : Organism A

Hit5    :   protein B2  : Organism B

Hit6    :   protein C1  : Organism C

Hit7    :   protein A4  : Organism A

Hit9    :   protein B3  : Organism B

A1

A2

A3

Figure 2 Inparalog group formation and validation. The
hypothetical Blast search output for a protein A1 of the organism A.
Two proteins of organism A are found with better scores than any
protein of organism B: the protein A1 itself and the protein A2. If
the blast output of A2 reproduces the same scenario, A1 and A2 are
considered inparalogs with respect to organism B. Similarly, A1, A2
and A3 are inparalogs with respect to organism C, if these three
proteins have a better score than any protein of organism C in the
Blast results for A1, A2 and A3.
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Pairwise comparison of inparalog groups
The second step of the OrthoInspector algorithm is the
definition of potential (co)-orthology relationships
(Figure 3). The definition is based on the detection of
best hits existing between the two types of entities deter-
mined at the previous step: single proteins (not included
in a group of inparalogs), and proteins belonging to one
or several inparalog groups. We thus have three types of
pairwise entity comparisons ({protein <-> protein},
{protein <-> inparalogs} and {inparalogs <-> inparalogs}),
corresponding to the three types of relationships shown
in Figure 3. A 1-to1 relationship is described by a best hit
between a protein of O1 and a protein of O2 complemen-
ted by a returning best hit from the protein of O2 to the
protein of O1, known as a reciprocal best hit. A 1-to-
many relationship is described by a best hit from a given
protein of O1 to any protein member of an inparalog
group of O2 complemented by a returning best hit from
any member of the inparalog group of O2 to the same
protein of O1. Finally, a many-to-many relationship is
described by two best hits between proteins of two
groups of inparalogs (a group in O1 and a group in O2).

Detection of contradicting information
The third step in the algorithm is the detection of best
hits that contradict the potential orthology relationships

defined above. In particular, given two inparalog groups
that are potentially orthologous, it is possible to find a
best hit from a protein in one of the compared groups
to another protein that does not belong to either of the
groups. In this case, it is possible that the protein does
not belong to the inparalog group. Such contradictions
are highlighted by OrthoInspector with a warning signal
in the algorithm output: a “red signal” indicates contra-
dictions involving a reciprocal best hit and an “orange
signal” indicates contradictions involving a simple best
hit. Such signals help the user to discriminate proteins
in complex inparalog groups formed by closely related
sequences or in cases where the proteome of one of the
compared organisms is incomplete and disturbs the pre-
cedent formation of validated inparalog groups.

Results
Large-scale proteome analysis
We used the OrthoInspector software to study 59
organisms with approximately complete proteomes cov-
ering the main eukaryotic phyla in Protists, Fungi, Plants
and Animals. We l incomplete and low coverage gen-
omes to avoid predictions of false gene loss and artefacts
in gene duplication inference [20]. The complete list of
the 59 studied organisms with their taxonomic identi-
fiers and the number of retained protein transcripts can
be found in additional file 1. For 22 higher eukaryotes,
protein sequence datasets from Ensembl 56 [21] were
used. To avoid multiple transcript issues, the longest
protein sequence was selected for each Ensembl-
predicted gene annotated as ‘protein-coding’. For example,
the proteomes of Homo sapiens (22384 transcripts),
Mus musculus (23117 transcripts), Xenopus tropicalis
(18023 transcripts), Ciona intestinalis (14180 tran-
scripts), Arabidopsis thaliana (31280 transcripts) or
Oryza sativa japonica (57995 transcripts) were obtained
from Ensembl. For eukaryotes not stored in Ensembl,
the NCBI RefseqP [22] and Uniprot (Swissprot
+TrEMBL) [23] databases were used. Data from both
sources were retrieved using ICARUS scripts on a local
SRS server [24] to select sequences according to their
taxonomic identifiers. To remove redundant sequences,
each sequence was compared to all others from the
same organism using Blast. For sequences sharing more
than 99% identity, manually-annotated entries from
Swissprot were preferred over TrEMBL and RefseqP
entries, otherwise the longest sequence was retained.
Proteomes built with this protocol include Plasmodium
falciparum (5234 transcripts), Trypanosoma brucei (8928
transcripts), Ostreococcus tauri (7974 transcripts), Ence-
phalitozoon cuniculi (1903 transcripts), Emericella nidu-
lans (9732 transcripts), Saccharomyces cerevisiae (6771
transcripts), Laccaria bicolor (17698 transcripts), Caenor-
habditis elegans (22614 transcripts), Ixodes scapularis

Figure 3 Comparison of inparalog groups. Blast best hits are
used to define the potential relationships existing between
inparalog groups. 1-to-1 relationships are equivalent to the classical
reciprocal best hits (RBH). 1-to-many relationships are associated
with potential duplication(s) after speciation in one of the lineages
and cannot always be detected by RBH. Many-to-many relationships
result from duplications in both lineages after speciation and again,
cannot always be detected by RBH.
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(21009 transcripts) and Drosophila melanogaster (22430
transcripts). Regardless of the source sequence database,
sequences with less than 20 amino acids or more than
10000 amino acids were excluded. Finally, we obtained
a pool of 940855 protein sequences.
The new NCBI-Blast+ package was then used to per-

form Blast all-versus-all searches between the proteomes
of the 59 organisms, representing 940855 individual
Blast searches in a database of 940855 sequences.
Sequences were selected with an E-value cutoff of 1e-9.
The searches were executed on the Décrypthon grid
resources [25].
The results of the Blast all-versus-all searches, together

with the 59 proteomes were then used as input to
OrthoInspector. All steps of the algorithm, from Blast par-
sing to integration of the data in the relational database,
took about 20 hours on four 2.67 GHz Intel Xeon CPUs
with 6 Go of RAM. This timing is based on an installation
of the database using the faster “database dumps” config-
uration (see Implementation). In more detail, parsing of
the Blast results took 5h20, validation of inparalog groups
took 2h10 and generation of 1-to-1, 1-to-many and many-
many precalculated data for the 59 organisms took 12 h.
The inparalog prediction step produced 10342157 putative
inparalog groups, themselves generating 2073328 validated
groups (Figure 4). Shortest versions of this huge dataset
(> 100Go), including 7 proteomes, are available as data-
base dumps (mySQL and postgresSQL) at the OrthoIn-
spector website http://lbgi.igbmc.fr/orthoinspector.
As expected, large-scale proteomes, e.g. in plants

(green color in Figure 4), or genome-wide duplications,
e.g. in fishes (medium blue), result in an increase in the
number of predicted inparalog groups, whereas smaller
eukaryote proteomes have relatively few groups. The
number of inparalog groups is generally correlated with
the proteome size and the phylogenetic distance
between organisms, for instance, amniota (dark blue)
have a relatively stable number of inparalog groups.
Nevertheless, some exceptions can be observed. Despite
having the largest proteome in the plant phylum, Oryza
sativa has fewer groups than Vitis vinifera or Arabidop-
sis thaliana and sequences from Oryza sativa are
included in relatively few inparalog groups. Further
investigation showed that many sequences of this organ-
ism had a relatively small number of Blast hits to other
organisms compared to other plants (data not shown).
This may be partly due to some overprediction of genes
in the Oryza sativa proteome, with several protein frag-
ments or pseudogenes predicted as “protein-coding”.
Another interesting observation is that all parasitic

organisms generate a small number of inparalog groups
compared to the other members of their phylum. In
arthropods, Ixodes scapularis (deer tick) and Pediculus
humanus (body louse) have less inparalog groups than

Anopheles gambiae and Drosophilia melanogaster. In
fungi, Encephalitozoon cuniculi, Nosema ceranae and
Ustilago maydis have less inparalog groups than other
members of this phylum. Lacarria bicolor is another
fungus with few inparalogs, although this may be linked
to its ectomycorrhizal symbiotic relationship with plant
roots.
Unlike parasites or symbionts, some isolated organ-

isms have a relatively large number of inparalog groups.
For example, Strogylocentrotus purpuratus has numer-
ous inparalog groups but is currently the only echino-
dermata genome available, and it is impossible to
determine whether this is a characteristic of this
phylum. Entamoeba histolytica has a number of inparalog
groups similar to that to other organisms with the same
proteome size, but individual sequences are included in
more inparalog groups compared to other organisms.
This might be explained by the lower quality of the
proteome and/or the presence of numerous repeats,
resulting in multiple Blast hits in all studied species.
In order to identify potential orthology relationships,

all the inparalog groups were compared for each pair of
organisms. The total number of relationships detected
represents 8,649,287 1-to-1 relations, 2,648,403 1-to-
many relations and 469,810 many-to-many relations.
Figure 5 and additional files 2 and 3 show respectively
the number of 1-to-many, 1-to-1 and many-to-many
between each proteome pair after normalization. The
number of predicted relationships is largely dependent
on the composition of the set of selected organisms. As
expected, close species present a high proportion of
1-to-1 relationships within their group but few many-to
many relationships (additional files 2 and 3). This is
especially obvious for the 18 vertebrates included in our
dataset that are phylogenetically very close to each other
compared to the other studied phyla. Intergroup rela-
tionships highlight lineage-specific duplications. For
instance, the 2 whole genome duplications (WGD)
encountered by the jawed vertebrates [26] are clearly
reflected by the high number of 1-to-many relationships
from invertebrates to vertebrates (Figure 5). Similarly, 1-
to-many relationships pinpoint the additional round of
duplication encountered by the teleostei lineage within
vertebrates [27]. The numerous duplication events
reported in the land plants [28] explain the extent of 1-
to-many relationships between them and most of other
species used in our study. Additionally, the abundance
of many-to-many relationships between Physcomitrella
patens (moss) [29]and flowering plants is in agreement
with the independent events that occurred in the moss
lineage (simple duplication) and hexaploidy event in
flowering plants. Examination of specific sets of relation-
ships (data not shown) is in agreement with dedicated
studies. For instance, the functional analysis of the
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human genes exhibiting one-to-many relationships with
rodents reveal a significant enrichment in gene related
to olfaction as previously reported [30].

Example test case: myotubularin family
To demonstrate the advantages of using inparalog group
comparisons to predict orthology, we studied the myo-
tubularin family as a test case. The distribution of myo-
tubularin-related proteins is well established [31] and is
represented in Figure 6 for three species with multiple
duplication events that occurred during its evolutionary
history. OrthoInspector predictions are compared to
Inparanoid and OrthoMCL, illustrating the algorithmic
differences that lead to some false negatives for the two
latter algorithms.
Inparanoid is based on RBH and finds inparalogs hav-

ing a similarity score equal to or superior to the similar-
ity S defined by the RBH. In the fly/yeast comparison,
the three fly myotubularins are more similar to each
other than to the yeast myotubularin, thus they are con-
sidered as inparalogs. In the human/yeast comparison
case, 6 out of 8 human myotubularins have a higher

similarity score than the similarity score defined by the
yeast/human RBH, but 2 proteins have lower scores and
are thus not considered as inparalogs (false negatives).
The OrthoMCL algorithm begins with the same

steps of RBH detection and identification of sequences
within the same genome that are more similar to each
other than to any sequence from another genome.
Then, a graph is constructed, where nodes represent
proteins and edges represent the relations, and a Mar-
kov clustering is performed. In this example, three
clusters are found, with only one fly and three human
myotubularins considered to be co-orthologs of the
yeast myotubularin.
OrthoInspector does not consider RBHs as a prelimin-

ary condition to detect potential inparalogs, instead
inparalog groups are inferred directly in each organism.
For example, the three fly and eight human myotubular-
ins are identified as inparalogs with respect to yeast. In
a second stage, the pairwise comparison of inparalog
groups exploits the RBH and BH found between the
different organisms to infer many-to-one relations
including all the myotubularins.
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Comparison with existing methods: benchmark data sets
The accuracy of the OrthoInspector predictions was
compared to five existing methods, covering the main
approaches to infer orthology: namely, Inparanoid (pair-
wise distance comparisons), eggNOG (3-way best hits),
OrthoMCL and OMA (graph clustering) and Ensembl
compara (phylogenetic tree inference). Today, these
methods are widely used by the community and their
databases are cross-referenced in public databases like
Uniprot. OrthoInspector is based on a pairwise distance
based algorithm which makes it similar to the Inpara-
noid algorithm in some aspects. However, Inparanoid is
directly based on reciprocal best hits (RBH) to find
orthologs and inparalogs, as illustrated by the example
test case described above. The first step of our algorithm
identifies potential inparalog groups independently of
RBH, thus exploring a larger search space for the dis-
covery of potential orthology relations. The second step
of our algorithm then compares inparalog groups that

are not necessarily linked by a RBH between two
organisms.
In order to compare the predictions made by OrthoIn-

spector with the existing methods in a large scale study,
we used two benchmarks from the literature [32,33],
representing varied protein families (nuclear receptors,
hox families, membrane receptors...). The literature
benchmarks cover many organisms, including
H. sapiens, M. musculus, G. gallus, D. rerio, D. melano-
gaster, C. elegans and S. cerevisiae. In addition, we cre-
ated our own benchmark, performing a detailed study of
protein kinase families with complex evolutionary his-
tories that represent a significant challenge for the accu-
rate detection of orthology/paralog relationships. Protein
kinases represent an ideal test case for our purposes,
since they have been intensively studied and their family
relationships are generally known. In fact, protein
kinases have been classified into a number of groups
sharing broad functional properties, based on sequence
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similarity in their catalytic domains, the presence of
accessory domains and known modes of regulation.
Using the standard classification, available at http://
kinase.com/kinbase, and by studying the literature, we
defined a test set of well annotated protein kinase
sequences, from the CMGC group (including cyclin-
dependent kinases, mitogen-activated protein kinases,
glycogen synthase kinases and CDK-like kinases) and
from the TKL (tyrosine kinase-like) group. CMGC
kinases represent a homogeneous group, where most
proteins possess only the kinase catalytic domain. In
contrast, the TKL kinases are more divergent, often hav-
ing additional domains that regulate kinase activity, link
to other signaling modules, or localize the protein in the
cell. The CMGC and TKL groups can be further sub-
divided into several protein families. The distribution of
these families was established by a combination of pub-
lished in silico and wet-lab studies in a number of
model organisms, including D. discoideum [34], C. ele-
gans [35], S. cerevisiae [36], D. melanogaster [37],
M. musculus [38] and H. sapiens [39]. Our test set con-
sisted of 329 manually annotated sequences from these
six organisms, covering 31 CMGC sub-families and 16
TKL sub-families (additional file 4).

We then evaluated the predictions made by each of the
six methods to the known classifications defined in the
four benchmarks. The prediction accuracy was estimated
by calculating the Positive Prediction Value (PPV) as a
specificity indicator and the sensitivity (Sn) of each
method (Figure 7). The benchmark data sets allowed us
to highlight a number of advantages and disadvantages of
the different methods. For example, OMA achieved the
highest specificity, but the lowest sensitivity on average.
In contrast, eggNOG obtained the highest sensitivity,
although it should be noted that some co-ortholog
groups in eggNOG are manually curated, like the COG
database on which it is based. On average, the six meth-
ods can be classified in two groups. OrthoMCL, Ensembl
compara and eggNOG have higher sensitivity than speci-
ficity, while Inparanoid, OrthoInspector and OMA have
higher specificity than sensitivity. In the second class,
OrthoInspector demonstrated higher sensitivity than the
other two methods. In fact, OrthoInspector reached a
sensitivity level close to that of Ensembl compara (80%
and 81% respectively) and superior to OrthoMCL (78%).
Taken individually, the four benchmarks highlighted

some contrasting results. For example, OMA obtained a
sensitivity <50% for both TKL and CMGC benchmarks,

Benchmark PPV Sn mean
PPV

mean
Sn

OMA

A 0,93 0,48

0,91 0,56B 0,89 0,42
C 0,87 0,69
D 0,95 0,65
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A 0,77 0,83

0,89 0,76B 0,93 0,61
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D 0,97 0,80
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0,71 0,78B 0,86 0,71
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Figure 7 Sensitivity and specificity comparison based on 4 benchmarks. Two literature benchmarks and human CMGC and TKL kinases
were used to evaluate the prediction accuracy for OrthoInspector and five other methods. Sensitivity (Sn) and Positive Predictive Values (PPV)
were calculated for each method on each benchmark. The radar plot resumes the mean PPV (pink) and sensitivity (blue) for each method.
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compared to >60% for all other methods. This was due
to the fact that OMA failed to predict some orthology
relations existing between distant organisms (e.g. human
and C. elegans, S. cerevisiae or D. discoideum). Ensembl
compara had higher sensitivity than OrthoInspector for
both kinase benchmarks (TKL:+1%, CMGC:+6%) and
OrthoMCL had higher sensitivity for the CMGC kinases
(+2%), but not TKL kinases (-8%). In the case of the lit-
erature benchmark n°1, all methods achieved a good
sensitivity and a good specificity, which was not unex-
pected since the benchmark contains essentially human/
mouse and human/worm relations. For the literature
benchmark n°2, the results were more variable.
OrthoMCL and eggNOG had high sensitivity (> 90%),
but their specificity was surprisingly low (< 40%). In this
benchmark, some protein families (heat shock proteins,
collagens...) are totally included in a few or a single clus-
ter. This observation is particularly true in the case of
distant organism comparisons (human versus C. elegans,
S. cerevisiae...).
It is clear from these results that the different methods

tested here provide complementary approaches for
orthology inference. In the future, it should be possible
to combine the advantages of the alternative methods to
improve both sensitivity and specificity. For example,
OrthoInspector could be used as a starting tool to infer
orthology relations, since its sensitivity and specificity
are well balanced compared to most of the other meth-
ods tested here. Furthermore, the orthology inference is
less computationally intensive than Ensembl compara,
the only other method that achieved similar results. In a
subsequent refinement step, the user could then inte-
grate information about true/false positives from lower
specificity methods such as eggNOG, OrthoMCL or
Ensembl compara and lower sensitivity methods like
Inparanoid or OMA methods.

Data management and visualization
The main goal of the OrthoInspector project was to
build a complete software suite for orthology and inpar-
alogy prediction and analysis. Nevertheless, in the face
of the huge amounts of data being produced by the new
sequence technologies, it was clearly crucial to incorpo-
rate efficient data management and update procedures
in the design of the software. Thus, the complete con-
struction of a database of orthologs can be managed via
a four step user-friendly process. OrthoInspector pro-
vides administrator tools, accessible via a command-line
or a graphical interface, that take as input: (i) the results
of a Blast all-versus-all search in a specified directory,
(ii) the fasta proteomes of the organisms used in the
Blast searches together, with an XML format file
describing the organisms (name, source, taxonomic

identifier...). The administrator can then launch the
installation procedures that will automatically fill a data-
base with all the required information and calculated
data. Subsequent updates of the database are facilitated
by the architecture of the database. For example, new
proteomes can be added by updating the previously
mentioned input data. In contrast to other available sys-
tems, after installation the pre-calculated data can be
exploited via both command-line and graphical
interfaces.
The command-line client interface is designed to

allow fast information retrieval for high throughput stu-
dies. It also facilitates the incorporation of the software
in other packages or processing pipelines. The client
provides database querying facilities via a number of dif-
ferent methods: textual searches allow access to results
via sequence accession numbers or sequence descrip-
tions, while batch queries permit submission of multiple
Fasta-formated sequences. In addition, constraints of
presence/absence of orthologs in specified organisms
can be defined. Data can be exported in CSV, FASTA
or XML formats. New user-defined file formats can
easily be added to the software using a java interface
included in the source code.
The graphical interface is designed to analyze smaller

sets of sequences in more detail. In contrast to the com-
mand-line client, the querying functions (textual and
FASTA sequence queries) are supported by interactive
forms and produce results that can be visualized in
more detail. More elaborate queries can also be per-
formed, such as the selection of data according to the
presence/absence of orthologous relationships in organ-
isms specified by the user (Figure 8A). For instance, the
user can retrieve all Danio Rerio proteins having ortho-
logs in Homo sapiens, but not in Mus musculus. The
results can be visualized through a textual description,
including cross-references to Ensembl, Uniprot and
NCBI-refseqp databases. For ambiguous results, the ori-
ginal Blast search used to generate the prediction can be
directly visualized in the interface. Then, the reliable
data selected by the user can be summarized using dif-
ferent visualization tools. Currently, two complementary
tools are available: (i) a graph representation of the net-
work of predicted relationships (Figure 8B) and (ii) pre-
sence/absence diagrams (Figure 8C), but future updates
of the software are planned to enhance the visualization
capabilities of the software. As in the command-line cli-
ent, the data can be exported in CSV, FASTA and XML
format files. All the visualizations can be exported as
image files, the presence/absence diagram can be
exported as a CSV matrix and the graph representation
can be saved in graphML format. The graphical inter-
face access provides access to other tools, such as batch
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generation and exportation of data, generation of data-
base statistics or switching between different OrthoIn-
spector compliant databases.

Conclusions
Various methods have been developed previously to pre-
dict the orthology/inparalogy relationships existing
between different proteomes. In most cases, the
algorithms are made publicly available in the form of bin-
ary programs that can generate either simple databases or
flat files containing the complete set of predicted

relationships. Until now, no comprehensive set of tools
has been provided to process, query and update the data-
sets easily and efficiently. For this reason, we have devel-
oped OrthoInspector, incorporating fast and easy-to-use
data management tools, as well as a novel algorithm to
produce fast and sensitive predictions of orthology/inpar-
alogy. The software suite, portable to any Java-compatible
system and easily integrated in any workflow application,
is suitable for use in high-throughput studies, which are
becoming more and more predominant in the era of sys-
tems biology. Its fast and user-friendly procedures

A.

C.

B.

H.sapiens

M. musculus

E. histolytica

P. falciparum

PRES. ABS. UNCAR.

H.sapiens

M. musculus

E. histolytica

P. falciparum

XP_653520 ; XP_654089 ; XP_648834 ; XP_655157

Q8VE11 Q9Z2C9

Query : Q9Y217 Q9Y216 Q96EF0

Figure 8 OrthoInspector graphical interface. The graphical interface provides visualization tools allowing a global view of the selected data. A.
The advanced query interface allows selection of orthology/inparalogy relationships based on presence/absence criteria (pres. = presence, abs. =
absence, uncar. = uncaring). B. Graph-based visualization of selected relationships. C. Presence/absence diagrams resume the repartition of
orthologs/inparalogs for a family of proteins. Here, the human myotubularin-related protein 6 (mtmr6, Q9Y217) was used as the query. No
orthology relationship is found in P. falciparum, a 1-to-1 ortholog is found in M. musculus (Q8VE11) and a 1-to-many relationship involving four
co-orthologs is found in E. hystolitica (XP_653520; XP_654089; XP_648834; XP_655157). These sequences are then used as query to find
potentially new sequences of the family in these organisms. Here sequences of E. histolytica make a 1-to-many relation with the seven human
myotubularins and the six mouse myotubularins (these ones are inparalogs relative to entamoeba histolytica). Here are only represented the
human MTMR7 (Q9Y216) and MTMR8 (Q96EF0) and the murine MTMR7 (Q9Z2C9).
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facilitate the production of databases adapted to the
user’s needs. It also supports more detailed analyses of
interesting orthology relationships for non-specialists,
who can exploit the generated databases in a graphical
interface that provides novel visualization capabilities and
comparative genomics tools.
In the future, OrthoInspector will be enhanced to

further improve the database update process. Although
tools are currently provided to easily incorporate new
genomes selected by the user, keeping up with the rate
of next generation sequencing will be a major chal-
lenge. The most time-consuming step in all orthology
prediction algorithms is the generation of the Blast all-
versus-all searches for each new update. In spite of the
efforts aimed at developing faster parallelized Blast
methods [40,41], the Blast all-versus-all computational
requirements grow quadratically with the addition of
new proteomes. Therefore, one of our future goals will
be to develop an incremental update process, minimiz-
ing the number of distance calculations required
between the thousands of sequences present in the
previous version of the database. We also plan to
enrich the OrthoInspector system by incorporating
functional annotations, such as Gene Ontology terms
[42] or links to the Interpro protein domain database
[43], facilitating integrated systems biology studies.
Finally, to improve the interoperability of OrthoInspec-
tor with other software packages, the Ortho-XML for-
mat http://orthoxml.org will be included in the next
release of OrthoInspector.

Availability and Requirements
Project name: OrthoInspector
Project home page: http://lbgi.igbmc.fr/orthoinspector/
Operating system: cross-platform
Programming language: Java
Requirements: Java JVM 1.6.x
License: GNU GPL version 3

Additional material

Additional file 1: The complete list of the 59 studied organisms.
Excel file containing the 59 studied organisms in OrthoInspector. They
are classified according to their phylum.

Additional file 2: Distribution of 1-to-1 relations over 59 organisms.
The normalized number of 1-to-1 relations is calculated for each
organism pair. Normalisation is done by dividing the observed number
of relations by the maximum number of potential relations (the size of
the smallest proteome of the two compared organisms).

Additional file 3: Distribution of many-to-many relations over 59
organisms. The normalized number of many-to-many relations is
calculated for each organism pair. Normalisation is done by dividing the
observed number of relations by the maximum number of potential
relations (the multiplication of the size of the proteomes of the two
compared organisms).

Additional file 4: Test set covering 31 CMGC sub-families and 16
TKL sub-families. Excel file describing the 31 CMGC sub-families and 16
TKL sub-families used for benchmarking. Orthology predictions made by
all methods for these families are in the file too.
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8 AN INTEGRATIVE MULTI-SCALE SOLUTION FOR DECIPHERING 

GENE EVOLUTION 
 

Evolutionary studies aim to decipher the mechanisms that induce the slow transformation of genetic 

information and its transmission over time. Originally, such studies were based mainly on 

morphological or behavioural traits, but these have been largely replaced by macromolecular 

sequences since they provide more detailed measures of the similarities and differences between 

organisms. The evolutionary relationships between sequences are generally represented by the 

branching order of a phylogenetic tree, although alternative approaches such as ‘bushes’ or 

‘evolutionary networks’ have been introduced recently, particularly in the prokaryotic domain 

(Bapteste et al., 2009). Today, systems biology and the abundance of data in the post-genomic era 

are providing unique opportunities to integrate data from many biological levels in evolutionary 

studies (Loewe, 2009). High throughput technologies such as transcriptomics, exomics or 

interactomics can help us to gain a broader view of how organism systems are evolving (Brawand et 

al., 2011). In this context, some authors have attempted to compile different types of data in order to 

confront them with evolutionary parameters and analyse the correlations between evolutionary and 

functional parameters. As described in chapter 5, this work identified some general evolutionary 

trends of biological systems, considering the system-level variation of biological sytems as an 

important component of Evolution (Koonin, 2009a).  

The representation of evolutionary histories using phylogenetic trees is not adapted to this new data 

landscape. Extraction of evolutionary knowledge from trees requires manual analysis and 

interpretation which is not possible in high-throughput studies. Our goal was therefore to develop a 

new methodology, the EvoluCode (evolutionary barcode) formalism, that could exploit the new data 

resources efficiently and provide a multi-scale view of the evolution of genes and complex systems. 

The new formalism should allow the application of standard knowledge extraction techniques, such 

as pattern searching, clustering or classification, in evolutionary studies. 

 

8.1 EvoluCode philosophy 
 

The EvoluCode is designed to facilitate the combination of a systems biology approach with an 

evolutionary framework. We therefore defined 5 necessary criteria: 

 Evolutionary history: a gene has an evolutionary history that resulted in its present state in a 

given organism. An EvoluCode associated with a gene must encode this evolutionary history.  

 

 Multi-scale: to encode a ‘complete’ evolutionary message for a gene, we must consider not 

only the sequence level, but multiple biological levels at the same time. EvoluCodes must be 

multi-scale, integrating omics data from the gene, clade and network (system) levels.  
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 Variation: The EvoluCode should describe the ‘variation’ of a gene over multiple species. The 

variation observed in extant species is the key element that allows to elucidate the ancestral 

states and innovations that make up the gene evolutionary history. Moreover, the EvoluCode 

should quantify the variation of a set of biological parameters and differentiate cases of 

typical or atypical variation. 

 

 Formalism: The EvoluCode should summarize the gene evolutionary history described by the 

variation observed for several biological parameters in several species. Formalisation will 

allow us to assemble heterogeneous information for each gene, thus providing a well-

defined framework to apply knowledge extraction techniques (clustering, data mining…). 

 

 Knowledge extraction: the evolutionary history coded in the EvoluCode must be 

mathematically exploitable in knowledge extraction and high-throughput studies. The multi-

level biological data that compose EvoluCodes should summarize biological phenomena with 

a specific set of parameters, i.e. continuous or qualitative mathematical variables. 

 

 Visualization: To allow a human visualization, the EvoluCode formalism must facilitate a 

comprehensive observation of the variations. In particular, typical or atypical parameter 

variations discovered in some species should be easily recognizable manually.  

 

In addition to these specifications, we can include two constraints related to the practical 

construction of EvoluCodes: 

 Reference species: In order to estimate the variation for a given biological parameter, we 

need to define a reference species from which to measure it. For example, defining a gene 

neighbourhood conservation on the genome require a reference genome. Additional 

genomes are compared to the reference genome and will or will not have a similar gene 

ordering. Consequently, an EvoluCode quantifies the variations observed in several species 

by comparing them to a reference species. The corollary is that there is a different set of 

EvoluCodes for the gene set of each species. 

 

 Evolutionary scale: When representing the variation relative to a reference organism in 

several species, we need to carefully choose the species composing the evolutionary scale of 

interest. This must correspond to a reliable evolutionary message, avoiding a hazardous 

species composition such as mixing 10 primates and 1 yeast. Similarly, large phylogenetic 

scales, for example all bacteria, could be problematic for the barcode approach. In such 

cases, variation is preponderant to conservation and cannot be quantified in a realistic 

manner. However, assuming a reasonable and continuous species composition, EvoluCodes 

can describe many evolutionary scales (e.g. primates, vertebrates, ascomycetes, 

eudicotyledons, etc.).  
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To resume, EvoluCode is a synthetic representation for the integration, the visualisation and the 

analysis of diverse parameters extracted from multiple biological levels in multiple organisms. The 

barcodes can be easily updated and can be adapted to any kind of biological parameter. A key 

feature of the EvoluCode formalism is the ability to describe the specific state of the parameters in 

their “evolutionary context”. Thus, for each species, the state of a given parameter is defined as 

typical or atypical when compared to a reference species with respect to the generally observed 

state in the same species. The integration of multi-scale parameters defines a combination of typical 

or atypical states and describes a complex evolutionary scenario that could not be resumed for 

example with a single parameter such as sequence conservation. 

 

8.2 Collecting evolutionary data 
 

The first step in any knowledge extraction process is the collection of information from a variety of 

sources for the purposes of analysis. To evaluate the suitability of our EvoluCode approach for 

evolutionary-based knowledge discovery, we generated a collection of multi-level parameters. 

Concerning the evolutionary scale, we chose the vertebrate phylum and selected 16 different 

vertebrate species representing mammal, sauropsid, batrachian and fish phyla. High quality, almost 

complete genome sequences are available for all of these species. As a reference species, we chose 

the human for the annotation quality of its genome and proteome. For each of the protein coding 

genes (19778 genes), we generated a de novo dataset for all biological parameters, using three 

protocols briefly described in the following paragraphs. 

 

8.2.1 Synteny data 
 

The genomic context is an important parameter in gene evolutionary histories since chromosomal 

rearrangements are a key mechanism in genome evolution (Tang, 2007). In particular, the 

conservation of genomic context is widely used in the reconstruction of ancestral genome states 

(Muffato and Crollius, 2008; Rascol et al., 2007) and has sometimes been related to gene functions 

(Michalak, 2008; Zaslaver et al., 2011). The conservation of local gene neighbourhood (also known as 

microsynteny) can also be related to the functional aspect of genomes. It has been previously shown 

that neighbouring genes can be related to a coordinated transcription, describing genomic regulatory 

blocks. Cis-acting regulatory elements that control multiple genes are frequent in prokaryotes and 

are generally organised into functional operons (Osbourn and Field, 2009).  More recently, a similar 

organisation has been observed in plants, fungi, insects and mammals with a much lower frequency 

(Engstrom et al., 2007; Field and Osbourn, 2008). Recently, a study showed that ~12% of the 

ancestral bilaterian genome contained genomic regulatory blocks characterized by transcriptional 

enhancers controlling developmental genes and that cis-regulatory constraints are crucial in 

determining metazoan genome architecture (Irimia et al., 2012). We developed local software using 

data from the Ensembl genome database (Hubbard et al., 2007) for the identification of local synteny 

between the human genome and each of the 16 other vertebrate genomes. Thus, we determined 

whether synteny exists to the right and left of each gene, between each species and the human 

reference.   
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8.2.2 Orthology data 

 

Gene gains and gene losses are an important driving force in genome evolution (Kaessmann, 2010) 

and are thought to be a major contributor to evolutionary innovation. A single gene family can 

describe complex evolutionary patterns with independent expansion in some phyla and gene loss in 

another (Ruano-Rubio et al., 2009) and these patterns have been used for example, to study co-

adaptation and co-evolution of proteins (Pazos and Valencia, 2008). To take into account such 

phenomena, we extracted orthology and inparalogy data from OrthoInspector for the human 

reference and the 16 vertebrate proteomes and used this knowledge to describe the stability of the 

protein family. 

 

8.2.3 Multiple Alignment data 

 

The comparison of protein and nucleic acid sequences plays a major role in the understanding of 

sequence/structure/function/evolution relationships (Lecompte et al., 2001). Originally used in 

evolutionary analysis, multiple alignments are now essential to highlight conserved functional 

features (Levasseur et al., 2008) or to improve the prediction of 3D structures (Moult et al., 2005). 

When exploited in expert annotation processes, multiple alignment of complete sequences (MACS) 

are a compact source of information from which numerous evolutionary parameters can be 

extracted (figure 8-1). Thus, for each human reference gene, we constructed a protein MACS by 

including all vertebrate homologous genes in the alignment. High-quality MACS were built using a 

computational pipeline, called PipeAlign, and the alignments was annotated by the MACSIMS 

information management system (see material and methods, paragraph 6.2.3).  

 

 

Figure 8-1. Some example of evolutionary parameters that can be automatically 

retrieved by MACSIMS when analyzing a MACS.  
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In the context of this work, we performed an in-depth study of state-of-the-art multiple alignment 

methods (publication n°4), which resulted in a refinement of the original PipeAlign. The modified 

pipeline allowed us to perform an automated high-throughput extraction of numerous biological 

parameters for the whole human proteome. The complete data for this work represents more than 

280,000 genome context mappings, more than 11,000,000 orthologous relations and more than 

500 000 vertebrate sequences aligned in 19778 high-quality and completely annotated MACS. 

 

8.2.4 Data quality 

 

The quality of the data collected for the construction of the EvoluCodes is a major issue, particularly 

since most the data was produced by high-throughput technologies, which are notoriously error-

prone, inconsistent and incomplete (Pop and Salzberg, 2008). In collaboration with the team of P. 

Pontarotti (Marseille), we studied the impact of genome sequencing and protein sequence prediction 

errors on evolutionary studies, specifically in the analysis of asymmetric evolution after duplication 

(AED) events. An AED event can be observed after a duplication event, when the homologous 

sequence with higher similarity is relocated in the genome and the positional homolog (with 

conserved gene neighbourhood) shows a lower similarity (figure 8-2). In fact, AED describe events 

where the local homolog has evolved significantly faster than the relocated homolog, which is 

unexpected since it is generally hypothesized that the gene copy that retains the genome context will 

be more conserved.  

 

 

Figure 8-2. Asymmetric evolution after duplication (AED). Hi is the human reference 

gene and its homolog Vi is detected in a vertebrate genome that maintain similar genome 

neighborhood. Full arrows indicate homologs based on sequence similarity and gray 

shadows link positional homologs.  

 

To test this hypothesis, we searched for AED events in the 16 vertebrate genomes. However, most of 

the potential AED events we detected were in fact false positives, due to the low quality of the 

underlying protein sequences. In fact, up to half of all protein sequences in these vertebrate 

genomes contained putative erroneous insertions, deletions or suspicious segments. In publication 

n°3, we discussed this quality issue, its implication for evolutionary analysis and how the true 

functional significance of AED events is masked by the sequence errors.  
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8.3 EvoluCodes and high-throughput analysis  
 

8.3.1 Evolutionary histories of the human proteome 

 

The EvoluCode formalism was initiated in the context of a French ANR project, EvolHHuPro 

(Evolutionary History of Human Proteome) in collaboration with the groups of Pierre Pontarotti 

(Marseille) and Anthony Levasseur (Aix Marseille). The aim of this project was to provide a complete 

set of the evolutionary histories (cascade of phylogenetic events) for the human proteome and their 

genome-scale analysis. In this context, high-quality annotated multiple alignments were built for 

each protein in the human proteome and our collaborators constructed expert annotated 

phylogenetic trees based on the alignments. Then, with the help of the DAGOBAH platform, all 

vertebrate genetic events leading to the current state of the human proteome were inferred (domain 

gain/loss, rearrangements…). The phylogenetic trees and genetic events are publicly available in a 

database dedicated to chordate evolutionary histories (Levasseur et al., 2012b). 

 

8.3.2 Human proteome EvoluCodes 

 

EvoluCode is a data formalism that can be used to summarize the evolutionary history of a gene and 

to facilitate automatic, high throughput analysis. In order to construct EvoluCodes for the complete 

human proteome, we created the pipeline shown in figure 8-3. We integrated and normalized all the 

data described in section 8.2 and selected 10 representative parameters from different levels 

(genome, protein sequence, family, etc.) (see publication n°2 for parameter descriptions). For a given 

gene, we created an EvoluCode as a 2D matrix representing the variation existing between a 

particular vertebrate gene and its corresponding human reference, independently for each biological 

parameter. This matrix structure provides an efficient formalism for mathematical explorations of 

the combined data and the set of human EvoluCodes can be used as input for knowledge extraction 

strategies.  

A parallel step of the EvoluCode pipeline is the statistical description of all the biological parameters 

in all vertebrate species. This analysis highlights what are typical or atypical values when comparing a 

vertebrate parameter value to the human reference value (figure VIII-3). For example, a sequence 

identity conservation of 60% between a zebrafish gene and its human reference is a relatively 

common case when looking at all sequence conservation of fish and human genes. This value will be 

labelled as ‘typical’ in zebrafish (green colour). In contrast, this level of sequence identity between 

primate genes is rare and will be labelled as an atypically high value (red colour). Applying this 

statistical description for all parameters transforms the 2D EvoluCode matrix into a mathematical 

description summarizing all the variation that a gene underwent during its vertebrate evolution. In 

the course of this work, we tested several statistical models for the description of the ‘typical’ nature 

of a value (figure 8-3). However, the heterogeneous parameters composing the EvoluCode present 

different statistical distributions (normal, skew normal or even multimodal distributions). This 

heterogeneity made it difficult to apply a global statistical model and the current version of the 

EvoluCode uses the descriptive non-parametric properties of boxplots to estimate atypical values. 
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Consequently, EvoluCodes describe a profile of typical or atypical variations that correspond to a 

particular evolutionary scenario. Figure 8-4 shows several examples of EvoluCode profiles that can be 

directly associated with an evolutionary message.  

 

 

Figure 8-3. Some examples of statistical distributions observed in EvoluCode 

parameters. The p values correspond to Kruskal-Wallis test of normality. 

 

The human EvoluCodes that we created in this work respect the five criteria that emerged from our 

reflexion into studying evolution in a high-throughput way and with multi-level data corresponding 

to the systems biology philosophy. Our first version of the EvoluCode is a formalised representation 

of the multi-scale variation of a human gene and effectively describes its vertebrate evolutionary 

history.  

sequence_identity hydrophobicity

Normale distribution 
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Figure 8-4: Overview of the EvoluCode construction process. Different evolutionary 

parameters are compiled from several sources and organised in the EvoluCode framework. A 

parallel process statistically describes the variation of these parameters when comparing the 

vertebrate’s parameter states compared to the human reference. The statistical model is 

used to create the EvoluCode formalism that allows a direct human visualization of variation 

profiles corresponding to different gene evolutionary histories.  
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8.4 EvoluCodes and extraction of evolutionary knowledge  
 

Classical phylogenetic approaches study gene evolutionary histories at the family level for different 

purposes, such as predicting gene functions (Jiang, 2008), gene interactions (Pellegrini, 2012) or for 

the analysis of evolutionary mechanisms (Keeling et al., 2005). The EvoluCode approach provides the 

possibility to extend such analyses to the genome level or even to the species level. EvoluCodes 

summarize the variation observed during a gene evolutionary history, by integrating normalized 

parameters in a 2D matrix. As a consequence, we can rapidly perform large scale evolutionary 

analysis using various standard approaches for formal knowledge extraction. The goal of knowledge 

extraction techniques is to discover interesting patterns or relationships in large datasets (even in 

complex and high-dimensional ones), to use these relationships to make predictions and to present 

the discovered knowledge in a comprehensible form. Among the numerous possibilities, we explored 

three different approaches (more extensively described in publication n°2): 

 

8.4.1 Identification of interesting relationships in human evolutionary histories 

 

By applying a knowledge extraction technique such as clustering, we can regroup genes with similar 

evolutionary histories and investigate their functional significance using standard functional 

enrichment software. We applied several non-supervised clustering techniques on our EvoluCodes, 

notably a neural network approach based on Kohonen clustering and a paramagnetic approach using 

Potts clustering and performed a preliminary study to establish the coverage of the clusters 

predicted by the two methods. The Potts algorithm constructed an optimal clustering with 303 

clusters (the improved Potts clustering that we used automatically predicts the optimal number of 

clusters). Consequently, in order to obtain comparable results, we imposed a neural network grid of 

17x18 cells for the Kohonen clustering (306 clusters). The Jaccard (Jaccard, 1901) and Baroni-urbani 

(Baroni-Urbani, 1980) similarity coefficients were calculated for all cluster pairs. Figure 8-5 shows the 

Jaccard similarity between all clusters containing an intersection of one EvoluCode (a similar profile is 

described with the Barroni coefficient). About one third of the clusters present a good similarity 

between the 2 clustering methods. Two thirds of the clusters calculated by Potts clustering are 

dispersed in many clusters produced by Kohonen clustering. However, 59% of the EvoluCodes are 

shared by the 33% most similar clusters. Highly similar clusters are larger than low similarity clusters. 

These results showed that both methods cluster 59% of the EvoluCodes in similar large clusters. This 

was confirmed later by the functional enrichment analysis performed with the clusters of both 

methods, where comparable functional enrichments were observed in most similar clusters. 

We decided to perform the subsequent studies with the results of the Potts clustering, as the 

method implements statistical approaches to estimate the optimal number of clusters. The simple 

structure of the EvoluCode allowed a fast Potts clustering of evolutionary histories (<15minutes) at 

the human genome scale. The 303 clusters inferred by the Potts clustering indicate that there are a 

limited number of evolutionary histories for human protein-coding genes (around 300). Moreover, 

most clusters were characterized by a significant functional enrichment, denoting an unexpectedly 

strong correlation between the evolutionary profile of a gene and its function.  
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Figure 8-5. Jaccard similarity coefficient between all EvoluCode clusters predicted 

by Potts and Kohonen clusterings. Each cell of the matrix corresponds to an intersection 

between two clusters. A similarity value is assigned to the corresponding pair. Cluster pairs 

with a large intersection are red and cluster pairs with a low intersection are yellow. 

 

8.4.2 Classification and prediction of protein function 

 

The previous sections illustrated the application of knowledge extraction techniques for description 

purposes. However, knowledge extraction can also be used for prediction of new information, by 

using a reduced set of variables or parameters to predict unknown values of other variables of 

interest. This first step in this process is the use of data reduction or projection methods to find 

pertinent features that represent the data depending on the goal or specific question of the user. To 

explore this possibility, we analysed the EvoluCodes corresponding to all the human genes coding 

multi-pass transmembrane proteins. These proteins are characterized by alternate intra-

membrane/extra-membrane domains with conserved hydrophobic intra-membrane domains and 

less conserved extra-membrane domains (figure 8-6). We extracted all the human genes annotated 

as ‘multi-pass membrane protein’ in Uniprot and performed a Multiple Correspondence Analysis 

(MCA) of the corresponding EvoluCodes  in order to perform a data reduction of this high-

dimensional dataset. We constructed a 2D projection of Evolucodes with the help of the MCA and 
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performed a clustering on this projection. The two axes of the projection represent radically different 

biological information. One axe is mainly related to the structural and chemical characteristics of 

multi-pass proteins, whereas the second axe represents the evolution of the family (synteny, 

duplications...).  

 

Figure 8-6. Using EvoluCode and its multi-level perspective to create evolutionary 

predictive models. (A) A representation of structural and physic-chemical properties of 

multi-pass transmembrane proteins. Adapted from http://www.sparknotes.com/biology/. 

(B) The model calculated by multiple correspondance analysis that separates multi-pass 

proteins in 4 classes based on different evolutionary and structural characteristics.  

 

This result illustrates the potential for knowledge discovery of the EvoluCodes. In a single analysis, we 

link structural and evolutionary characteristics of a large group of proteins that are not clearly related 

at the sequence level. The 2D projection can then be used as a predictive model for the functional 

annotation of multi-pass genes that are currently annotated as ‘putative’ in Uniprot. Indeed, 3 out of 

the 4 multi-pass protein clusters demonstrate a significant functional enrichment. For example, a 

large proportion (55%) of cluster 1 genes is known to be associated with olfactory and taste 

perception.  

 

8.4.3 Presentation of knowledge in a comprehensible form 

 

The summarization capabilities of the EvoluCodes can be illustrated by observing the repartition of 

gene evolutionary histories over the human chromosomes. To simplify the EvoluCodes and facilitate 

visualization, the 2D EvoluCodes were compressed into a single 1D vector and mapped to the 

chromosomes (figure 8-7). Several chromosomal clusters with similar evolutionary histories were 

highlighted, including a number of published clusters such as the olfactory receptor clusters (Hasin et 

al., 2008) and the keratin and keratin-associated protein clusters (Wu et al., 2009; Zimek and Weber, 

2005).  

A.

B.
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Figure 8-7. Several examples of chromosomal clusters with similar evolutionary 

histories. 2D EvoluCodes are reduced to 1D vertical vectors for visualization purposes. The gene 

order corresponds to the chromosomal order, but genetic distances are not taken into account. 

Black arcs highlight evolutionarily-related clusters. 

 

8.5 Conclusion 
 

The example applications described here demonstrate that the EvoluCode barcode formalism 

represents a powerful tool for the visualization and quantitative analysis of complex evolutionary 

histories in high throughput studies. We have constructed EvoluCodes representing the evolutionary 

histories of the complete human proteome at the vertebrate evolutionary scale. However, the 

EvoluCode approach can be applied to any reference species and to different evolutionary scales. 

Similarly, we integrated 10 evolutionary parameters in the first version of the EvoluCode but it can 

easily be extended with new biological parameters. In contrast to standard molecular phylogenies 

and their inherent reliance on a certain amount of residue conservation, EvoluCodes represent a 

methodological advantage as they allow to compare multi-level variables. Future versions will 

compile new data, such as genomic context (CNVs, number of exons, inter-genic distances...) or 

interactomic data that are available in the laboratory databases (gps.igbmc.fr). 

Finally, we performed several case studies to test the reliability of the evolutionary knowledge that is 

summarized by our EvoluCodes. Using formal knowledge extraction techniques, we confirmed their 
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suitability for answering diverse evolutionary questions in large-scale studies. The exploitation of 

EvoluCodes in the context of cellular biological systems will be discussed in the next chapter. 

 

8.6 Publication 2. EvoluCode: Evolutionary Barcodes as a Unifying 

Framework for Multilevel Evolutionary Data 
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Introduction
Systems biology aims to understand the structure and 
dynamic behavior of complex biological systems by 
modeling the components and their interactions at 
different functional levels.1,2 Such a comprehensive 
understanding requires the integration of large-scale 
experimental data with computational analyses and 
mathematical modeling approaches.3 In particular, 
successful systems biology will rely on our ability 
to integrate different types of multi-scale data across 
various levels of complexity,4 from individual 
molecules such as proteins, metabolites, etc. to 
cells, tissues, organisms or even ecosystems. These 
different levels are now being described by the 
large volumes of experimental data resulting from 
genomics technologies such as next-generation 
sequencing, transcriptomics, interactomics, etc. This 
high throughput data is characterized by a low signal-
to-noise ratio and data mining and extraction of 
significant, pertinent knowledge are major challenges. 
In this context, the field of evolutionary systems 
biology aims to combine the modeling aspects of 
current systems biology with the long-standing 
quantitative experience in evolutionary genetics in 
order to uncover the general trends and principles 
underlying the evolution and function of complex 
biological networks.5,6

Evolutionary based inference provides an incredibly 
powerful tool for comparing multiple sources of data, 
since features that are maintained in several organisms 
tend to be functionally important while variations or 
differences may indicate key innovations. Comparative 
studies of individual components, such as proteins, 
have been widely used and are generally based on 
multiple sequence alignments and the subsequent 
reconstruction of a phylogenetic tree. Evolutionary 
histories are then typically represented by mapping 
major events (duplications, speciations, gene loss, 
domain reorganization, etc.) onto the tree. Some recent 
work has applied these methodologies at the genome 
scale, for example to build the complete collections 
of gene phylogenies (phylomes) in the PhylomeDB 
database,7 or in the construction of the Chordate 
Proteome History Database (ioda.univ-provence.fr). 
At the level of protein networks or pathways, the 
reconstruction of the evolutionary histories is more 
complex, since the interactions between the different 

molecular components have to be taken into account 
and changes at one biological level often have 
consequences on the evolution of other levels.8–11 
Therefore, additional information concerning genome 
context, gene expression, molecular interactions, etc. 
is needed to successfully model the dynamic behavior 
of the system.

A number of groups have performed genome-scale 
studies aimed at investigating the potential correlations 
between variables characterizing different aspects 
of protein network functions and evolution.12–14 
For example, positive correlations were observed 
between gene essentiality, duplicability and protein 
connectivity, estimated by the number of interaction 
partners in the networks.15,16 Other recent studies 
have shown negative correlation between expression 
breadth, ie, the number of tissue types in which genes 
are expressed, and protein evolutionary rates.17 While 
these studies were limited to the correlations observed 
between two variables, others have attempted to 
compile more diverse sets of evolutionary variables. 
Thus, principal component analysis was used to 
investigate the relationships between seven genome-
related variables, identifying three main axes 
reflecting a gene’s “importance”, “plasticity” and 
“adaptability”.18 Waterhouse et al also examined the 
links between evolutionary and functional traits, by 
classifying metazoan orthologs as “essential” or “non-
essential” and confronting these classes with various 
evolutionary variables.19 Although these studies have 
revealed several interesting trends, new standardized 
methodologies and tools are now needed that allow 
the integration of larger, more diverse sets of multi-
level data and efficient, quantitative analyses at the 
genome scale. Similarly, despite some attempts to 
develop tools providing global overviews of complex 
evolutionary scenarios,20 original visualization tools 
will be required to facilitate rapid identification of 
specific behaviors.

Here we describe a novel formalism, called 
EvoluCode, or the Evolutionary barCode, which 
allows the integration of different data types in a 
unifying framework. Thus, a barcode is assigned to 
each component in a biological system and diverse 
evolutionary parameters from different biological 
levels can be incorporated, facilitating multi-scale 
evolutionary analyses. Visualization tools have also 

http://www.la-press.com
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been developed to allow the human expert to view the 
barcodes and to identify interesting patterns in both 
low and high throughput studies. In order to evaluate 
the pertinence of the evolutionary barcodes and to 
test their ability to represent complex evolutionary 
histories, we constructed evolutionary barcodes for 
the complete proteomes of 17 vertebrate species. 
In this context, we incorporated a number of different 
evolutionary variables, including primary sequence 
data, genome neighborhood and evolutionary 
conservation, but the barcode formalism can be easily 
extended to incorporate other variables representing 
different biological features. At this stage, the values 
of the barcode parameters are normalized to allow 
quantitative analyses and automatic comparisons, using 
standard data mining techniques such as clustering or 
classification. We show that, in addition to highlighting 
general evolutionary trends, the barcodes facilitate 
the identification of specific evolutionary histories, 
such as strict conservations or significant gene family 
expansions. Two genome-scale analyses were then 
performed. First, by mapping the protein barcodes 
onto the human genome and visualizing the results in 
our barcode visualization tool, we were able to identify 
a number of previously described chromosome gene 
clusters. Second, automatic barcode clustering and 
functional enrichment analysis allowed us to identify 
specific sets of proteins that have experienced similar 
evolutionary histories. In a more detailed study, 
automatic clustering of multi-pass membrane proteins 
highlighted a number of particular evolutionary trends 
that are inherent to these protein families. Finally, as a 
proof of concept we demonstrate the potential of our 
evolutionary barcodes for biological pathway analysis. 
All data described in this publication are available 
online at: http://lbgi.igbmc.fr/barcodes.

Material and Methods
Protein test set
A reference set of human proteins was retrieved from 
the Human Protein Initiative (HPI) project.21 This 
project defined a master human proteome set, according 
to the quality standards set by the UniprotKB/Swiss-
Prot22 databases, resulting in a total of 19778 human 
reference protein sequences (with 1 protein refer-
ence per coding gene). We created our own database 
of vertebrate proteomes, by selecting an additional 

16 vertebrate species that best represent major 
vertebrate phyla, ie, fish, batracia, sauropsida and mam-
mals (species list in supplementary Table 1). The com-
plete proteomes for these organisms were downloaded 
from Ensembl (version 51),23 to create a local database 
with more than 500,000 sequences. Each human pro-
tein was then used as a query for a BlastP24 search in 
this local protein sequence database.

Multiple sequence alignment 
construction
For each human reference sequence, a modified 
version of the PipeAlign25 protein analysis pipeline 
was used to construct a MACS (Multiple Alignment 
of Complete Sequences) for all sequences detected 
by the BlastP search with E  ,  10–3 (maximum 
sequences  =  500). PipeAlign integrates several 
steps, including post-processing of the BlastP 
results, construction of a MACS with DbClustal,26 
verification of the MACS with RASCAL27 and 
removal of unrelated sequences with LEON.28 In 
this modified version, DbClustal was replaced by the 
MAFFT program,29 since the computational speed of 
MAFFT is better suited to high throughput projects. 
The MACS obtained from this pipeline were then 
annotated with structural and functional information 
thanks to MACSIMS,30 an information management 
system that combines knowledge-based methods with 
complementary ab initio sequence-based predictions. 
MACSIMS integrates several types of data in the 
alignment, in particular Gene Ontology annotations,31 
functional annotations and keywords from Swissprot, 
and functional/structural domains from the Pfam 
database.32

Local genome neighborhood 
conservation
The chromosomal localization of all genes coding for 
the protein sequences was obtained from Ensembl. 
Locally developed software was used to identify 
conserved local synteny between the human genome 
and each of the 16 other vertebrate genomes. To 
achieve this, the chromosomes in each genome are 
represented as a linear sequence of genes. For each 
human reference sequence, the local syntenic homolog 
HREF was defined at position i on the human genome 
and its upstream and downstream neighbors (HREF-1 
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and HREF+1 respectively) were identified. For each 
of the 16 vertebrate genomes, the sequences with the 
highest similarity to HREF-1 and HREF+1 were 
selected from the MSA, and denoted Vn_Sim-1 and 
Vn_Sim+1 respectively, where Vn refers to one of 
the 16 vertebrate genomes. A local synteny homolog, 
exists for HREF and genome Vn if:

   i.	homologs were found in Vn for HREF-1 and 
HREF+1,

  ii.	the separation between the highest similarity 
homologs, denoted Vn_Sim-1 and Vn_Sim+1, on 
the genome was less than 5 genes,

iii.	a homolog of HREF was found on the genome 
between Vn_Sim-1 and Vn_Sim+1.

The homolog of HREF localized between 
Vn_Sim-1 and Vn_Sim+1 with the highest similarity 
to the human reference sequence was then defined as 
the syntenic homolog. Genes with ambiguous genomic 
locations, such as scaffolds etc, were discarded since 
the synteny relationship could not be reliably estab-
lished. In addition, local or tandem duplications were 
excluded since the genome contexts of the two gene 
copies were similar.

Orthology data
Orthologs are homologous genes that diverged from 
a single ancestral gene in their most recent common 
ancestor via a speciation event, whereas paralogs 
are homologs resulting from gene duplications.33 
Paralogs are considered as “inparalogs” when they 
are produced by duplication(s) subsequent to a given 
speciation event. In this context, several inparalogs 
of a given species (recently duplicated genes) are 
“co-orthologs” relative to the non-duplicated ortholog 
of a second species.

Orthologous relationships were generated with 
the OrthoInspector software.34 Orthology inference is 
based on a blast all- vs. -all generated with a 10-9 Expect 
value threshold. Each human reference sequence was 
used as a query to retrieve human inparalogs and co-
orthologs in each of the 16 vertebrate organisms.

Barcode construction for the human 
proteome
Evolutionary barcodes were constructed for all 
human reference proteins. Each barcode includes 

a number of different evolutionary parameters 
that were extracted from the annotated multiple 
alignments, synteny analysis and orthology data 
described above (Fig. 1A). For each of the vertebrate 
organisms included in this work, the most closely 
related homolog (based on percent residue identity) 
was identified in the MACS and seven parameters 
were extracted:

•	 length: the length of the vertebrate sequence.
•	 length_difference: the difference in length between 

the human reference protein and the vertebrate 

2D Barcode
Dimension (N × n): parameter values for each species

1D-Barcode

Dimension N: 1 “average” value for each
parameter

Evolutionary history analysis

Data normalisation and
compilation

Statistical description
for each parameter

Synteny conservation

Evolutionary data
from multiple biological levels

Multiple sequence alignment data
Orthology/paralogy data

…

Param. A
B

Param. N

Color
Formalism

A
B
C
D
E

N parameters
(A,B…N)

A

B

Dimensional
reduction

C

Deviation estimation
compared to observed

general trends

A
B
C
D
E

Figure 1. Schematic view of the methodology used to produce the 
barcodes representing the evolutionary histories of the human proteome. 
Three main steps are shown. (A) Multiple evolutionary parameters are 
selected and described statistically. (B) The values of these parameters for 
different species are compiled in a 2D barcode. The statistical description 
of these parameters is used to define a colour code for the barcode. 
(C) For each barcode, a lower dimensional barcode (1D-barcode) is 
generated.
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sequence. This parameter may indicate potential 
genetic events, such as exon/domain gains or losses, 
but may also highlight protein fragments or sequence 
prediction errors.

•	 no_of_regions: the number of conserved regions 
defined by MACSIMS and shared between 
the human reference protein and the vertebrate 
sequence.

•	 sequence_identity: the percent residue identity 
shared between the human reference protein and 
the vertebrate sequence.

•	 no_of_domains: the number of known pro-
tein domains in the vertebrate sequence. These 
domains are based on annotations from the Pfam 
database.

•	 domain_conservation: a qualitative parameter 
indicating changes in the domain structure of 
the vertebrate sequence compared to the human 
reference protein. This parameter identifies an 
unchanged domain organization, domain gains, 
domain losses or domain shuffling.

•	 hydrophilicity: the average hydrophilicity of the 
vertebrate sequence.
Two parameters, representing orthology/paralogy 

data were also extracted from the OrthoInspector 
database:
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•	 inparalog: the number of human inparalogs with 
respect to the specific vertebrate organism. This 
parameter represents the recent duplicability of a 
human gene compared to the other species.

•	 co-ortholog: the number of co-orthologs in the 
specific vertebrate species with respect to human. 
This parameter indicates the number of gene 
duplications in the non human lineage.
Finally, a parameter representing the genome 

neighborhood between the human and each vertebrate 
species was calculated:

•	 synteny: categorical parameter with 3 values: 
(i) synteny on both sides of the gene, (ii) synteny 
either downstream or upstream of the gene (iii) no 
synteny.
All these evolutionary parameters were then 

organized in a 2D matrix, which we will refer to as the 
“2D-barcode” (Fig. 1B). Each row of the 2D-barcode 
represents one parameter (denoted A, B … to N). Each 
column of the 2D-barcode represents one species 
(denoted 1, 2 … n) and the intersection between rows 
and columns corresponds to the value or the state of 
one specific parameter, in one particular species.

To facilitate visualization of the 2D-barcode, a 
color is assigned to each matrix cell representing typi-
cal or atypical parameter values (Fig. 1B). To do this, 
the distribution of each parameter in each organism 
is first described by the sample percentiles, using the 
Emerson-Strenio formulas35 implemented in the R 
software. These nonparametric statistics are used to 
avoid bias due to non-Gaussian distributions of some 
of the parameters. The Emerson median, whiskers 
and hinges are then used to define three intervals that 
are assigned color gradients. The first interval (IT1) 
is assigned a blue-to-green gradient and represents 
values that are lower than what is generally observed 
for a specific parameter in a specific organism:

The second interval IT2 (green color) represents 
values that correspond to what is generally observed 
for a specific parameter in a specific organism.

	 IT x IT x IT2 1 3= ∈ < <{ } |

The third interval (IT3) is assigned a green-to-red 
gradient and represents values that are higher than 
what is generally observed for a specific parameter in 
a specific organism.
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Finally, the 2D-barcodes are reduced to a single 
dimension (Fig. 1C), called the 1D-barcode. The 
1D-barcode is a simple vector representing the “aver-
age” state of each evolutionary parameter for the 
complete set of vertebrate species considered and 
is designed to facilitate inter barcode comparisons 
and clustering. The 1D-barcode values are produced 
by calculating phylum-weighted means: (i) for each 
parameter, a mean is calculated for 4 phyla: mammals, 
sauropsida, amphibians and teleostei, (ii) these phylum 
means are used to calculate a new mean that is the final 
value for a specific parameter of the 1D-barcode. As in 
the 2D-barcode, a color is assigned to each 1D-barcode 
parameter value based on the sample percentiles, for 
visualization purposes. However, in contrast to the 
2D-barcodes, these percentiles are not organism related. 
They are based on the phylum weighted mean param-
eter values from the complete set of 1D-barcodes.

Barcode clustering and O enrichment 
analysis
The complete set of 1D-barcodes representing the 
human proteome were used for the clustering anal-
ysis, although barcodes with missing values were 
removed from the test set, leaving a total of 19465 
barcodes. Each 1D-barcode was represented by a 
vector of real values, X=(x1,x2,…xn) and the distance, 
d(X,Y) between two barcodes was defined as:


d X Y x yi i

i

n

( , ) ( )= -
=
∑ 2

0

2

The distance between each pair of barcodes was 
calculated and the complete pairwise distance matrix 
as used as input to a clustering program that imple-
ments an improved Potts clustering model.36 The 
Potts clustering approach, also known as super-para-
magnetic clustering, is based on the physical behavior 
of an inhomogeneous ferromagnet.37 No assump-
tions are made about the underlying distribution of 
the data. Briefly, a Potts spin variable is assigned to 

each data point and short range interactions between 
neighboring points are introduced. Spin-spin correla-
tions are measured by a Monte Carlo procedure and 
are used to partition the data points into clusters.

The GoMiner software38 was then used to analyze 
the GO enrichment of the resulting barcode clusters. 
The complete set of human reference sequences 
was used as a background gene list. As stated by the 
GoMiner authors, the calculated P-values should be 
considered as heuristic measures, useful as indicators 
of possible statistical significance, rather than as the 
results of formal inference. The P-values can be used, 
for example, to sort categories to identify those of 
the most potential interest. In this work, a cluster was 
considered to be enriched in a GO term if the associ-
ated P-value was ,0.05, the recommended value for 
high-throughput GoMiner. We then sorted the clusters 
according to their mean P-values and selected several 
top ranking clusters for further manual analysis.

Barcode website
All the data presented in this publication are avail-
able online at the following address: http://lbgi.igbmc.
fr/barcodes. The website interface allows the user to 
browse all the human barcodes, as well as the anno-
tated multiple alignments corresponding to each 
barcode. Barcodes can be selected by textual searches 
with Uniprot and Ensembl identifiers or by upload-
ing a Fasta sequence followed by a BlastP search. The 
results of two high throughput analyses are also avail-
able: the mapping of all the 1D-barcodes on the human 
chromosomes and the clustering of the 1D-barcodes 
generated by the Potts model.

Results and Discussion
Design of the barcode
The objective of the EvoluCode evolutionary bar-
code is to integrate heterogeneous biological data 
from different biological levels in order to highlight 
new evolutionary patterns or scenarios that could not 
be detected using only one kind of data (genomic 
context data, sequence data, expression data …). 
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In this study, we applied the barcode formalism to 
the human proteome to study vertebrate evolution. 
This barcode (described in detail below) includes 
data from 17 vertebrate species and 10 evolutionary 
parameters, representing different biological levels, 
from the genomic level (synteny) to the clade level 
(number of co-orthologs). Nevertheless, the barcode 
can theoretically be of any dimension N × n, with a 
parameter and species composition depending on the 
objectives or evolutionary scale (eg, primates, verte-
brates, eukaryotes…) of the study.

The barcode combines both continuous parameters, 
such as sequence conservation or hydrophobicity, 
and discontinuous parameters, such as local synteny 
conservation or domain organization. Since the different 
parameters have very heterogeneous distributions 
(multi-modal, exponential, normal distribution…) 
they cannot be described using a single statistical 
model. We therefore developed a methodology to 
normalize the values of any given parameter using 
simple percentile statistics, which are suitable for 
any kind of parameter distribution. For visualization 
purposes, the normalized parameters are color-coded 
to highlight values that are inferior or superior to what 
is generally observed in a given species.

In order to summarize the diverse data inherent to 
the 2D-barcode approach, each barcode can also be 
represented in 1D. The 1D-barcode is thus a vector of 
continuous values representing the phylum-weighted 
average state of each evolutionary parameter. In the 
case of the human proteome barcodes, the 1D-barcode 
represents the average values observed during the 
vertebrate evolutionary history. As in the 2D-barcode, 
the parameters are color-coded to highlight the 
“expectedness” of a particular value.

Representation of complex evolutionary 
histories: the human proteome
To demonstrate the applicability of the EvoluCode 
formalism, we constructed barcodes to represent 
the evolutionary histories of the complete human 
proteome since the appearance of the vertebrates. 
Thus, for 19778 human genes, a representative ref-
erence protein was selected and homologs were 
identified in 16 complete genomes of vertebrate 
organisms (see Material and Methods). We then con-
structed 19778  multiple sequence alignments that 
were annotated with known structural and functional 

information. In addition, we estimated the synteny 
between the 19778 human genes and the 16 vertebrate 
genomes. Finally, orthologous relationships between 
human and the 16 vertebrates were inferred. Based on 
these data, we extracted various evolutionary param-
eters, representing primary sequence characteristics, 
domain organization, phylogenetic distribution and 
genome neighborhood conservation. These param-
eters were then integrated to form an evolutionary 
barcode representing each human reference protein. 
Some typical examples of barcodes, representing 
genes with heterogeneous and complex evolution-
ary histories, are shown in Figure 2 and described in 
detail below.

The first example (Fig. 2A) corresponds to the glu-
cagon receptor (reference protein GLR_HUMAN). 
This receptor is essential for blood glucose level regu-
lation, an essential function for all vascular animals.39 
For all parameters; the 2D-barcode displays homog-
enous states over all vertebrates, implying that rela-
tively few genetic events have affected this gene 
during vertebrate evolution.

The second example (Fig. 2B) corresponds to the 
barcode of a gene integrated from an endogenous ret-
rovirus (reference protein POK12_HUMAN). In our 
barcode construction procedure, the human gene was 
associated with genes from the other vertebrate species 
that have also integrated endogenous retrovirus genes, 
characterized by specific sequence motifs. Conse-
quently, the phylogenetic distribution of this barcode 
is dispersed. Moreover, these genes generally produce 
polyprotein products, explaining the heterogeneity 
observed for the number of domains and the fact that 
these sequences are not detected as orthologs.

The third example (Fig.  2C) represents a gene 
specific to the rodent and primate lineages (reference 
protein DPPA3_HUMAN). This gene appeared 
recently in the mammalian lineage and was previously 
characterized as playing a role in developmental cell 
pluripotency and in adult sexual organs.40 The protein 
product of this gene has several unusual characteristics. 
Despite its recent evolutionary history, it has very low 
sequence conservation, with 78% percent identity 
between human and macaque and only 37% between 
human and mouse. This is supported by heterogeneous 
hydrophobicity scores in the different species. Such 
rapid divergence for reproductive proteins is a well-
known phenomena.41
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The last example (Fig.  2D) illustrates the ability 
of our multi-level barcode approach to highlight a 
potential genetic event. The ‘Pogo transposable element 
with ZNF domain’ gene (reference protein POGZ_
HUMAN) is involved in kinetochore assembly.42 The 
genetic event highlighted by the 2D-barcode occurred 
just after the separation of the theria and prototheria 
lineages. Two different blocks can be distinguished in 
the 2D-barcode of POGZ_HUMAN. The first block 
includes all theria and for these species, the gene is 
characterized by long sequences with conserved syn-
teny and one ortholog in each species. The second 
block is less homogeneous, characterized by shorter 
sequences with fewer domains and low percent iden-
tities compared to human. The barcode thus suggests 
a potential domain gain for this gene in the marsupial 
and placental mammal lineages. This genetic event 
is particularly interesting because it occurred in a 
gene implicated in a fundamental process (mitosis) 
but indicates recent mammalian innovation in this 
process.42

These examples illustrate the wide range of 
information that can be extracted using the barcode 
formalism. By visualizing the evolutionary histories 
of the different proteins in the form of 2D-barcodes, 
general evolutionary trends can be observed and 

specific evolutionary events such as genetic events 
can be easily identified. The following sections will 
describe some large-scale analyses of the complete 
set of barcodes representing the evolutionary histories 
of the human proteome.

Large scale visualization of evolutionary 
barcodes
Although the 2D-barcode is a useful tool for visualizing 
the evolutionary histories of a small number of 
genes, it is too complex for large-scale visualization. 
To address this issue, we designed a 1 dimensional 
version of the evolutionary barcode, called the 
1D-barcode. To estimate whether these 1D-barcodes 
can usefully represent global evolutionary histories, 
we mapped the human proteome 1D-barcodes to the 
24 human chromosomes, resulting in a barcode map 
of the complete genome.

The visual inspection of this map allowed us 
to distinguish several previously published gene 
clusters. One example is the case of the keratin I 
and keratin II gene clusters. Early chordates had 
one keratin I gene and one keratin II gene.43 During 
vertebrate evolution, these genes evolved to form 
gene clusters with evidence of cluster expansion from 
amphibia and birds to mammals.44 A second gene 
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Figure 2. Four examples of 2D-barcodes (square cells) are shown. Rows represent evolutionary parameters and columns represent vertebrate species. 
A color gradient highlights parameters having respectively, values lower than what is generally observed (blue), generally observed values (green), 
values higher than what is generally observed (red).The 1D-barcode is shown on the left hand side (round cells). Each barcode is associated with one 
human protein: (A) the glucagon receptor (GLR_HUMAN), (B) the HERV-K_1q22 provirus ancestral Pol protein (POK12_HUMAN), (C) the developmental 
pluripotency-associated protein 3 (DPPA3_HUMAN), and (D) the Pogo transposable element with ZNF domain (POGZ_HUMAN).
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family appeared during mammalian evolution and 
separates the type I KR chromosomal cluster in two 
parts. This family contains keratin associated proteins 
(KRAP) and represents one of the major components 
of hair, playing essential roles in the formation of rigid 
and resistant hair shafts.45 Figure 3 shows the consecu-
tive 1D-barcodes corresponding to the human type I 
keratin (KR) cluster and highlights different evolu-
tionary histories. The older KRs are the cytokeratins, 
which are present in the amphibian and bird KR clus-
ters. The number of human inparalogs and the number 
of co-orthologs in other species have higher values 
(shown in red) for these cytokeratins compared to the 
values observed in other human genes. In particular, 
the number of human inparalogs is relatively high 
compared to the other vertebrate species, indicating 
that numerous duplications occurred after the cytok-
eratin duplications in early vertebrates. Interestingly, 
the values of these parameters are much lower for 
hair KR and inner root sheath KR, implying that these 
genes duplicated more recently. The KRAP cluster 
splitting the keratin cluster in two parts has very dif-
ferent barcode profiles. The unusual values of the cor-
responding 1D-barcodes suggest original evolutionary 
histories. Indeed, the values of the synteny, inparalog, 
co-ortholog and sequence conservation parameters are 
low, indicating a gene family that appeared recently 
with high variability between the species. In fact, 

these genes are specific to mammals and have evolved 
and diverged rapidly.45 Thus, this example illustrates 
the ability of the 1D-barcodes to identify local chro-
mosomal regions that have experienced similar evolu-
tionary histories. Such an approach could be used in 
the future to identify other chromosomal features, for 
example evolutionary breakpoints.46

Genome-level clustering of evolutionary 
histories
The goal of this analysis was to identify subsets of 
genes in the full set of 19778 human genes that share 
similar barcodes, ie, similar evolutionary histories. 
To achieve this, we defined a Euclidean distance 
metric between any two barcodes based on the 
phylum-weighted mean values of each evolutionary 
parameter in the 1D-barcode. Since no a priori 
assumptions can be made about the statistical models 
underlying the parameter value distributions, we 
used a clustering algorithm based on nonparametric 
techniques: the Potts clustering model, also known as 
super-paramagnetic clustering. The Potts model was 
first developed for physical systems,47 then recently 
adapted for clustering purposes in neuroscience and 
bioinformatics.48–52 The advantage of this technique is 
that the user does not need to specify the number of 
clusters required, because this number is estimated in 
a probabilistic framework. In particular, we used an 
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Figure 3. The 1D-barcodes corresponding to the human type I keratin cluster. 
Notes: Each column represents one 1D-barcode of one protein. Several keratin subfamilies are delimited by white vertical lines. The boundaries of the 
keratin cluster are delimited by black arrows.
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improved version of this clustering technique called 
Conditional-Potts Clustering Model.53 This model is 
based on an improved Potts clustering model37 with 
an additional prior estimation of the most suitable 
parameters for an efficient clustering. Using the Potts 
clustering model, 303 clusters were generated with a 
maximum cluster size of 380 proteins.

To investigate the potential functional significance 
of these barcode clusters, we performed a GO 
enrichment analysis of the 303  generated clusters 
using the GoMiner software.38 Figure  4  shows 
the distribution of the mean enrichment P-values 
obtained by considering all GO terms with a 
P-value  ,0.05 (the lower the P-value, the better 
the enrichment). Most clusters are enriched in at 
least one GO term, with 75% of the clusters having 
mean P-values  ,0.025 and 98% of the clusters 
having mean P-values ,0.03. Several examples of 
the most enriched clusters are described in Table 1 
and some of these clusters are clearly related to 
specific gene families. One striking example is 
the cluster 15, which groups numerous olfactory 
receptors. The family of olfactory receptors 
experienced a vast expansion during the chordate 
evolution, with the number of olfactory receptors 
ranging from a dozen in fishes to over a thousand in 
rodents.54 Moreover, pseudogenization and decline 
of olfactory functions has occurred in some lineages 
and it is thought that half of all primate receptor 
genes may be pseudogenes.55 The evolutionary 
history of this family is characterized by barcodes 

with high hydrophobicity scores, high domain 
conservation and a variable number of co-orthologs 
in mammalian species. Interestingly, some keratin-
associated proteins, implicated in hair development 
were clustered together with the olfactory receptors, 
possibly reflecting their similar, recent expansion 
during mammalian evolution. Other enriched 
clusters correspond to highly conserved systems in 
vertebrates. For example, cluster 46 is enriched in 
genes linked to the mitochondrial respiratory chain. 
Similarly, clusters 67 and 153 are enriched in genes 
linked to translation and mRNA splicing respectively. 
Interestingly, the barcodes associated with these two 
clusters are mainly differentiated by the synteny 
conservation. The synteny tends to be conserved for 
genes linked to mRNA splicing complexes, but not 
for the genes involved in translation.

In this example analysis, we have studied the func-
tional significance of the barcode clusters, based on GO 
term enrichment. In the future, we also plan to investigate 
the correlations between the barcode clusters and other 
functional data, including gene expression profiles, 
interactomic data and biological networks.

Multi-dimensional analysis highlights 
new evolutionary trends
To further illustrate the power of the multi-level 
barcode analyses, we analyzed the barcodes 
corresponding to multi-pass membrane proteins. 
These proteins have strong physico-chemical 
constraints with a predominant conservation of 
hydrophobic residues in their alpha helix compared 
to soluble proteins.56 We extracted from our sequence 
dataset, the 2674 human proteins that are annotated as 
“Multi-pass membrane protein” in Uniprot (Uniprot 
search engine keywords: “location: SL-9909”). In 
this protein subset study, we wanted to investigate 
in more detail the contributions of each of the 
individual parameters to the clustering process. 
We therefore performed a Multiple Correspondence 
Analysis (MCA) clustering of the 1D-barcodes, 
using the FactoMineR R package.57 This package 
provides visualization tools to display the clustering 
results. In particular, we can clearly illustrate the 
correlations between the barcode parameters and the 
inferred barcode clusters.

Using the 2674 “multi-pass membrane protein” 
barcodes, the MCA clustering produced 4 barcode 
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clusters, as shown in Figure 5. The first axis represents 
parameters linked to the evolutionary history, while 
the second axis is linked to sequence characteristics. 
Details of the cluster compositions are provided in 
supplementary Table 2. All 4 clusters contain similar 

numbers of barcodes, respectively: 30.3%, 23.7%, 
26.6% and 19.4%. Clusters 1, 3 and 4 correspond 
to three different barcode profiles and are described 
in detail below. Cluster 2 contains barcodes that are 
intermediates between clusters 1, 3 and 6.

Table 1. Some examples of barcode clusters with high GO enrichment. The most enriched terms for each cluster are shown 
with their corresponding P-value (10log(p)) and false discovery rate (FDR). The lower the P-value and FDR, the better is 
the enrichment.

Cluster  
id

Representative 
sequence

Go accession Go terms 10log(p) FDR

46 NDUA7_HUMAN GO:0022904 repiratory electron transport chain -10.894378 0
GO:0006796 phosphate metabolic process -5.162176 0.003

15 OR2L5_HUMAN GO:0007608 sensory perception of smell -69.573133 0
GO:0007606 sensory perception of chemical stimulus -66.771345 0
GO:0007186 G-protein coupled receptor protein signaling pathway -55.368505 0

95 D104A_HUMAN GO:0042742 defense response to bacterium -10.156822 0
GO:0009607 response to biotic stimulus -5.232461 0
GO:0006950 response to stress -4.145167 0.018

207 MYH3_HUMAN GO:0030029 actin filament-based process -8.190798 0
GO:0007265 Ras protein signal transduction -3.375746 0.015
GO:0014065 phosphoinsitide 3-kinase cascade -2.923239 0.031

67 TF2H2_HUMAN GO:0006414 translational elongation -14.67022 0
GO:0042273 ribosomal large subunit biogenesis -5.260087 0
GO:0016072 rRNA metablic process -4.21555 0

153 RL15_HUMAN GO:0044260 cellular macromolecule metabolic process -8.336618 0
GO:0000398 nuclear mRNA splicing via spliceosome -6.719139 0
GO:0006807 nitrogen compound metabolic process -5.889665 0
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•	 Cluster 1 (black) contains 30% of the 2674  inte-
gral membrane proteins and corresponds to pro-
teins with short sequences and low hydrophilicity. 
From an evolutionary point of view, they are less 
well conserved, with early mammals, sauropsida 
and fish often sharing as little as 50% sequence 
identity. Their phylogenetic distribution is very 
heterogeneous, with gene gains and losses in many 
phyla, represented by a wide range of values for 
the inparalog and co-ortholog parameters. A large 
proportion (55%) of this cluster is composed of 
G-protein coupled receptors (GPCRs), mainly 
olfactory and taste receptors.

•	 Cluster 3 (green) contains 27% of the proteins and 
is the most homogeneous cluster. It groups barcodes 
with the number of domains of conserved regions, 
conserved synteny in most mammals and a single 
ortholog in most vertebrate species. Thus, the 
cluster corresponds mainly to genes that are highly 
conserved in vertebrates with fewer genetic events 
compared to other multi-pass membrane proteins. 
To investigate the potential functional significance 
of this cluster, we mapped the corresponding 
genes to the KEGG pathway database.58 This 
analysis linked 41% of the 293 mapped proteins 
to basal metabolic processes and neural processes 
(eg, hsa01100-Metabolic systems, hsa04080-
Neuroactive ligand-receptor interaction).

•	 Cluster 4 (blue) contains 19% of the proteins and 
represents a wider distribution of barcodes. It 
contains average to long sequences, with numerous 
conserved regions. The associated proteins are not 
necessarily conserved in vertebrates (heterogeneous 
sequence identity between barcodes in the cluster), 
but generally have lower hydrophobicity than the 
other multi-pass membrane proteins. In fact, the 
cluster contains many proteins with multiple intra/
extracellular regions, which are more conserved 
and hydrophilic than the hydrophobic α-helix 
transmembrane regions. Interestingly, 29% 
of cluster 4 proteins map to KEGG pathways 
involved in secretion processes (eg, hsa04724-
Glutamatergic synapse; hsa04972-Pancreatic 
secretion; hsa04976-Bile secretion; hsa04970-
Salivary secretion; hsa02010-ABC transporters).

This in-depth analysis of the barcodes corre-
sponding to multi-pass membrane proteins identified 

important evolutionary trends and their correlations 
with protein function. For example, the proteins in 
cluster 3 have evolved little during vertebrate evolu-
tion and are mostly involved in essential processes, 
such as metabolic or neural processes. In contrast, 
cluster 1 highlights a subset of integral membrane pro-
tein families, such as GPCRs, that have experienced 
more genetic events. Interestingly, such behavior 
seems to be correlated with shorter, more hydrophobic 
sequences containing few intra/extracellular regions. 
Thus, membrane proteins that have fewer extramem-
brane regions are observed to be more divergent. This 
seems to contradict previous studies indicating that 
the transmembrane regions of membrane proteins are 
highly constrained and diverge at slower rates than 
the extramembrane regions.56

EvoluCode in systems biology:  
a proof of concept
Systems biology aims to analyze genes and proteins 
in the context of their biological networks. As a proof 
of concept, we mapped our evolutionary barcodes to 
the KEGG pathway corresponding to the cysteine and 
methionine metabolism (hsa00270), in order to identify 
branches or ‘hot spots’ having particular evolutionary 
behaviors. Figure 6 shows the human methionine sal-
vage sub-pathway, involving 13 human proteins. This 
sub-pathway is found in many phyla, such as plants, 
fungi, mammals, and bacteria (for a review, see Albers, 
2009). We then calculated a normalized Euclidean dis-
tance between each pair of barcodes and constructed 
a neighbor-joining tree from the resulting distance 
matrix (Fig.  6A). This distance between barcodes 
represents the differences between the corresponding 
protein evolutionary histories and takes into account, 
not only sequence similarity, but also other factors, 
such as domain conservation, gene duplicability and 
genome context. In the context of the methionine sal-
vage pathway, two barcodes corresponding to the adi1 
and il4i1 genes are relatively distant compared to the 
other barcodes of this metabolic pathway.

First, the ADI1 protein (MTND_HUMAN) is an 
acireductone dioxygenase. Depending on the ion used 
as a cofactor, Fe2+ or Ni2+, this enzyme performs 
different reactions, introducing an “off-pathway” 
branching.59 Its barcode demonstrates very high 
hydrophilicity and short sequences for all species, 

http://www.la-press.com


Evolutionary barcodes for multilevel data analysis

Evolutionary Bioinformatics 2012:8	 73

but a variable number of conserved regions and an 
additional domain in the fish lineage. Interestingly, this 
enzyme is also implicated in several other processes: 
the compound produced by this enzyme can cause 
apoptosis60 and the adi1 gene has been implicated in 
prostate cancers.61 Thus, it not only generates a new 
branch in the methionine salvage pathway, but it is also 
involved in other pathways. These interactions can 
lead to different evolutionary constraints compared 
to the other genes implicated in the “canonical” 

methionine salvage pathway, which might explain its 
position as an outlier in this analysis.

Second, the IL4I1 protein (OXLA_HUMAN) is an 
L-amino acid oxidase (LAO). Despite its presence in 
the KEGG methionine salvage pathway, this protein is 
mainly expressed in immune defenses of vertebrates 
and mollusks, in particular in immune system cells 
and B-cell lymphomas.62 As IL4I1 is not directly 
implicated in the basal metabolic processes, it is not 
surprising that the corresponding barcode is seen 
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as an outlier. Moreover, a recent study have shown 
that the LAO families have undergone repeated 
duplications and deletions.63 This study supported 
the hypothesis that IL4I1 and the ancestor of LAO1 
and LAO2 arose from an ancient duplication prior 
to the origin of tetrapods and that IL4I1 was lost in 
many non-mammalian tetrapods, whereas LAO1 and 
LAO2 were lost in mouse and human. This evolution-
ary pattern is in fact characteristic of many families 
involved in vertebrate immune processes.64

The mapping of the barcodes on the methionine 
salvage sub-pathway demonstrates their ability to 
highlight unusual evolutionary patterns, not only 
related to genomic data, but also to concepts such 
as centrality in networks or patterns of expression. 
Interestingly, both outlier barcodes are located in non 
linear parts of the pathway. Such correlation might 
indicate different evolutionary constraints for multi-
connected pathway nodes. However, this hypothesis 
will require further investigation. In particular, the 
identification of such patterns currently requires 
human expert analysis. Further developments will 
be needed to automate the process, involving high 
throughput comparison of the evolutionary barcodes 
with network and expression data, as well as rigorous 
mathematical analyses to identify breakpoints and 
barcode outliers.

Conclusions and Perspectives
The EvoluCode barcode formalism is a powerful tool 
for the visualization and quantitative analysis of com-
plex evolutionary histories in high throughput studies. 
Three major advantages are: (i) diverse parameters 
from different biological levels can be combined in a 
unifying framework, (ii) the parameter set can be eas-
ily modified, facilitating the construction of different 
barcodes for different purposes, (iii) the parameter 
values are normalized based on their specific distribu-
tions to allow direct comparisons within and between 
barcodes and to facilitate the rapid identification of 
typical/atypical values by the user.

We have constructed barcodes representing 
the evolutionary histories of the complete human 
proteome. The analysis was restricted to the vertebrate 
evolutionary scale to ensure the production of high 
quality multiple alignments, from which several bar-
code parameters are extracted. Although in principle, 
the barcode could be applied to higher evolutionary 

scales (eg, metazoa, eukaryotes …), such an extension 
would require more robust protocols to evaluate and 
validate the quality of the alignments.

One critical question that had to be addressed dur-
ing the design was the selection of pertinent evolu-
tionary parameters. The human proteome barcodes 
incorporate various multilevel parameters from 17 
vertebrate organisms, covering genomic context, pri-
mary sequence characteristics, sequence/domain con-
servation and phylogenetic distributions. However, 
both the species set and parameter set can be easily 
adapted to the goals of a specific study. The data min-
ing technique used for the subsequent analysis of the 
barcodes may also influence the choice of parameters 
to include. For example, some methods may be sen-
sitive to highly correlated parameters, and a corre-
spondence analysis (CA) may be necessary to select 
a subset of parameters with low dependency.

The combination of heterogeneous parameters is 
able to highlight more original and complex evolu-
tionary trends, which could not be detected based on 
a single parameter such as sequence conservation or 
orthology. We have demonstrated this in two large 
scale analyses: chromosome mapping and clustering. 
However, the EvoluCode formalism opens the way 
to the application of a wide range of standard data 
mining or machine learning techniques that have not 
been possible in evolutionary studies. To illustrate the 
potential of EvoluCode barcodes in systems biology 
studies, we described the analysis of a small metabolic 
pathway. This proof of concept provides the basis for 
future studies. The automation of such analyses at the 
scale of all pathways in an organism should provide 
valuable information for pathway evolution analysis. 
In particular, the ability to calculate distances between 
barcodes will allow us to estimate parameters such as 
pathway “evolutionary rates” and to highlight rapidly 
evolving sub-pathways.

Future developments will include on the study of 
other distance metrics, in addition to the Euclidean 
distance used here. In particular, we will use the 
Pearson correlation coefficient to estimate the linear 
dependency between the barcode parameters. This 
would lead to a barcode clustering based on relative 
changes in the parameter values, rather than their 
scale. We will also apply more rigorous mathemati-
cal theories to identify outlying parameter values, as 
well as shifts or breakpoints in the barcode behavior. 
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For example, a formal description of the different 
blocks in the barcode corresponding to POGZ_HUMAN 
(Fig.  2) could be a first step towards automatically 
detecting genetic events. Similarly, the stochastic or 
heterogeneous nature of a given barcode could be 
estimated based on the frequency of parameter state 
changes in the different phyla. This could lead to the 
development of quantitative indicators of the rate of 
evolution for a particular gene, facilitating the auto-
matic identification of “original” evolutionary sce-
narios and signatures of adaptation or innovation. 
The analysis of the proteome is thus expected to shed 
more light on the fundamental aspects of the evolu-
tionary processes and the factors that shape contem-
porary vertebrate genomes.

In the longer term, the methodologies developed 
here should facilitate, not only the analysis of pro-
teomes from other species, but also the efficient 
exploitation of evolutionary information in functional 
genomics (notably, in interactomics and transcrip-
tomics comparisons or in high throughput promoter 
studies) and large scale systems biology projects.
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9 TOWARDS AN EVOLUTIONARY VIEW OF HUMAN SYSTEMS 
 

Achieving a system-level description of biological phenomena is a significant challenge that requires 

the integration of omics data from different biological levels. Evolutionary systems biology goes even 

further to try to understand the evolutionary mechanisms that shaped the complex systems we 

observe today. In this context, EvoluCodes provide a multi-scale overview of gene-level evolutionary 

histories. By integrating the information contained in EvoluCodes with system-level information, we 

can transfer the evolutionary information to a higher biological level and open the way to an 

innovative system level extraction of evolutionary knowledge. 

 

9.1 Defining biological systems and their evolutionary context 
 

Today, many biological networks are available to describe biological phenomena at the systems level 

and their number is constantly expanding thanks to the possibilities offered by the new high 

throughput technologies. Unfortunately, we are still far from having an exhaustive description of 

complete cellular networks. Despite the limitations induced by their simplification, schematic models 

of biological networks at the cellular level are currently being built, with more and more genes 

implicated in multiple cellular processes (see chapter 4). For example, recent biomedical research has 

highlighted the complexity of cellular systems, as disease dysfunctions can be linked to several 

functional network modules (Menon and Farina, 2011). In this context, studying network 

evolutionary history can offer many opportunities and understanding the phenomena that have 

shaped and extended biological networks over billions of years is one of the keys for the 

development of network-based therapies (Barabasi et al., 2011). A number of pathway evolutionary 

histories have been reconstructed by expert integration of phylogenetic analysis based on 

sequences, shared structural domains and interactomic data, for example (Comparot-Moss and 

Denyer, 2009; Gazave et al., 2009; Oberst et al., 2008; van Dam et al., 2011). These studies 

demonstrate that the topology of a network is tightly linked to its evolutionary history, with new 

interactions appearing after gene duplication, enzyme recruitment or the derivation of a pathway 

module (Yamada and Bork, 2009). However, this evolutionary knowledge has emerged from single 

pathway studies and no methodologies exist to perform high-throughput pathway-level evolutionary 

studies and to extract evolutionary information from many pathways simultaneously. Developing 

new methodologies to exploit biological networks and their evolutionary histories will pave the way 

to understanding the more complete and complex networks that will be described in the future. 

 

9.1.1 Towards a conceptual system-level evolutionary map 
 

A biological system can be defined as a set of interactions between different compounds implicated 

in a biological phenomenon. The interactors include RNA, metabolites, proteins and other chemical 

compounds. Several biological databases have been developed for the description of such systems 

(for a complete review see chapter 4). The networks and pathways described in these databases 

often correspond to manually defined sub-parts of a complete biological system and consist of 
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molecular components that interact to initiate a particular biological response. Thus, biological 

phenomena such as ‘carbohydrate synthesis’, ‘ATP production’ or ‘response to viral infection’ can be 

associated with a list of genes implicated in the process. These definitions are clearly linked to a 

subjective view of biological processes and most current network definitions are an artificially bound 

sample of the true system structure and behaviour. Indeed, most genes implicated in manually 

defined networks also interact with other partners in biological processes corresponding to other 

phenomena. A good illustration of this is the class of genes called 'hub' genes. Hubs often have 

multiple biological functions and may play a role in various unrelated processes. Their expression 

depends on many factors, such as tissue specificity or the response to different external stimuli 

(Lehner et al., 2006). Nevertheless, such a network description is an effective simplification for 

human readability and their delimitation facilitates systems-level evolutionary studies. 

  

Figure 9-1. Framework to construct and explore multi-level evolutionary network 

maps. EvoluCodes are assigned to individual genes and mapped onto a known gene 

network, such as a KEGG pathway map. 

 

Starting from this observation, we wanted to explore whether the evolutionary information 

contained in the EvoluCodes could be used in the context of a biological pathway to transfer gene-

level knowledge to the system level, allowing new insights into the evolutionary history of the 

system. We thus conceived the concept of the ‘evolutionary map’, a combination of the EvoluCode 

and pathway data (figure 9-1). An ‘evolutionary map’ describes the evolutionary context 

corresponding to a particular biological phenomenon. As genes can participate in different networks, 

the same EvoluCode, corresponding to a single gene, can be considered in different biological 
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contexts. This fact opens up many possibilities. For example, we can analyze systems evolutionary 

behaviour in an intra-network framework or even perform an inter-network analysis, thus 

approaching a cellular level evolutionary analysis. 

 

9.1.2 Knowledge extraction at the system-level 

 

 The evolutionary maps provide a framework for studying evolutionary histories from a system-level 

point of view. A single map can contain heterogeneous gene evolutionary histories, i.e. EvoluCodes 

with different profiles. One of the advantages of EvoluCodes in the context of biological pathways is 

that they describe evolutionary histories based on multi-level parameters. In a pilot study (described 

in detail in publication n°2), we mapped our evolutionary EvoluCodes to the KEGG human 

methionine salvage pathway, a sub-pathway of the methionine pathway (KEGG id: hsa00270). We 

calculated pairwise distances between EvoluCodes in order to identify branches or ‘hot spots’ of the 

network, corresponding to unusual evolutionary histories compared to the rest of the network. We 

highlighted two genes, adi1 and il4i1, for which EvoluCode discrepancies are observed. An in-depth 

analysis of the functions and localization of the corresponding genes suggested that the observed 

evolutionary discrepancies might be linked to unusual evolutionary patterns not only related to 

genomic data, but also to concepts such as centrality in networks, patterns of expression or different 

evolutionary constraints related to the topology of the pathway. This study highlighted the potential 

of EvoluCodes for the study of evolutionary patterns, not only in a set of genes but also in a complete 

biological system. This exciting result motivated us to extend our approach to a larger set of 

biological systems. 

We thus set out to develop a methodology to automatically apply our approach to all human 

pathways. To investigate the events that may have occurred in the evolution of the genes 

participating in a specific biological phenomenon, we used a knowledge extraction approach on the 

evolutionary maps (figure 9-2). We applied an anomaly detection algorithm called the Local Outlier 

Factor (LOF) to identify ‘outlier’ EvoluCodes, i.e. genes with an unusual EvoluCode compared to the 

other genes in the pathway. The basic concept of LOF is to map the objects under study, here the 

EvoluCodes, into a Euclidean space and then calculate the local density of the objects, where the 

locality is defined by k nearest neighbours. By comparing the local density of an EvoluCode to the 

local densities of its neighbours, we can identify regions of similar density, as well as EvoluCodes that 

have a substantially lower density than their neighbours. The latter are assigned a degree of 

outlierness (see chapter VI for LOF algorithm details). The LOF score thus represents the 

cohesiveness of the EvoluCode in the context of its pathway. The authors of the LOF algorithm 

consider that a score less than 1 indicates a clear inlier object, i.e. a cohesive EvoluCode. EvoluCodes 

with a LOF score significantly greater than 1 are considered as outliers. However, the threshold 

determining a clear outlier depends on the dataset. Here, we defined the outlier threshold value as 

the upper quartile of the LOF scores for all EvoluCodes in the context of the 248 human pathways 

studied, which was 1.037. 
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Figure 9-2. Methodology to attribute an ‘outlier’ status to a gene evolutionary 

history in the context of its pathway. A. The data extracted from the KEGG database 

defines a set of pathway genes. B. The corresponding EvoluCodes are extracted and define 

the evolutionary context of the map. C. The Local Outlier Factor (LOF) is used to highlight 

EvoluCodes with the highest discrepancy relative to the pathway evolutionary context. D. 

The analysis of the evolutionary map of the pathway provides new insights into systems 

evolution.  

 

The ‘outlier’ status of an EvoluCode strongly depends on the evolutionary context in which it is 

considered, e.g. the scope of the considered pathway. Consequently, defining a biologically relevant 

pathway is a crucial step in extracting reliable evolutionary information. This idea is illustrated in the 

following example. 
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Figure 9-3. Relation between the pathway context and the definition of outlier 

genes. The use of the LOF algorithm produces different outliers depending on the pathway 

context that is considered. Outliers in the methionine pathway are indicated by blue 

rectangles and outliers in the methionine salvage pathway by red circles.  

 

Figure 9-3 shows the methionine pathway and one of its modules: the methionine salvage pathway. 

We calculated outlier EvoluCodes in the context of both of these pathways. The methionine salvage 

pathway is common to all eukaryotes and is a module of the basal cellular metabolism (Thomas et 

al., 2000). We observe that the adi1 gene is considered as an outlier within the context of this 

module and in fact, adi1 is known to be expressed only in lymphocytes. This discrepancy, linked to 

patterns of expression, is not apparent in the context of the whole methionine pathway. However, 

new information can be extracted as two new outlier genes are detected. First, the mtr gene codes 

for a long modular enzyme (METH_HUMAN), with five domains catalyzing different functions and is 

highly conserved in all vertebrates. In contrast, most metabolic enzymes in this pathway have unique 

single catalytic domain and are often less conserved. We hypothesize that the mtr gene may be 

subject to specific evolutionary constraints due to its complex domain organisation. This is supported 

by the fact that the gene has been implicated in many human diseases (Doolin et al., 2002). Second, 

the cth gene is characterized by a protein product with broad substrate specificity (CGL_HUMAN) as 

suggested by the three reactions in the KEGG map and in the literature (Krishnan et al., 2011). The 
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corresponding EvoluCode indicates higher sequence divergence compared to the other genes in the 

whole pathway, possibly due to the low affinity nature of the protein. These examples demonstrate 

that the methodology can be applied to different levels of networks to extract different evolutionary 

information. A large-scale approach can be used to highlight global evolutionary trends, while a more 

focused analysis may reveal detailed features of local networks.  

 

9.2 Exploiting the EvoluCodes to elucidate system-level evolution 
 

In this section, I will describe in more detail a large-scale analysis of pathway evolutionary maps, 

involving all human pathways defined in the KEGG PATHWAY database. Most of the processes in the 

database correspond to metabolic pathways, signalling pathways or cellular responses to stimuli. 

These are well-defined pathways, corresponding to well-defined biological phenomena. We thus 

constructed 248 pathway-level evolutionary maps corresponding to all human KEGG pathway 

definitions, with a total of 5849 EvoluCodes mapped to the genes in these pathways. This set of 

human ‘evolutionary maps’ was our basis for the results described in the following paragraphs.  

To extract evolutionary knowledge at the system-level, we calculated LOF scores for all genes in the 

248 evolutionary maps and identified a total of 1147 outlier genes. Most evolutionary maps contain 

between 10 and 20% of outlier genes (figure 9-4).  

 

 

Figure 9-4. Percentage of genes with anomalous, outlier EvoluCodes in 248 human 

metabolic pathways from the KEGG database. 

 

We then calculated the evolutionary cohesiveness of the pathways, i.e. the proportion of outliers 

(figure 9-5). Maps with the highest cohesiveness are typically involved in universal biological 

processes such as translation or cell growth/death, in line with previous observations (Fokkens and 

Snel, 2009).  
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Figure 9-5. Percentage of genes with outlier EvoluCodes in 248 human metabolic 

pathways from KEGG. Pathways are classified into functional groups. (Pathways with a 

larger number of outlier genes have less cohesive evolutionary histories). 

 

To investigate the biological significance of genes with anomalous evolutionary histories, we 

performed several studies to measure the correlations between outlier evolutionary histories and 

intra-pathway and inter-pathway criteria.  

 

9.2.1 Links between gene evolutionary history and network topology  

 

Network topology is an important feature of biological systems. Some genes can be highly connected 

to many other interactors in the same or different biological processes (Bock et al., 2012). Other 

genes are found in long linear chains and have few interactors, for example genes coding for 

specialized enzymes in metabolic network modules. The framework of the evolutionary maps 

provides an opportunity to confront gene evolutionary history and network topology and allows to 

perform this analysis on a large scale.  

To study the relationship between gene evolutionary histories and network topology, we focused on 

the metabolic networks defined in KEGG. These pathways are represented by graphs of metabolite 

nodes connected by enzymatic reactions (one or several genes being associated with the reaction). 

All KEGG metabolic pathways describe the same entity (metabolites) with the same type of link 

(enzymatic reactions). This is not the case for other KEGG pathways, where links can represent many 

concepts (enzymatic reaction, transport, activation, inhibition…), and therefore the evolution of the 

topology of these graphs is difficult to interpret.   
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We restricted our topological study to the 41 human metabolic pathways containing more than 20 

genes. This condition was introduced to ensure statistical power during the LOF estimation of 

‘outlier’ EvoluCodes. To study network topology, we used the network reaction and its underlying 

gene as a basal unit. We defined 6 topological classes of metabolic reactions, depending on the local 

redundancy and connectivity properties of the network (figure 9-6). A reaction can be assigned to 

more than one topological class. For example, multiple genes can catalyze the same reaction (class A) 

to produce a metabolite that is also used in another pathway (class C). We therefore annotated 

reactions associated with a combination of local topologies, provided that the combination is 

observed more than 20 times over all pathways. Only the combinations A&C and C&E reach this 

count. 

 

 

Figure 9-6. Definition of 6 classes of local topological motifs in metabolic 

pathways. The class depends on the redundancy and connectivity of the reactions (and 

associated genes) in the network. 

 

We constructed an initial set of 41 human metabolic pathways, containing a total of 875 different 

reactions (figure 9-7). Half of the reactions do not present a particular topology and belongs to the F 

class (figure 9-7 A) and all pathways have at least one reaction of class F. As might be expected, class 

C is observed in 95% of the pathways, confirming the high inter-pathway connectivity of metabolic 

pathways (Caetano-Anolles et al., 2009). All topologies, except class B, are observed in more than 

50% of the pathways. Interestingly, the absolute number of reactions describing specific local 

topologies does not correlate with this pathway repartition (figure 9-7 B). This indicates that the 

topologies that we defined are not homogeneously shared over the KEGG pathways. For example, 

catabolism-related pathways are characterized by many pathway interfaces (topology C), i.e. 
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reactions producing metabolites that are central to all metabolic pathways (sugars, pyruvate, acetyl-

Coa, etc.). In contrast, anabolism-related pathways are more enriched with D topologies, as many 

cofactors are required for the transfer of chemical groups during synthesis of complex metabolites 

(e.g. transfer of a methyl group). In total, >40% of the reactions have a class C topology, >25% of the 

reactions have a class A topology, while each of the other topologies are associated with <13% of the 

reactions. Nevertheless, 58% of the reactions are associated with a specific topology (i.e. topologies 

A to E), giving a good coverage for evolutionary knowledge extraction for these classes. Moreover, 

we observe balanced sample sizes that can be used to calculate a potential enrichment of 

evolutionary history outliers.  

 

Figure 9-7. Repartition of metabolic reactions associated with topological classes. 

X-axis corresponds to topological classes defined in figure 9-6.  

 

To introduce an evolutionary component to the topology of the metabolic networks, we cross-

referenced our outlier EvoluCode data with the topological data in the 41 metabolic maps. Since 

several genes can be associated with a single reaction, in particular if the reaction is catalyzed by a 

protein complex, we assigned the gene with the lowest LOF score to each reaction, i.e. the gene with 

the most cohesive EvoluCode. Thus, a metabolic reaction and its local topology is associated with the 

outlier status of the corresponding gene. We observed that 671 reactions were associated with 

cohesive genes and 204 reactions with outlier genes. We studied the repartition of all outlier 

EvoluCodes in the different topological classes (figure 9-8).  

The results show that the cohesiveness of a gene in its network context depends on the local 

topological structure. We observe a clear enrichment of outlier genes in topologies D (27% of outlier 

genes) and C (22%). This can be compared to the class F, which contains only 8% of outliers despite 

representing 42% of the metabolic pathway genes. Thus, the smallest proportion of outliers was 

found at the nodes for which no particular topology was described (class F). In contrast, more 

outliers were found at the start/end points of a pathway (class D), and at the interface between 

pathways, the so called network ‘hubs’ (class C). The correlation that we observe between gene 

conservation and local network topology may be due to specific selection pressures, as proposed 
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previously (Yamada and Bork, 2009). Interestingly, the A&C combination of topology classes is 

associated with a similar enrichment. This may highlight a particular evolutionary pressure associated 

with multiple enzymes that catalyze a reaction to produce a metabolite that can be used in several 

pathways. We hypothesize that this particular topology reflects a network hot-spot for metabolite 

regulation.  

 

Figure 9-8. Topological inventory of outlier reactions in human metabolic 

pathways. (A) Distribution of outlier genes in the 6 topological classes. (B) 

Distribution of non-outlier genes (blue) and the proportion of outliers (red) in each 

class. Capital letters correspond to the proportion of genes belonging to a class. X-

axis corresponds to topological classes defined in figure 9-6.  

 

These results demonstrate that local network topology is correlated with evolutionary history. 

Furthermore, the outliers in the evolutionary maps can be used to pinpoint evolutionary ‘hot spots’, 

where differential evolution is observed. Numerous in-depth analyses could be performed on these 

maps to uncover the evolutionary mechanisms that gave rise to these hot spots. However, a key 

feature of metabolic networks oriented our research in another direction. Metabolic pathways are 

highly interconnected and numerous genes participate in different metabolisms. In fact, this 

observation can be extended to all KEGG pathways and the following section will describe an analysis 

of EvoluCodes from an inter-pathway point of view. 

 

9.2.2 Towards an integrative view of evolutionary phenomena at the cellular 

level 
 

Individual pathways often function in a coordinated fashion and understanding the interactions or 

crosstalk between pathways is important for deciphering complex cellular processes, such as the 

appropriate physiological responses to internal or external stimuli. The evolutionary cohesiveness of 

a gene is context-dependent, i.e. a gene may be defined as cohesive in one of these pathways and as 
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an outlier in another. Such cases of differential evolutionary conservation may indicate important 

events, such as gene duplications, rearrangements or losses, and the subsequent gain or loss of 

interactions in the network. To investigate these high-level processes of evolution, we identified all 

genes involved in the crosstalk between 155 KEGG pathway maps, reflected by the fact that all the 

genes in the set were present in at least 3 maps. For each pair of KEGG maps, we calculated the 

proportion of outlier genes observed in the overlapping set of genes shared between the two 

systems (figure 9-9). 

 

 

Figure 9-9. Characterization of crosstalk between pathways. The crosstalk between 2 

systems is characterized by the proportion of shared outlier genes, indicated by a color 

gradient from green (all cohesive) to red (all outlier).  

 

We then constructed a global map of the relationships between the 155 maps, representing the 

evolutionary behaviour of these pathways during vertebrate evolution (Figure 9-10). The exploration 

of this map provides a powerful and visual means of highlighting important events in the evolution of 

human biological systems. Two examples are highlighted in Figure 9-10 and described below. 
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Figure 9-10. Integrative map of vertebrate evolutionary histories at the cellular 

level. An integrated evolutionary map of selected human pathways show the number and 

cohesiveness of the gene evolutionary histories, associated with individual pathways (nodes) 

and pathway crosstalk (edges). 

 

Cell cycle and oocyte meiosis and maturation pathways  

The cell cycle and oocyte meiosis pathways are well conserved in most vertebrates. This is reflected 

in the fact that, in the global evolutionary map (Figure 9-10), we observe that the genes involved in 

the crosstalk between the cell cycle and oocyte meiosis are generally cohesive with the other genes 

in these pathways. In contrast, the exact nature of oocyte maturation varies in different species, 

since the females of some species produce thousands of eggs at a time, while in others, females 

produce relatively few mature eggs (Vasudevan et al., 2006). These differences are reflected in the 

higher proportion of EvoluCode outliers in the crosstalk with the progesterone-mediated oocyte 

maturation pathway (Figure 9-10 and Figure 9-11). A number of functional specificities are 

highlighted by the following outliers: 

Toll-lik e

recep tor

sign a lin g

NOD-like

recep tor

sign a lin g

RIG-lik e

recep tor

sign a lin g

Cytos olic DNA-

sen s in g

p5 3 sign a lin g

Cell cycle

Oocyte

meios is Proges teron e-m edia ted

oocyte ma tu ra t ion

Abipocytok in e

sign a lin g

Evolutionary map of human pathways

Hi

Edge Width:   Number of shared genes

Edge Colour:  Proportion of shared
genes defined as outliers

Node Diameter:  Total # of genes in pathway

0% 100%

Node Color: Cohesiveness of EvoluCodes
in pathway

High Low



Chapter 9. Towards an evolutionary view of human systems 

 

 
129 

 PMYT1_HUMAN is a cdc2-inhibitory kinase, which acts as a negative regulator of entry into 

mitosis during the cell cycle. Inspection of the EvoluCode indicates a more divergent 

sequence family than is typical for this conserved pathway. This might be a result of the 

different functions of Myt1, which is also implicated in control of entry into meiosis, either 

alone (as in Xenopus) or in concert with Wee1 (as in mouse oocytes) (Gaffre et al., 2011). 

 

 CDK2_HUMAN is a highly studied cyclin-dependent kinase that functions in the cell cycle in S 

phase progression (Liu and Kipreos, 2000). It also plays a role in the regulation of 

progesterone receptor (PR) signaling (Moore et al., 2007). Although the EvoluCode shows 

high sequence conservation in most vertebrates studied here, a perturbation is highlighted in 

Monodelphis domestica (opossum), Ornithorhynchus anatinus (platypus) and Gallus gallus 

(chicken) with lower sequence identity and fewer inparalog/co-ortholog relationships, 

reflecting the different CDK complements of these species. 

 

 

Figure 9-11. Cellular level analysis of KEGG pathways involved in the cell cycle or 

oocyte meiosis and maturation. Cohesiveness of genes shared by at least 2 of the 3 

pathways: genes with cohesive EvoluCodes for a given pathway are shown in green, genes 

with outlier EvoluCodes are highlighted in red, genes shown in grey are not present in the 

pathway. 

  

KEGG

Identifier

Uniprot

Identifier

Cell cycle

(hsa04110)

Oocyte

meiosis

(hsa04114)

Progesteron

e-mediated

oocyte

maturation

(hsa04914)

hsa:9088 PMYT1_HUMAN 1 0 0

hsa:1017 CDK2_HUMAN 0 0 1

hsa:699 BUB1_HUMAN 0 0 0

hsa:5347 PLK1_HUMAN 0 0 0

hsa:995 MPIP3_HUMAN 0 1 -1

hsa:9126 SMC3_HUMAN 0 0 -1

hsa:891 CCNB1_HUMAN 0 0 -1

hsa:9700 ESPL1_HUMAN 0 0 -1

hsa:4085 MD2L1_HUMAN 0 0 -1

hsa:991 CDC20_HUMAN 0 0 -1

hsa:898 CCNE1_HUMAN 0 0 -1

hsa:8454 CUL1_HUMAN 0 0 -1

hsa:64506 CPEB1_HUMAN -1 1 0

hsa:3480 IGF1R_HUMAN -1 1 0

hsa:3630 INS_HUMAN -1 1 0

hsa:4342 CCNB2_HUMAN -1 0 1

hsa:9133 MOS_HUMAN -1 0 1

hsa:5604 MP2K1_HUMAN -1 0 0

hsa:5241 PRGR_HUMAN -1 0 0

hsa:993 MPIP1_HUMAN 0 -1 0

hsa:51343 FZR_HUMAN 0 -1 1

PMYT1_HUMAN 

CDK2_HUMAN 
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Innate immune system 

The innate immune system relies on pattern recognition receptors (PRRs) that recognize different 

pathogens, such as viruses or bacteria, and that trigger intracellular signalling cascades ultimately 

culminating in the expression of proinflammatory molecules (Mogensen, 2009). Toll-like receptors 

(TLR) are membrane-bound PRRs, located either at the cell surface where they mainly recognize 

bacterial products, or in intracellular compartments where they are involved in recognition of nucleic 

acids. Cytosolic PRRs, including RIG-I-like receptors (RLR) and NOD-like receptors (NLR), mainly 

recognize intracellular RNA. Finally, cytoplasmic localization of DNA by cytosolic DNA sensors seems 

to be involved in mounting a response to both bacteria and DNA viruses. The EvoluCodes in these 

pathways are more variable than those described in the previous section, reflecting known species-

specific immunities. The outlier genes involved in the crosstalk between these pathways are shown in 

figure 9-12 and two examples are described below: 

 

 IL1B_HUMAN (interleukin-1 beta, IL-1β) is a cytokine that plays a crucial role in mediation 

and amplification of the innate immune response to bacterial pathogens. It is produced as an 

inactive precursor, pro-IL-1β, in response to molecular motifs carried by pathogens. After 

processing, the active IL-1β molecule is secreted. The EvoluCode shows low conservation in 

terms of sequence identity, domain organization and synteny and IL1B_HUMAN is an outlier 

in the 3 innate immune system pathways where it is present. In fact, it has been 

hypothesized that IL-1 β may have arisen by a reverse transcriptase mediated duplication of 

the alpha gene (Clark et al., 1986). 

 

 RIPK1_HUMAN is a receptor interacting protein, which plays a crucial role in the cellular 

response to TLR and RLR signals, switching between cell survival through RIP1 activation of 

NF-κB and cell death induced by caspase-8 cleavage of RIP1 (Festjens et al., 2007). The 

EvoluCode shows normal sequence conservation in vertebrate evolution, while synteny is 

only observed in mammals and not in fishes. This evolutionary scenario is considered to be 

unusual in the RLR signalling pathway, but is cohesive in the TLR signalling pathway. This is in 

agreement with a recent study that highlighted the acquisition of several fish-specific 

immune system components in the TLR signalling pathway (Xiang et al., 2012). In fact, RIP1 is 

known to play a different role in TLR signalling in the fish lineage (Rebl et al., 2010). 
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Figure 9-12. Cellular level analysis of KEGG pathways in the innate immume system. 

Cohesiveness of genes shared by at least 2 of the 4 pathways: genes with cohesive EvoluCodes 

for a given pathway are shown in green, genes with outlier EvoluCodes are highlighted in red, 

genes shown in grey are not present in the pathway. 

 

9.3 Conclusion 
 

Unravelling the evolutionary history of biological pathways will contribute to our fundamental 

understanding of how biological processes vary with time, but describing evolutionary scenarios at 

the system level remains challenging. By combining the EvoluCodes with pathway information, we 

were able to extract large-scale evolutionary messages for the human metabolic systems and their 

topologies. We then extended our analyses to an inter-pathway exploration, providing original 

evolutionary maps to describe major innovations in vertebrate systems. Such an approach is ideally 

adapted to the evolutionary systems biology philosophy: biological data from many biological levels 

is integrated and innovative high-throughput methodologies are used to explore the evolutionary 

phenomena that led to the extant states of human biological systems.  
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DNA sensors

(hsa4623)

hsa:1147 IKKA_HUMAN 1 0 0 0

hsa:8517 NEMO_HUMAN 0 0 1 -1

hsa:6885 M3K7_HUMAN 1 1 0 -1

hsa:3576 IL8_HUMAN 1 0 0 -1

hsa:7124 TNFA_HUMAN 1 0 0 -1

hsa:841 CASP8_HUMAN 0 0 0 -1

hsa:7189 TRAF6_HUMAN 0 0 0 -1

hsa:3551 IKKB_HUMAN 0 0 0 -1

hsa:3553 IL1B_HUMAN 1 1 -1 1

hsa:6352 CCL5_HUMAN 0 1 -1 0

hsa:5970 TF65_HUMAN 0 1 -1 0

hsa:3569 IL6_HUMAN 0 1 -1 0

hsa:4792 IKBA_HUMAN 0 0 -1 0

hsa:3665 IRF7_HUMAN 0 -1 0 1

hsa:8737 RIPK1_HUMAN 0 -1 1 0

hsa:3627 CXL10_HUMAN 0 -1 0 0

hsa:3661 IRF3_HUMAN, 0 -1 0 0

hsa:29110 TBK1_HUMAN 0 -1 0 0

hsa:9641 IKKE_HUMAN 0 -1 0 0

hsa:3456 IFNB_HUMAN 0 -1 0 0

hsa:10454 TAB1_HUMAN 0 0 -1 -1

hsa:8772 FADD_HUMAN 0 -1 1 -1

hsa:7187 TRAF3_HUMAN 1 -1 0 -1

hsa:6300 MK12_HUMAN 0 -1 0 -1

hsa:29108 ASC_HUMAN -1 0 -1 0

hsa:834 CASP1_HUMAN -1 0 -1 0

hsa:3606 IL18_HUMAN -1 0 -1 0

hsa:340061 TM173_HUMAN -1 -1 0 0

hsa:57506 MAVS_HUMAN -1 -1 0 0

hsa:23586 DDX58_HUMAN -1 -1 0 0
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10 CONCLUSION & PERSPECTIVES 
 

Evolutionary studies have a long history, and have experienced two major paradigm shifts. The first 

one was the discovery of the DNA structure in 1953, a discovery that initiated the whole field of 

molecular biology. The second one is the current expansion of systems biology. After sixty years of 

gene and genome evolutionary studies, we now have the opportunity to open the black box that was 

the intermediate between genomes and phenotypes. Achieving a system-level description of 

molecular evolution will be essential to fully understanding the evolutionary histories that modelled 

extant organisms. In addition to a better characterization of protein function, understanding systems 

evolution will shed light on the relationships between sequence diversity and functional diversity. 

This idea has already been confirmed in several studies, which concluded that the most important 

factor in the evolution of function is not amino acid sequence, but rather the cellular context in 

which proteins act  (Nehrt et al., 2011). Integrating systems biology data is the key to describing 

systems evolution and the emerging field of evolutionary systems biology is now focusing on this task 

(Loewe, 2009). New techniques are currently being developed, combining systems biology, 

laboratory evolution experiments or large-scale mutational analyses to understand how evolution 

shapes organisms (Papp et al., 2011). Nevertheless, this context imposes a real challenge inherent to 

systems biology: how to integrate information representing multiple biological levels in an 

evolutionary framework? This context motivated the work of this thesis. 

 

The need for efficient tools for comprehensive evolutionary analyses 

The first part of this thesis addressed the problem of orthology inference in the post-genomic era. 

Despite being well established in molecular biology, large-scale orthology inference is challenging 

because innovations in genome sequencing now allow the complete sequencing of new genomes 

every week. So many genomes are a great opportunity for phylogenetic studies, comparative 

genomics and genome annotations but are also useful for inferring the main systemic innovations 

that characterize different phyla. Unfortunately, current evolutionary studies are generally limited to 

a small portion of this information.  

One challenge in orthology inference is thus to find a way to manage this data increase, while at the 

same time maintaining a high data quality. We developed the OrthoInspector algorithm for this 

purpose. It uses an inparalogy-based approach, focusing first on the detection of recent gene 

duplication events, in order to subsequently reconstruct complex co-orthologous relationships 

between multiple organismse. This algorithm and its implementation proved to be efficient for 

inferring orthology relationships in hundreds of genomes at the same time. We made these data 

available for the biological community through an online database.  

The simple inference of large-scale data is however insufficient. When dealing with hundreds of 

genomes, it is essential to provide efficient analysis tools for data extraction and a comprehensive 

visualisation of the corresponding orthology relations. The second objective of OrthoInspector was 

therefore to address these issues. The software suite integrates tools to construct complex queries 

based on phylogenetic patterns and several visualisation tools. 
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These tools have been regularly updated since the first release of OrthoInspector, including the 

addition of new tools dedicated to the summarizing of phylogenetic profiles and interoperability 

standards with the incorporation of the OrthoXML format. The second version of OrthoInspector , 

supported by an updated database containing most of the current eukaryotic complete genomes and 

the release of a second database containing all available genomes of bacteria and archaea, will be 

published in the near future. The publication will demonstrate the robustness of the OrthoInspector 

software for predicting large-scale orthology relationships, relations that are central in functional and 

evolutionary studies.  

 

Multi-scale integration of evolutionary parameters 

The second part of this thesis involved the development of new approaches to study evolution, 

based on a systems biology philosophy. We created the concept of Evolutionary Barcodes or 

EvoluCodes, a formalism designed to integrate heterogeneous biological parameters related to 

multiple biological levels. EvoluCodes summarize multi species variations in a unified framework that 

can be exploited using standard knowledge extraction tools. EvoluCodes complement classical 

phylogenetic approaches since they can integrate several biological parameters to describe gene 

evolutionary histories. Our first implementation of the EvoluCode concerns the human proteome and 

represents gene evolutionary histories since the appearance of vertebrates. The subsequent analysis 

demonstrated their potential for discovering new knowledge about vertebrate evolution.  

The structure of the EvoluCode can be easily modified or extended. Thus, adding new biological 

parameters is an interesting option for providing a more comprehensive picture of gene evolutionary 

histories. For example, the group of Pierre Pontarotti has inferred a large number of genetic events 

that shaped the chordate genomes (Levasseur et al., 2012b). These predictions are based on high 

quality phylogenies and the annotated multiple alignments that we constructed using PipeAlign and 

MACSIMS. It would be interesting to incorporate these data in order to refine the current 

‘domain_conservation’ barcode parameter, which is based only on the sequence alignment. Other 

EvoluCode parameters to describe the genomic context could also be extracted from the GeCco 

database (an in-house developed database), which provides information about gene promoters and 

intergenic regions (GeCco database, manuscript in preparation). Finally, gene expression data would 

be an important enhancement to the EvoluCode, for example the data generated by Brawand et al. 

concerning five tissues in various mammals and chicken (Brawand et al., 2011). New parameters 

should however be carefully selected. Indeed, some parameters such as ‘sequence_length’ and 

‘number_domains’ are correlated. A new parameter should be included in the EvoluCode only if it 

provides a valuable amount of new information. A statistical analysis, based on component analysis 

for example, could help to identify the most informative EvoluCode parameters.  

Another area where statistical estimation could improve the EvoluCodes is int the definition of 

typical and atypical values. During the process of EvoluCode construction, we tested several 

statistical distributions for the different EvoluCode parameters but they did not provide satisfactory 

results. Further investigations are required for a more robust description of the variations observed 

between the different parameters and a more accurate characterization of unusual patterns or 

behaviour.  
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The integrative power of the EvoluCode should facilitate the exploitation of evolutionary-based 

analyses in a wide variety of large-scale applications. For instance, its capacity to detect evolutionary 

anomalies could be used to improve gene function characterization, by highlighting unusual 

evolutionary histories that might indicate neo- or sub-functionalization. A crucial aspect of such 

analyses will be the ability to distinguish true innovations from anomalies due to errors in genome 

sequencing or prediction of gene introns/exon structures. Indeed, in our study of the effects of such 

errors on the multiple alignment construction process (publication n°4) and the inference of genetic 

events (publication n°3), we highlighted the importance of error detection and quality control 

processes in evolutionary inference.    

Another important application is the study of human genetic diseases. In this context, the laboratory 

has developed a complete infrastructure dedicated to knowledge discovery concerning missense 

variants implicated in human disease (publication n°6). The system uses a combination of 

sequence/structure/evolution predicates to characterize mutations in human genes and provides 

tools for prediction of deleterious mutations based on Inductive Logic Programming Rules. The 

current evolutionary predicates are extracted from MACSIMS alignments, but an EvoluCode module 

is currently under development and will be used, not only for mutation prediction, but also for gene 

prioritisation to identify potential new genes implicated in a disease.  

 

Inferring evolutionary knowledge at the system-level  

We developed the first prototype of a tool that can be used to decipher evolutionary knowledge at 

the cellular level. We applied the tool to construct an evolutionary map of human cellular networks 

and investigated some important sub-networks. The next step will be to integrate other types of 

gene and pathway data to facilitate the interpretation of the map. For example, GO annotation could 

be used to characterize the genes that are shared between the different pathways and a GO 

enrichment analysis could be performed to highlight functions that correlate with unusual gene 

evolutionary histories in a given context. Similarly, it might be interesting to investigate potential 

correlations between alternative transcript data and specific EvoluCode profiles or outlierness, in 

order to test the hypothesis that genes that have evolved to produce more variants are more likely to 

be implicated in many interactions and cellular processes and are thus subject to specific 

evolutionary constraints. So far, we have focused our studies on human network data, but 

evolutionary maps could also be constructed for other model organisms for which reliable pathways 

are available, providing new insights into the evolutionary processes that shaped the different animal 

systems.  

These fundamental studies are clearly important, but EvoluCodes could also be exploited in more 

applied studies. We are currently constructing an evolutionary map dedicated to the human disease 

pathways referenced in KEGG. Previously, the genes shared by metabolic networks were mapped to 

disease annotations from the OMIM database (Barabasi et al., 2011) and scores were calculated for 

each gene to estimate its morbidity, i.e. the amount of perturbations and disease it might induce. 

Our disease-related evolutionary map will allow us to investigate whether these genes are associated 

with particular evolutionary histories. Then, by searching for other genes with similar EvoluCodes, we 

could predict their involvement in human diseases. 
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Why is understanding evolution at the system level so important? 

The study of biological network evolution will increase our understanding of the evolutionary 

principles that model Life. However, understanding systems evolution is not restricted to theoretical 

biology and some applied biology fields are beginning to exploit evolutionary principles as a technical 

tool.  

One of the domains that is benefiting from systems evolutionary theory is bioengineering. For 

example, the artificial gene circuits and network modules generated in synthetic biology can be 

optimized with adaptive laboratory evolution (ALE). This strategy allows the metabolic engineering of 

microorganisms by combining genetic variation with the selection of beneficial mutations in an 

unbiased fashion (Portnoy et al., 2011). Currently, ALE is mainly applied in well-characterized 

organisms such as Saccharomyces cerevisiae and Escherichia coli. The description of population 

evolutionary models are also actively used in synthetic biology (Rothschild, 2010). On the other hand, 

synthetic engineering of biological systems is also contributing to our comprehension of systems 

evolution. In particular, experimentally rewired circuits in living cells allow a direct testing of 

hypotheses in evolutionary systems biology (Davidson et al., 2012). For example, building small 

genetic regulatory systems can provide insight on the trade-offs that constrain adaptation and can 

shape the structure of biological networks. The de novo construction of genomes could also give new 

perspectives for recreating ancestral systems in the laboratory (Gibson et al., 2010).  

Another domain where evolutionary principles are becoming increasingly important is medicine. The 

first applications were mainly related to viral and population phylogenies. For example, phylogenies 

were used to track epidemics in human populations (Pybus and Rambaut, 2009). They were also used 

to determine whether viral outbreaks were due to new circulating vaccine-derived polioviruses (Kew 

et al., 2004). At the system level, artificial positive selection has also been used to understand the 

pathogenic mechanisms of infection. This strategy was for example successfully applied to HIV (Bozek 

and Lengauer, 2010) and influenza studies (Li et al., 2011). But the most promising field for reuniting 

medicine and evolution is the field of personalized medicine, where the study of evolutionary 

variation will be essential to understanding the biological network diversity that is observed in 

humans (Chen et al., 2012).  

Such system level exploitations will finally provide Evolution the credibility that it is so often denied 

by its detractors. Maybe the next important revolution in Evolution will be the widespread use of its 

principles to improve food production, to solve ecological problems or to develop new therapeutic 

strategies. After shifting from theories to concrete applications, it will be difficult to deny 150 years 

of evolutionary research. 
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Controversies in modern evolutionary biology:
the imperative for error detection and quality
control
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Abstract

Background: The data from high throughput genomics technologies provide unique opportunities for studies of
complex biological systems, but also pose many new challenges. The shift to the genome scale in evolutionary
biology, for example, has led to many interesting, but often controversial studies. It has been suggested that part
of the conflict may be due to errors in the initial sequences. Most gene sequences are predicted by bioinformatics
programs and a number of quality issues have been raised, concerning DNA sequencing errors or badly predicted
coding regions, particularly in eukaryotes.

Results: We investigated the impact of these errors on evolutionary studies and specifically on the identification of
important genetic events. We focused on the detection of asymmetric evolution after duplication, which has been
the subject of controversy recently. Using the human genome as a reference, we established a reliable set of 688
duplicated genes in 13 complete vertebrate genomes, where significantly different evolutionary rates are observed.
We estimated the rates at which protein sequence errors occur and are accumulated in the higher-level analyses.
We showed that the majority of the detected events (57%) are in fact artifacts due to the putative erroneous
sequences and that these artifacts are sufficient to mask the true functional significance of the events.

Conclusions: Initial errors are accumulated throughout the evolutionary analysis, generating artificially high rates of
event predictions and leading to substantial uncertainty in the conclusions. This study emphasizes the urgent need
for error detection and quality control strategies in order to efficiently extract knowledge from the new genome
data.

Keywords: gene duplication, asymmetric evolution, gene prediction, error detection, quality control

Background
High throughput genomics technologies are now provid-
ing the raw data for genome-level or systems-level stu-
dies [1]. At the same time, the avalanche of data also
poses many new challenges. The shift to genome scale
studies in evolutionary biology, for instance, has led to
many interesting, but often controversial studies. Many
branches in the Tree of Life are still the subject of
intense discussions, and simply adding more sequences
has not resolved the inconsistencies [2]. In prokaryotes,

phylogenetic incongruencies are often assumed to be
the result of lateral gene transfers, but the frequency of
these events has been challenged recently [3,4]. In
eukaryotes, the ancestral relationships between the
major eukaryotic kingdoms [5-8], as well as many more
recent clades such as fish or mammalian [9-11], are also
hotly debated. It has been suggested that at least some
of the conflicting results from evolutionary analyses are
due to differences in the models and methodologies
used to test the original hypotheses, e.g. [12,13], as well
as errors in the input sequences [2].
High throughput biological datasets are notoriously

incomplete [14-16], noisy and inconsistent and DNA or
protein sequences are no exception. The DNA
sequences produced by next generation sequencing
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(NGS) technologies or low-coverage assemblies pose
particular problems [17,18]. A number of recent studies
have investigated the rate of errors in these new genome
sequences and their impact on the accuracy of down-
stream analyses [19-22]. In the context of proteome stu-
dies, the DNA sequencing errors are further confounded
by inaccuracies in the delineation of the protein-coding
genes. Coding regions are mostly predicted by automatic
methods, but the relationship between genes, transcripts
and proteins is complex and automated genome annota-
tion is not completely accurate. Thus, ten years after the
publication of the human genome, the exact number of
human protein-coding genes is still unknown [23].
Furthermore, recent analyses have shown that, even for
those genes that have been identified, the complete
exon/intron structure is correctly predicted for only
about 50-60% of them [24-26]. In eukaryotic genomes,
the situation is also complicated by widespread alterna-
tive splicing events, which affects more than 92-94% of
multi-exon human genes [27].
To what extent do these quality issues affect our

understanding of the evolutionary events shaping mod-
ern organisms? Although sequence errors are essentially
ignored in most genome-scale analyses, some studies
have addressed certain aspects of this question. For
example, Hubisz and coworkers [19] investigated the
impact of DNA sequencing errors in low-coverage gen-
ome assemblies on inferred rates and patterns of inser-
tion/deletion and substitution on the mammalian
phylogeny. Schneider et al. [28] showed that the esti-
mated amount of positively selected genes in genome
scale analyses may be inflated by the presence of unreli-
able sequences.
Here, we have investigated the impact of erroneous

protein sequences, resulting from either DNA sequen-
cing errors or inaccurate prediction of exon/intron
structures, on evolutionary analyses and the detection of
important genetic events. We concentrated specifically
on duplication events, which are known to be an impor-
tant source of functional diversity [29-32] and where
there has been a great deal of debate about the long
term fate of duplicated genes. Two main models have
been proposed for the evolution of novel gene function
associated with gene duplication. The neofunctionaliza-
tion model predicts the evolution of a new function in
one of the duplicates, with accelerated evolution of the
deconstrained copy compared with the copy that retains
the ancestral function. The subfunctionalization model
implies the division of the ancestral functions among
the duplicates and does not make any prediction about
the symmetry or asymmetry of sequence evolution.
Although individual cases of both modes of evolution
have been reported, the relative frequency of the differ-
ent scenarios in nature is still not clear [12,33,34].

To some extent, the evolutionary fate of duplicated
genes depends on the duplication mechanism. After tan-
dem duplications or large-scale (e.g. whole-chromosome
or whole-genome) duplications, both gene copies retain
the same genome context. In contrast, after segmental
duplications or retrotranspositions, one of the gene
copies retains the ancestral genome position while the
other copy is relocated elsewhere. It is generally
expected that the gene copy that retains the genome
context will be more conserved, and thus will be more
likely to retain the ancestral functions [35]. The hypoth-
esis is that newly duplicated genes that have been trans-
posed to new chromosomal locations experience a new
genomic and epigenetic environment, modifying the
expression and/or function of the genes.
In this work, we have searched for duplication events

that contradict this hypothesis, in order to quantify the
effect of protein sequence errors on our ability to accu-
rately identify unusual evolutionary histories. The goal
was not to identify an exhaustive list of duplications, but
to establish a reliable test set of events that could be
used for the error analysis. Using the well-studied
human genome as a reference, we identified 114,680
homologs in 13 high coverage vertebrate genomes from
the Ensembl [36] database that were located in a region
with local synteny (Figure 1). We then identified 688
cases where another homolog of the reference human
gene was found elsewhere in the vertebrate genome
with significantly higher sequence similarity than the
syntenic homolog. In other words, we identified 688
gene triplets, composed of one human reference gene
and two corresponding gene copies from another verte-
brate genome (the local “syntenic homolog” and the
remote “highest similarity homolog”), that might indi-
cate putative asymmetric evolution after duplication
(AED) events where the less similar gene copy retained

Figure 1 Evolutionary scenario involving asymmetrical
evolution after duplication (AED). A schematic view of the AED
events included in this study. Using the human gene Hi as a
reference, homologs are detected in each vertebrate genome that
maintain the same genome neighborhood as the human gene. At
the same time, the homologs from each genome with the highest
similarity to the human reference gene are identified (full arrows
indicate similarity homologs and dashed arrows indicate syntenic
homologs). We then selected AED events where the relocated
similarity homolog has evolved significantly faster than the local
syntenic homolog.
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the ancestral gene-neighbourhood. To determine what
proportion of these putative AED events may be due to
erroneous protein sequences (resulting from either DNA
sequencing errors or badly predicted protein coding
regions), we identified potential sequence errors in the
gene triplets and showed that the majority (57%) of
detected AED events are in fact false positives. A Gene
Ontology (GO) functional analysis highlighted a number
of GO categories that are over-represented in the true
positive gene set, which were masked before filtering of
the erroneous sequences.

Results
Estimation of sequence error rates
We predicted protein sequence errors, resulting from
genome sequencing errors and exon/intron prediction
errors, in the 14 high coverage vertebrate genomes
(Table 1) from the Ensembl database, using a previously
published method [37]. First, we constructed multiple
sequence alignments (MSAs) for each of the 19,778
human protein sequences defined by the Human Pro-
teome Initiative (HPI) and their potential vertebrate
homologs. The sequences in the alignments were then
clustered into more similar subgroups and errors were
predicted if discrepancies were observed between one
sequence and its close neighbours, for example between
human-chimpanzee or between fish genomes. The error
detection protocol was thus used to identify lineage-spe-
cific insertions, deletions or sequence segments, which
are inconsistent with the conservation information in
the MSA. Finally, we calculated the rate of sequence
errors found in all 19,778 MSAs (Figure 2A). The MSAs
contained a total of 344,437 protein sequences and
240,313 potential sequence errors, giving an estimated

sequence error rate of at least 0.7 errors per sequence.
The total number of sequences with at least one poten-
tial error was 142,836. Thus, on average 41% of
sequences were predicted to be erroneous.
The observed error rates were not homogeneous

across the different species. Lower rates were observed
for the human and mouse proteomes, with 30-31% erro-
neous sequences, as might be expected for these well
studied organisms. Among the non-human primate pro-
teomes considered here, lower error rates were esti-
mated for the orangutan (Pongo pygmaeus), compared

Table 1 Ensembl genomes used in this study

Genome identifier Organism No. of genes No. of proteins

ENSP ’Human’,’Homo sapiens’ 21971 60953

ENSPTR ’Chimpanzee’,’Pan troglodytes’ 19829 39256

ENSPPY ’Orangutan’,’Pongo pygmaeus’ 20068 29256

ENSMMU ’Macaque’,’Macaca mulatta’ 21905 42370

ENSECA ’Horse’,’Equus caballus’ 20322 28128

ENSCAF ’Dog’,’Canis familiaris’ 19305 29804

ENSBTA ’Cow’,’Bos taurus’ 21036 29517

ENSMUS ’Mouse’,’Mus musculus’ 23873 43630

ENSRNO ’Rat’,’Rattus norvegicus’ 22503 37672

ENSMOD ’Opossum’,’Monodelphis domestica’ 19471 34132

ENSGAL ’Chicken’,’Gallus gallus’ 16736 22945

ENSORL ’Medaka’,’Oryzias latipes’ 19686 25174

ENSTNI ’Tetraodon’,’Tetraodon nigroviridis’ 19602 23909

ENSDAR ’Zebrafish’,’Danio rerio’ 21322 35967

Protein sequences were obtained from the Ensembl database version 51.

Figure 2 Estimation of sequence error rates. A) Percentage of
predicted sequence errors in 19,778 protein families in 14 vertebrate
genomes. In blue, the percentage of sequences with at least one
error. In red, the percentage of total errors observed. B)
Classification of sequence errors into 7 types according to their
position in the sequence and their nature (see methods). The
histogram shows the frequencies of each error type observed in all
protein sequences (C-deletion = C-terminal deletion; C-extension =
C-terminal extension; N-deletion = N-terminal deletion; N-extension
= N-terminal extension; segment = suspicious sequence segment:
deletion = internal deletion; insertion = internal insertion).

Prosdocimi et al. BMC Genomics 2012, 13:5
http://www.biomedcentral.com/1471-2164/13/5

Page 3 of 16



to the chimpanzee (Pan troglodytes) and especially the
Rhesus macaque (Macaca mulatta). The relatively high
error rate for the macaque is not surprising since the
macaque genome in Ensembl version 51 is a preliminary
assembly using whole genome shotgun (WGS) reads
from small and medium insert clones. On the other
hand, the relative error rates in chimpanzee and orangu-
tan are more surprising. Both the chimpanzee and oran-
gutan genomes have been sequenced to 6x coverage, but
in a recent study of primate genome assembly quality,
the chimpanzee genome assembly was estimated to be
of higher quality [38].
Nevertheless, the same study found that about 70% of

inferred errors in the orangutan genome were clustered
in the 3.2% of the assembly that is of low quality, imply-
ing that > 96% of the assembly could be considered of
high fidelity. We found the highest error rates in the
opossum, chicken and fish proteomes, with > 45% erro-
neous sequences. Although these genomes have all been
sequenced to high coverage, the lack of a well annotated
reference genome from a closely related model organism
may result in lower quality protein sequence prediction.
The predicted protein sequence errors were then char-

acterized according to two different factors: (i) the nat-
ure of the error, i.e. insertion, deletion or suspicious
segment and (ii) the position in the sequence, i.e. at the
N/C-terminus or within the sequence. Figure 2B shows
the proportion of the different errors observed. The
most commonly found error was the presence of a sus-
picious sequence segment, possibly representing a mis-
predicted exon. At the N- and C- termini, deletions
were observed more frequently than extensions.
Although this may be due in part to the protocol used
to detect sequence errors, it may also reflect the diffi-
culty of predicting the first and last coding exons. In
contrast, internal insertions were more common than
internal deletions, suggesting that more internal errors
were due to the over-prediction of introns as coding
sequences, rather than the under-prediction of exons.

Comparison of similarity and synteny based homologs
Putative orthologs were predicted for each of the 19,778
human proteins based on the MSAs of the human refer-
ence sequences and related sequences from the 13 ver-
tebrate genomes. Two different approaches were
implemented. First, the sequences from each organism
with the smallest evolutionary distance were identified
based on pairwise alignments extracted from the MSAs,
and denoted “highest similarity homologs”. Second,
“syntenic homologs” were defined based on the local
gene order conservation. The genome coverage achieved
by the two methods is shown in Figure 3 and Table S1
in Additional file 1. The highest similarity homologs
covered 80% of the 265,658 genes in the 13 vertebrate

genomes, ranging from 89% in chimpanzee to 68% in
zebrafish. As expected, a smaller proportion (43%) of
homologs was found with locally conserved synteny,
including 77% of chimpanzee genes and only 3% of zeb-
rafish. Although our definition of locally syntenic
regions is relatively stringent, we observe a comparable
coverage to other existing methods. For example, we
found 51% of mouse genes to be syntenic with human,
compared to 59% using the method developed by [39].
Other more refined methods have been developed, such
as Syntenator [40], that use less stringent criteria to
define conserved syntenic regions. By allowing more
gene mismatches and gene insertions/deletions, Syntena-
tor aligned 79% of mouse genes with human.
We then investigated whether the gene that is most

similar on the sequence level is also the gene that shares
the same gene-neighbourhood (Figure 3 and Table S2 in
Additional file 1). Of the 212,409 similarity homologs
identified in the 13 vertebrate genomes, 113,517 were
found in locally syntenic regions. In mammals, this
represents 69% of the highest similarity homologs. This
is less than that estimated in a previous study [41],

Figure 3 Number of putative ortholog relationships between
human and 13 vertebrate genomes. A. Putative ortholog
relationships between human and each of the 13 vertebrate
genomes used in this study were identified by similarity-based and
synteny-based approaches. B. The proportion of orthologs predicted
by the synteny approach for which the same ortholog was
predicted by the similarity-based approach.
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where 97.5% of Inparanoid orthologs in human, mouse,
rat and dog were found in syntenic regions, most likely
due to our stricter definition of local synteny. On the
other hand, only 1% of the identified syntenic homologs
(1,157 out of 114,680) were not identified by the similar-
ity-based approach. As expected, a generally higher level
of disagreement was observed for more divergent gen-
ome pairs. Nevertheless, in human-chicken comparisons,
the synteny method identified the same homolog as the
similarity approach in 98.8% of the cases. Fewer consis-
tencies were observed in human-fish comparisons (84-
87% of syntenic homologs were also the highest similar-
ity homologs), possibly due in part to the whole genome
duplications in the fish lineage, resulting in a larger
number of paralogs.

Asymmetric evolution events
We then examined in more detail the 1,157 gene triplets
(consisting of the human reference sequence and the
two homologs representing putative orthologs in one of
the 13 vertebrate genomes), where the syntenic homolog
was not the same as the highest similarity homolog. To
avoid including chance outcomes caused by very similar
rates of sequence evolution of these homologs relative
to the human sequence, we identified significantly differ-
ent rates of evolution at the 95% confidence level (see
Methods). Of the 1,157 gene triplets, a total of 688 cor-
responded to evolutionary scenarios where the syntenic
homolog (i.e. the gene copy with the shared genome
neighbourhood) evolved significantly faster (Table 2). A
complete list of the 688 gene triplets is available in
Table S3 in Additional file 1. The alternative scenario

for asymmetric evolution where the remote copy
evolved faster than the synteny copy is not detected by
our protocol. since in this case the homologs defined by
similarity and synteny would be the same.

Effect of erroneous sequences on prediction of
asymmetrical evolution
The 688 gene triplets identified above, consisting of the
human reference sequence, the highest similarity homo-
log and the synteny homolog, constitute a reliable test
set representing potential asymmetrical evolution events.
To study the impact of errors on the prediction of AED
events, we identified erroneous sequences in this test
set. Figure 4A shows the number of events that are
assumed to be artifacts since at least one of the
sequences was predicted to be erroneous, as well as the
number of remaining ‘true’ events. Of the 688 gene tri-
plets, only 294 (43%) do not contain erroneous
sequences and may correspond to true events, while a
total of 394 (57%) are putative artifacts.
As might be expected, the proportion of artifactual

events varies with the different genomes studied,
depending on the percentage of erroneous sequence
detected (Figure 4B). For example, 19% of chimpanzee
and 24% of mouse predicted events are due to artifacts,
while this figure increases significantly for the draft
macaque and chicken genomes (69% and 88% respec-
tively). It is interesting to note that a larger proportion
of artifacts are observed in the orangutan genome than
in the chimpanzee, even though the orangutan genome
is predicted to contain less sequence errors than the
chimpanzee (see above).

Table 2 Number of syntenic homologs with significantly faster evolutionary rates compared to the remote similarity
homolog

Genome
identifier

No. of syntenic
homologs

No. of inconsistencies: syntenic versus highest similarity
homologs

Significant asymmetric evolution
events (AED)

Human 15295 37 21

Chimpanzee 12881 54 26

Orangutan 12286 121 82

Macaque 11447 59 37

Horse 11443 64 39

Dog 10486 59 30

Cow 12276 70 33

Mouse 10439 117 69

Rat 9261 126 65

Opossum 6231 65 41

Chicken 1027 166 99

Medaka 907 114 83

Tetraodon 701 111 63

Total 114680 1157 688

These may indicate putative asymmetric evolution after duplication (AED) events where the less similar gene copy retained the ancestral gene-neighbourhood.
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In order to validate the putative protein sequence
errors leading to artifactual AED events, we investigated
the 413 predicted sequence errors in the human refer-
ence sequences and their syntenic homologs. The results
of the analysis are shown in Table 3 and examples of
the different errors detected are provided in Additional
file 2. The majority (59%) of the erroneous sequences
resulted from DNA sequencing or assembly errors, char-
acterised by the presence of ‘N’ characters in the DNA
sequences. For the remaining 171 protein sequence
errors, we searched for the missing protein fragments in
the corresponding DNA sequences. For errors involving
missing segments (i.e. internal insertion, N/C-terminal
extensions or suspicious segments), 89 of the 148 miss-
ing segments were detected and we therefore concluded
that the error was due to an inaccurate gene structure
prediction. In the case of sequence errors corresponding
to inserted segments (internal insertions, N/C-terminal
insertions), 16 of the 23 inserted segments were con-
served in closely related organisms, although 5 of them
had one or more stop codons. Finally, we manually veri-
fied the transcript evidence in Ensembl for all 23 inser-
tions in gene sequences with no genome errors, as well
as for the 59 unconserved deletions. Of these, 62 protein
errors were not supported by any transcript information

and 9 errors were due to the alternative splicing variants
reported for homologous genes. Only 11 (2.7%) of the
413 putative protein sequence errors were identified as
false positive predictions, since a transcript was found
corresponding to the affected sequence segment.

Detailed analysis of sequence errors leading to artifactual
AED events
To investigate whether the sequence errors leading to
artifactual events were enriched for a particular type, we
classified the errors into 7 types as described above. We
then calculated the proportion of the different error
types found in the gene triplets corresponding to the
688 predicted AED events (Figure 5). In the human
reference sequences, only 32 errors were predicted, as
might be expected since the human genes have been
very widely studied. The majority (24 out of 32) of the
human sequence errors were found at the N/C termini,
with the exception of a small number of internal
sequence segments that were labeled as being
suspicious.
When all the sequences in the gene triplets were

pooled, no significant enrichment was observed in the
frequency distribution of the different error types caus-
ing artifactual events, compared to the background dis-
tribution observed in all the sequences (as shown in
Figure 2). The goodness-of-fit was measured using a
likelihood ratio chi-square statistic (chi-square = 3.12, p-
value = 0.79). Nevertheless, different error types were
observed when the syntenic and highest similarity
homologs were considered separately. For example, arti-
factual events were observed more frequently if the syn-
tenic homolog, i.e. the gene copy that retained the
genome neighbourhood after duplication, contained sus-
picious segments. In contrast, N- and C-deletions in the
highest similarity homolog, i.e. the gene copy that was
relocated, were more likely to cause artifacts.
Figure 6 shows an example of an artifactual event

observed in the gene triplet corresponding to [Swiss-prot:
COPG_HUMAN] and the two homologs from macaque
(the full length alignment is provided in Figure S1 in Addi-
tional file 1). The COPG protein forms part of the coato-
mer complex, involved in protein transport between the
endoplasmic reticulum and the Golgi. The macaque synte-
nic homolog [Ensembl:ENSMMUP00000017291] contains
a suspicious segment and an exon deletion that artificially
increase its evolutionary distance to human, due to a low
quality segment in the genome sequence (indicated by ‘N’
characters in the gene sequence). Consequently, another
macaque protein [Ensembl:ENSMMUP00000006382] is
identified as the highest similarity homolog of human
COPG, resulting in an artifactual AED event prediction. In
fact, [Ensembl:ENSMMUP00000006382] is the ortholog of
[Uniprot:COPG2_HUMAN].

Figure 4 Effect of erroneous sequences on prediction of
asymmetrical evolution in 13 vertebrate genomes. A. The
presence of erroneous sequences give rise to a number of
artifactual AED events (shown in red). The remaining events are
defined as putative AED events (shown in blue). B. Comparison of
percentage of protein sequences predicted to contain errors and
percentage of artifactual AED events for each genome.
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The orthology prediction method used in the Ensembl
project, based on a phylogenetic gene tree approach,
finds the correct 1-to-1 orthology relationship between
the human and macaque COPG proteins. Unfortunately,
many other orthology databases are less successful. For
example, in the Inparanoid database (inparanoid.sbc.su.
se), the Ensembl human COPG and macaque COPG2
sequences are in the same orthologous cluster, while no
human ortholog is found for the macaque COPG
sequence.

Functional analysis of asymmetrical evolution events
In order to investigate the effect of filtering the erro-
neous sequences on the subsequent functional analysis
of asymmetrical evolution events, we conducted a gene
ontology (GO) term enrichment analysis. Specifically, we
investigated the 688 AED events detected in this work,
where the local syntenic homolog was observed to
evolve more rapidly than the relocated highest similarity
homolog. At this stage, we excluded 81 events where
the human reference sequence had more than one exon,
but the relocated homolog had only one exon, since
they are likely to be non-functional pseudogenes. For
comparison purposes, we used two gene lists: (i) gene
list 1 corresponding to the remaining 607 detected

Table 3 Validation of putative protein sequence errors

Putative protein errorsa Genome
errorsb

Exon
conservationc

Transcript evidence % FP errorg

Yes No Yes No No Splicing variantse FP error predictionf

Suspicious segment 223 161 62 43 19 12 3 4 1.8

Deletion 7 1 6 6 0 0 0 0 0.0

N-deletion 68 26 42 19 23 18 2 3 4.4

C-deletion 64 26 38 21 17 16 0 1 1.6

Deletion sub-total 362 214 148 89 59 46 5 8 2.9

Putative protein errors Genome errors Intron
conservationd

Transcript evidence % FP error

Yes No Yes
(stop)

No No Splicing variants FP error prediction

Insertion 22 15 7 6 (1) 1 5 2 0 0.0

N-extension 18 7 11 7 (3) 4 7 1 3 16.7

C-extension 11 6 5 3 (1) 2 4 1 0 0.0

Insertion sub-total 51 28 23 16 (5) 7 16 4 3 5.9

Total 413 242 171 100 14 62 9 11 2.7

Putative errors were estimated by analyzing the corresponding gene sequences. aThe total number of protein sequence errors included in the analysis. bThe
number of errors resulting from genome sequencing or assembly errors. cThe number of missing segments detected in the corresponding gene sequences. dThe
number of errors resulting from alternative splicing variants reported for homologous genes. eThe number of inserted sequence segments detected in the gene
sequences of homologous proteins. The number of these inserted sequence segments with at least one stop codon is given in brackets. fThe number of errors
supported by transcript evidence, i.e. false positive (FP) error predictions. gThe percentage of the total number of putative errors that were invalidated by the
analysis.

Figure 5 Characterization of sequence errors in predicted
asymmetrical evolution events. Errors are classified into 7 types
according to their position in the sequence and their nature (see
methods). The proportions of the different classes found in the
human reference sequences, the syntenic homolog (V_syn) and the
highest similarity homolog (V_sim) are shown, as well as the
proportions observed in the pooled sequences in the gene triplets.
(C-deletion = C-terminal deletion; C-extension = C-terminal
extension; N-deletion = N-terminal deletion; N-extension = N-
terminal extension; segment = suspicious sequence segment:
deletion = internal deletion; insertion = internal insertion).
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events, including both artifactual and putative true
events and (ii) gene list 2 corresponding to 250 putative
true events only (Table S4 in Additional file 1). The two
gene lists were then analyzed for enrichment of GO
terms using the AmiGO [42] web server, using the com-
plete set of human genes as the background set and
default parameters (Tables S5-6 in Additional file 1).
The results of the AmiGO analyses were also submitted
to the GO-Module [43] web server, in order to reduce
the complexity and identify ‘key’ GO terms (Table 4).
Gene list 1 was enriched in 24 key GO terms, includ-

ing a number of vertebrate specializations (e.g. anatomi-
cal structure development), but also some fundamental
eukaryotic processes (e.g. regulation of metabolic pro-
cesses, gene expression, axon guidance). For example,
the term ‘RNA biosynthetic process’ is found with a P-
value of 5E-16, involving 101 (20%) of the 607 genes in
the list. However, only 6 of these 24 key GO terms are
associated with the true events in gene list 2. Thus, the
remaining 18 (75%) enriched GO terms are probably
false positives resulting from the artifactual events.
Furthermore, and perhaps more importantly, important
key GO terms associated with the true events are not
enriched in gene list 1, notably neurogenesis related
functions. After filtering of gene triplets with erroneous
sequences, gene set 2 was enriched in 10 key terms,
including neuron differentiation functions, and response
to the environment.
Figure 7 shows an example of a true AED event

detected in the hepatoma-derived growth factor (HDGF)
protein family. The HDGF and HDGF-like family mem-
bers are characterized by a conserved PWWP domain in
the N-terminal region. In human, the HDGF protein
[Ensembl:ENSP00000349878] exhibits growth factor
properties and has been implicated in organ develop-
ment and tissue differentiation of the intestine, kidney,
liver, and cardiovascular system. In addition, the role of
HDGF in cancer biology has recently become a focus of

research, since HDGF was found to be over-expressed
in a large number of different tumor types (genecards.
org). Whereas some family members, such as HDGF
and HDGFL2, are expressed in a wide range of tissues,
the expression of others is very restricted. For example,
HDGFL1 and HDGFL4 are only expressed in testis,
although their precise functions are still unknown. We
observed an EAD event in several organisms, including
mouse and rat. For example, mouse HDGFL1
[Ensembl:ENSMUSP00000057557] on chromosome
13 is syntenic with human HDGFL1 [Ensembl:
ENSP00000230012] on chromosome 6, but mouse
HDGF [Ensembl:ENSMUSP00000005017] shares higher
sequence similarity with human HDGFL1 (58% identity
versus 53%). Although mouse HDGFL1 is specifically
expressed in testis, like human HDGFL1, the human and
mouse proteins are more divergent in the C-terminal
region and probably have different functions. In
fact, mouse HDGFL1 lacks the caspase cleavage site
identified in mouse HDGF, as well as a number of
conserved residues that are known to be phosphory-
lated (genecards.org).

Discussion
Several recent studies have highlighted the prevalence of
errors in genes predicted from genome sequences
[24-26,44], particularly in eukaryotic genes. The situa-
tion is further complicated by the fact that multiple
transcript variants are often expressed by the same gene.
Nevertheless, orthology and paralogy, which are funda-
mental concepts for most evolutionary analyses, are gen-
erally defined at the gene level. Many systems, including
Ensembl compara [45], simply select the longest tran-
scripts to represent a gene, although there is no guaran-
tee that the longest predicted transcripts in different
organisms are equivalent. Some authors have specifically
addressed these issues by defining relationships at the
transcript level [46,47] or by using processed

Figure 6 An example of an artifactual AED event. Part of the multiple sequence alignment of the human COPG protein sequence [Ensembl:
ENSP00000325002] and putative orthologs in the macaque genome. The suspicious segment is boxed in grey. For the Ensembl macaque
sequences, exons are colored alternately in black and blue. Residues overlapping splice sites are shown in red.
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transcription units, i.e. a combination of all overlapping
sequence variants in the genomic region [48]. Neverthe-
less, these remain partial solutions only and do not
resolve all problems.
These quality issues may lead to inaccurate or erro-

neous conclusions if they are integrated indiscriminately
in downstream evolutionary or functional analyses. As
an example, when annotating a new genome, gene
structure data is often transferred from the genome of a
closely related species, e.g., many chimpanzee genes in
the Ensembl database were predicted based on compari-
sons with human transcript data. These gene sequences
were then used to perform genome-wide scans for posi-
tive selection [49]. Although more positively selected
genes were identified in chimpanzees compared to
human, it has been suggested that the majority of the
signals may be due to errors in the original sequences
or in the gene alignments [50]. Thus, we have a vicious

circle, where the gene sequences that provide the start-
ing point for most evolutionary analyses are themselves
generally predicted based on evolutionary information.

Protein sequence error rates
We detected erroneous protein sequences based on dis-
crepancies in the conservation of vertebrate protein
MSAs. The sequence errors may result from (i) DNA
sequencing errors, (ii) badly predicted introns/exons,
(iii) different splicing variants predicted in different
organisms. We estimated the frequency of erroneous
sequences to be at least 41%, although some genomes
are more error-prone than others, depending on factors
such as sequencing coverage or the availability of a well
annotated genome from a closely related organism.
In this study, we only considered sequences from the

Ensembl database and we used cross-comparisons
between species to identify discrepancies. However,

Table 4 GO term enrichment analysis for artifactual and putative AED events

GO enrichment for all events GO enrichment for true events only

GO ID GO biological process P-
value

GO ID GO biological process P-
value

0032501 multicellular organismal process 4.E-43 0032501 multicellular organismal process 2.E-13

0048856 anatomical structure development 2.E-32 0050896 response to stimulus 9.E-12

0065007 biological regulation 4.E-26 0048856 anatomical structure development 3.E-09

0080090 regulation of primary metabolic process 6.E-21 0042060 wound healing 2.E-07

0071842 cellular component organization at cellular level 3.E-20 0050789 regulation of biological process 1.E-06

0060255 regulation of macromolecule metabolic process 5.E-19 0071842 cellular component organization at
cellular level

2.E-06

0051171 regulation of nitrogen compound metabolic process 5.E-19 0007596 blood coagulation 4.E-06

0032774 RNA biosynthetic process 5.E-16 0022008 neurogenesis 5.E-05

2000112 regulation of cellular macromolecule biosynthetic process 7.E-16 0006928 cellular component movement 6.E-05

0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolic
process

1.E-15 0030182 neuron differentiation 4.E-04

0010467 gene expression 4.E-13

0042060 wound healing 4.E-09

0007596 blood coagulation 2.E-08

0006810 transport 2.E-08

0007166 cell surface receptor linked signaling pathway 3.E-06

0007411 axon guidance 5.E-06

0007601 visual perception 2.E-05

0016477 cell migration 5.E-05

0030168 platelet activation 1.E-04

0006195 purine nucleotide catabolic process 1.E-04

0009207 purine ribonucleoside triphosphate catabolic process 5.E-04

0016568 chromatin modification 6.E-04

0006915 apoptosis 8.E-04

0060173 limb development 9.E-04

Comparison of GO term enrichment analysis for (i) gene list 1 corresponding to 607 predicted asymmetrical evolution events, including both artifactual and
putative true events and (ii) 25O true events obtained after filtering the erroneous sequences. GO terms for biological processes were found with P < 10-4 using
AmiGO and then filtered with GO-Module (only key terms are shown). Terms that are specific to only one gene list are highlighted in bold.
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Ensembl may produce predictions that are consistent
across organisms, i.e. may reproduce the same errors in
different genomes or propagate intron/exon structures.
Thus, our estimate of the average sequence error rate is
probably conservative. Another recent study [51]
showed that the Ensembl compara sequence prediction
method correctly identified only 55% of coding tran-
scripts exactly.

Identification of evolutionary events
Our main goal was to determine to what extent these
erroneous sequences affect subsequent evolutionary ana-
lyses. We focused on a specific event: gene duplication
and the evolutionary fate of paralogs, since gene dupli-
cation is often assumed to be the most important source
of new functions.
Since duplication events where the local copy has

evolved more rapidly may indicate unusual evolutionary

scenarios, innovations or adaptations, we specifically
searched for examples of such asymmetric evolution
events. Our approach involved the identification of
reliable AED events that could be used as a test set for
estimating the impact of sequence errors. We therefore
designed a stringent protocol where we included only
high coverage genomes and used the well studied
human genome as a reference. We then identified puta-
tive orthologs in 13 vertebrate genomes, based on either
sequence similarity or local synteny conservation. The
similarity-based method used a very simple model of
sequence evolution, in order to avoid bias towards one
particular model. Nevertheless, this model clearly over-
simplifies the complex evolutionary processes involved,
and in the future, it would be interesting to investigate
the effect of a more realistic model of sequence evolu-
tion on AED detection, once sequencing/annotation
errors have been removed. We also used a strict

Figure 7 A putative AED event. A) Multiple sequence alignment of hepatoma-derived growth factor (HDGF) and HDGF-like proteins. Black
lines indicate the two main subgroups corresponding to the duplication node in the phylogenetic tree. Known phosphorylation sites are
labeled with asterisks. B) The phylogenetic tree constructed using the Neighbour-Joining algorithm with 500 bootstraps. Bootstrap values for
each node are shown in red. The distance between human and mouse HDGF1 sequences (in blue) is longer than the distance between human
HDGF1 and mouse HDGF sequences (in green).
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definition of local synteny, which led to lower genome
coverage in the ortholog prediction step. For the detec-
tion of asymmetric evolution, we used a simple measure
of amino acid divergence and specified a high signifi-
cance threshold that would ensure only reliable predic-
tions. Nevertheless, 688 putative AED events were
identified that were then used to perform an in-depth
investigation of the effect of sequence errors.

Impact of sequence errors
We compared the syntenic and highest similarity homo-
logs and identified cases where significantly faster evolu-
tionary rates were observed in the syntenic homolog, i.e.
the gene copy that retained the genome neighbourhood
after duplication, compared to the relocated highest
similarity homolog. Initially, 688 AED events were iden-
tified, of which 81 similarity homologs were potential
retropseudogenes with a reduced exonic map. The
majority (57%) of the remaining detected events corre-
sponded to erroneous sequences and only 250 repre-
sented putative true AED events. Thus, we conclude
that care should be taken when performing genome-
wide scans to search for genes with unusual patterns,
since outlying genes are more likely to be due to arti-
facts in the input sequences than the result of true evo-
lutionary events. Furthermore, our in-depth study
revealed some of the mechanisms by which errors in the
input sequences are propagated during the event predic-
tion. For example, a badly predicted internal segment in
one of the homologs results in an increased evolutionary
distance to the human reference sequence, while a loss
in the more variable N/C-terminal regions artificially
reduces the distance. These observations provide guide-
lines for future error detection and correction strategies
that will hopefully allow us to reduce the impact of the
sequencing errors.
In asymmetric evolution, one duplicate evolves or

degrades faster than the other and often becomes func-
tionally or conditionally specialized. In this context, the
accurate detection of the ‘functional’ homologs, i.e. pro-
tein pairs that play functionally equivalent roles [52], is
critical. We have shown that orthology assignment and
the detection of important genetic events are severely
impacted by the high proportion of errors in the initial
set of protein sequences, even in high coverage gen-
omes. The errors in the initial data are accumulated and
amplified in the higher-level analyses. Our estimated
rate of 41% erroneous protein sequences leads to 57%
errors in AED event prediction and, in the subsequent
Gene Ontology (GO) functional analysis, 75% of the
enriched terms are in fact false positives.
The false positive terms in the functional analysis can

be very costly to investigate experimentally and a reduc-
tion in the false discovery rate is clearly desirable. They

are also sufficient to mask some of the true functional
enrichments. After filtering the artifactual events corre-
sponding to erroneous sequences, the remaining AED
events were enriched in a number of GO categories,
including neuron differentiation and response to exter-
nal stimuli. Interestingly, human-specific duplicates evol-
ving under adaptive natural selection also include genes
involved in neuronal and cognitive functions, as well as
response to inflammation or stress [53]. Similarly, gene
families involved in copy number variations (CNVs) are
enriched for similar categories, including interactions
with the environment, neurophysiological processes and
brain development [54]. A recent study suggested that
the relationship between CNVs and positive selection
may play an important role in the emergence and evolu-
tion of species-specific traits in primates [55]. Genes in
many of these categories are thus thought to be impor-
tant in evolutionary adaptation and to be particular tar-
gets of natural selection.

Conclusions
Up to half of all protein sequences in today’s genome
databases contain erroneous insertions, deletions or sus-
picious segments. The high error rates have profound
implications, not only for the analysis of protein func-
tions, interaction networks, biochemical pathways or
disease phenotypes, but also for our understanding of
life’s evolution.
The putative sequence errors identified here lead to a

significant number of false positives in the detection of
asymmetric evolution events, which, if ignored, are suffi-
cient to obscure their true functional significance. We
have looked at one important event, asymmetric evolu-
tion after duplication, but the effect of protein sequence
errors is likely to be similar for other types of events.
This might explain many of the contradictions observed
in many recent evolutionary studies, aggravating the
effects of differences in source data, methodology and
planning of experiments [12].
Exploitation of the new genome data is clearly chal-

lenging, due to the size of the data sets, their complexity
and the high level of noise, and the situation is not
likely to improve with low coverage genomes becoming
the norm. As a consequence, data cleaning tools and
robust statistical analyses will be essential for its reliable
interpretation. With as many as 50% erroneous
sequences, the simple removal of this data will result in
the loss of too much information. It will be necessary to
validate and correct the sequence errors and ideally,
propagate these corrections to the public databases.
Some recent efforts have been undertaken to address
these issues [19,26,47], but additional work will be
essential to reduce the impact of error and to extract
the true meaning hidden in the data.
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The alternative is an escalating process where sys-
tematic errors are accumulated at each level of the ana-
lysis, generating artificially high rates of unusual event
predictions and eventually leading to an ‘error cata-
strophe’, where the noise overwhelms the true signal.

Methods
Protein sequence data sets
Human protein coding genes were retrieved from the
Human Proteome Initiative (HPI) and Swiss-prot
databases [56], resulting in a total of 19,778 human
sequences. Each gene was then used as a query for a
BlastP [57] search in a database consisting of the pro-
teomes of 14 vertebrates (Table 1) with almost com-
plete genomes from the Ensembl (version 51)
database [36]. The Ensembl human protein sequence
with the highest similarity to the HPI query was
designated as the reference protein sequence. For
each of the 19,778 human reference sequences, poten-
tial orthologs were then identified using two different,
complementary approaches: sequence similarity and
local synteny.

Putative orthologs based on sequence similarity
For each human reference sequence, a modified version
of the PipeAlign [58] protein analysis pipeline was used
to construct a multiple sequence alignment (MSA) for
all sequences detected by the BlastP search with E < 10-
3 (maximum sequences = 500). PipeAlign integrates sev-
eral steps, including post-processing of the BlastP
results, construction of a MSA of the full-length
sequences with DbClustal [59], verification of the MSA
with RASCAL [60] and removal of unrelated sequences
with LEON [61]. In this modified version, DbClustal
was replaced by the MAFFT [62] program, since the
computational speed of MAFFT is better suited to high
throughput projects. The MSAs obtained from this pipe-
line were then annotated with structural and functional
information using MACSIMS [63], an information man-
agement system that combines knowledge-based meth-
ods with complementary ab initio sequence-based
predictions. MACSIMS integrates several types of data
in the alignment, in particular Gene Ontology annota-
tions, functional annotations and keywords from Swiss-
prot, and functional/structural domains from the Pfam
database [64].
Based on the MSA, the evolutionary pairwise distance,

d, between any two sequences was defined as the num-
ber of amino acid substitutions per site under the
assumption that the number of amino acid substitutions
at each site follows the Poisson distribution. Thus:

d = − ln
(
1 − p

)

where d is the pairwise distance and p is the propor-
tion of different amino acids aligned (dissimilarity).
Then, for each human reference sequence, Hi, the

sequences from the 13 vertebrate organisms with the
highest similarity (i.e. the smallest distance) to Hi were
identified and denoted Vn_Simi, where Vn refers to one
of the 13 vertebrate organisms (Figure S2A in Addi-
tional file 1).

Putative orthologs based on local synteny
The chromosomal localization of all genes coding for
protein sequences was obtained from the Ensembl data-
base. Locally developed software was used to identify
regions on the human chromosomes where local syn-
teny was conserved between the human genome and
each of the other 13 vertebrate genomes. The chromo-
somes in each genome are thus represented as a linear
sequence of genes. For each human reference sequence,
the local syntenic homolog was defined as outlined in
(Figure S2B in Additional file 1). For the coding gene,
Hi, at position i on the human genome, its neighbours
(Hi-1 and Hi+1) were identified. For each of the 13 verte-
brate genomes, the sequences with the highest similarity
to Hi-1 and Hi+1 were selected from the MSA as
described above, and denoted Vn_Simi-1 and Vn_Simi+1

respectively, where Vn refers to one of the 13 vertebrate
genomes. A local synteny homolog, Vn_Syni exists for
Hi and genome Vn if: (i) homologs were found in Vn
for Hi-1 and Hi+1, (ii) the separation between the highest
similarity homologs, denoted Vn_Simi-1 and Vn_Simi+1,
on the genome was less than 5 genes and (iii) a homo-
log of Hi was found on the genome between Vn_Simi-1

and Vn_Simi+1. The homolog of Hi localized between
V_Simi-1 and V_Simi+1 with the highest similarity (smal-
lest evolutionary distance) to the human reference
sequence was then defined as the syntenic homolog.
Genes with ambiguous genomic locations, such as

scaffolds etc., were discarded since the synteny relation-
ship could not be reliably established. In addition, local
or tandem duplications were excluded since the genome
contexts of the two gene copies were similar. Although
tandem duplicates should be adjacent to each other on
one chromosome, extensive gene inversions may insert
irrelevant genes into the tandem arrays. We therefore
used a stringent threshold and excluded cases where
Vn_Simi and Vn_Syni were separated on the genomes
by less than 10 genes.

Automatic detection of potential sequence errors
For each MSA corresponding to a human reference
sequence, an automatic protocol was used to detect
sequence discrepancies that may indicate gene predic-
tion errors. Different types of prediction error were
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considered, such as excluding coding exons, including
introns as part of the coding sequence, or wrongly pre-
dicting start and termination sites. The protocol is
described in detail elsewhere [37]. Briefly, the sequences
in the MSA were first clustered into more related subfa-
milies then, for each subfamily, sequences with potential
errors were identified using an empirical rule-based
approach. (i) Badly predicted exons were identified
using the RASCAL algorithm [60] as outliers or ‘suspi-
cious’ sequence segments (Figure 8A). (ii) Badly pre-
dicted start or stop sites were identified by considering
the positions of the N/C-terminal residues for each
sequence in the subfamily alignment (Figure 8B). Nor-
mal values were defined as lying within the lower and
upper quartiles of the distribution of terminal positions.
Sequences with terminal positions outside this window
were annotated as potential deletion/extension errors.
(iii) Inserted introns (Figure 8C) were detected if a sin-
gle sequence contained an insertion of more than 10
residues. (iv) Missing exons (Figure 8D) were detected if
a single sequence contained a deletion of more than 10
residues.
Each error was then classified in one of 7 different

classes: internal insertions, internal deletions, suspicious
sequence segments, extensions at the N- or C-terminus,
and deletions at the N- or C-terminus.

Validation of potential sequence errors
The errors in the protein sequences were estimated by
analysing the corresponding DNA gene sequences from
the Ensembl database. First, if the gene sequence
contained a run of ‘N’ characters, we assumed that the
predicted protein sequence error was the result of a
DNA sequencing or assembly error. Second, the gene
sequences with no ‘N’ characters were searched for the
missing protein sequence fragments. For errors corre-
sponding to internal deletions, deletions at the N- or
C- terminus or suspicious sequence segments, the miss-
ing protein fragment was extracted from a closely
related sequence in the multiple alignment. The protein
fragment was then aligned to the gene sequence from
the ENSEMBL database using the PairWise software
[65]. The fragment was considered to be present in the
gene sequence if the percent identity of the protein and
translated gene sequences was greater than a given
threshold. The threshold used here was specific to the
pair of organisms compared and was defined as the
lower quartile of the protein sequence identities for the
complete proteomes of the two organisms. A similar
protocol was used for the errors corresponding to inser-
tions in a given protein sequence, except that, in this
case, the protein fragment corresponding to the inser-
tion was aligned to the gene sequence of another closely

Figure 8 Detection of potential sequence errors. Examples of sequence discrepancies (highlighted in blue) that are identified in the
subfamily alignments. A) Potential mispredicted exons, resulting in suspicious sequence segments, are identified based on the conserved blocks
in the subfamily alignment. B) Potential start and stop site errors are predicted based on the distribution of the positions of the N/C-terminal
residues. C) Identification of a potential inserted intron, based on the presence of a single sequence with the insertion in a given subfamily. D)
Identification of a potential missing exon, based on the presence of a single sequence with a deletion in a given subfamily.
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related sequence. Finally, the transcript evidence for the
protein sequences in the Ensembl database was searched
manually for known transcripts and splicing variants.

Prediction of asymmetrical evolutionary rates
It has been suggested that, after a gene duplication
event, one duplicate generally maintains the ancestral
function while the other is free to evolve and acquire
novel functionality. This scenario implies that the pro-
tein with conserved functionality will undergo less
sequence evolution than the one exploring new func-
tionalities. To determine which of the two homologs
described above (highest sequence similarity or syntenic)
was more likely to share the same function as the
human reference sequence, we estimated the difference
between the two evolutionary distances: human refer-
ence to similarity homolog and human reference to syn-
tenic homolog. Thus, for each of the 13 vertebrate
genomes considered in this study, we have a triplet of
homologs, Hi, Vn_simi, Vn_syni, and we want to esti-
mate the difference Δ between two distances d(Hi,
Vn_simi) and d(Hi, Vn_syni).
We used an estimator based on pairwise sequence dis-

tances similar to one defined previously, that is relatively
fast to compute and has almost the same statistical
power as the widely used maximum likelihood estimator
[66]. The distance, d, between two sequences is defined
as the number of amino acid substitutions per site under
the assumption that the number of amino acid substitu-
tions at each site follows the Poisson distribution, as
before. The variance s of the distance d is given by:

σ2 (d) = p/
[(

1 − p
)

n
]

where p is the proportion of amino acid differences
and n is the total number of amino acids compared.
If X has two homologs Y and Z, and Y is the closest

homolog to X, an estimator for the difference in evolu-
tionary distances is:

� = d (X, Y) − d (X, Z)

The variance of the difference can be computed as:

σ2 (�) = σ2 (d (X, Y)) + σ2 (d (X, Z))

− 2cov (d (X, Y) , d (X, Z))

and thus, an upper bound for the variance of the esti-
mator is:

σ2 (�) = σ2 (d (X, Y)) + σ2 (d (X, Z))

Finally, we assume X,Y are significantly closer than X,
Z if:

� < −k.σ (�)

In this work, the parameter k was set to 1.96, reflect-
ing the 95% confidence level. Thus, we would expect 5%
of the tested gene triplets to falsely reject the hypothesis
of asymmetrical evolution.

Additional material

Additional file 1: Supporting figures and tables. Supporting figures
and tables for the manuscript are provided as a PDF file.

Additional file 2: Examples of erroneous protein sequences and
their validation. Example text and figures are provided as a PDF file.
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Abstract

Multiple comparison or alignmentof protein sequences has become a fundamental tool in many different domains in
modern molecular biology, from evolutionary studies to prediction of 2D/3D structure, molecular function and inter-
molecular interactions etc. By placing the sequence in the framework of the overall family, multiple alignments can be used
to identify conserved features and to highlight differences or specificities. In this paper, we describe a comprehensive
evaluation of many of the most popular methods for multiple sequence alignment (MSA), based on a new benchmark test
set. The benchmark is designed to represent typical problems encountered when aligning the large protein sequence sets
that result from today’s high throughput biotechnologies. We show that alignmentmethods have significantly progressed
and can now identify most of the shared sequence features that determine the broad molecular function(s) of a protein
family, even for divergent sequences. However,we have identified a number of important challenges. First, the locally
conserved regions, that reflect functional specificities or that modulate a protein’s function in a given cellular context,are
less well aligned. Second, motifs in natively disordered regions are often misaligned. Third, the badly predicted or
fragmentary protein sequences, which make up a large proportion of today’s databases, lead to a significant number of
alignment errors. Based on this study, we demonstrate that the existing MSA methods can be exploited in combination to
improve alignment accuracy, although novel approaches will still be needed to fully explore the most difficult regions. We
then propose knowledge-enabled, dynamic solutions that will hopefully pave the way to enhanced alignment construction
and exploitation in future evolutionary systems biology studies.
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Introduction

Evolutionary theory provides a unifying framework for

analysing genomics data and for studying various phenomena in

molecular, cell, or developmental biology [1]. Thus, evolutionary-

based inference systems are playing an increasingly important role

in diverse areas, such as elucidation of the tree of life [2], studies of

epidemiology and virulence [3], drug design [4], human genetics

[5], cancer [6] or biodiversity [7]. Essential prerequisites for such

evolutionary-based studies are the multiple sequence alignment

(MSA) and its subsequent analysis [8,9,10]. By placing the

sequence in the framework of the overall family, MSAs can be

used to characterise important features thatdetermine the broad

molecular function(s) of the protein, such as the 3-dimensional

structure or catalytic sites, and that have been conserved

throughout evolution.However, most proteins act in complex,

dynamic networks that are dependent on the biological context,

for example subcellular localisation, temporal and spatial expres-

sion patterns, or environment. Here, MSAs will alsohave a crucial

role to play in identifying the specific features, also known as

‘‘specificity determining positions’’ (SDPs), that modulate a

protein’s function in a given context, for example, interaction

domains, regions or sites, targeting signals in the different cell

machineries, pathways orcompartments, or post-translational

modification sites(phosphorylation, cleavage, etc.) [11,12,13].

MSA algorithms have been an active area of research since the

1980s. Traditionally the most popular approach has been the

progressive alignment procedure [14], which exploits the fact that

homologous sequences are evolutionarily related. A multiple

sequence alignment is built up gradually using a series of pairwise

alignments, following the branching order in a phylogenetic tree.

A number of different alignment programs based on this method

have been developed, includingboth global and local approaches.

A global MSA algorithm is defined here as one that tries to align

the full length sequences from one end to the other. Once the

global alignment has been constructed, other methods are often

used to identify the more conserved or reliable regions within the

alignment. A local algorithm attempts to identify subsequences

sharing high similarity. The unreliable or low similarity regions are

then either excluded from the alignment, or are differentiated, for

example, by the use of upper/lower case characters. Comparisons

of many of these methods based on ‘gold standard’ benchmarks
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[15,16] showed that none of the existing algorithms were capable

of providing accurate alignments for all the test cases. As a

consequence, iterative algorithms were developed to construct

more reliable multiple alignments, using for example iterative

refinement strategies [17], Hidden Markov Models [18] or

Genetic Algorithms [19]. These methods were shown to be more

successful at aligning the most conserved regions for a wide variety

of test cases, although some accuracy was lost for distantly related

sequences, in the ‘twilight zone’ of evolutionary relatedness

[20,21].

In the post-genomic era,the growing complexity of the multiple

alignment problem has lead to the development of novel methods

that use a combination of different alignment algorithms

[22,23,24,25] or that incorporate biological information other

than the sequence itself [26,27]. A number of specific MSA

problems have also been addressed by programs such as POA [28]

for the alignment of non-linear sequences or PRANK [10] for the

detailed evolutionary analysis of more closely related sequences.

These new MSA construction methods are generally evaluated

using one or more alignment benchmarks, for example, BAliBASE

[15], OxBench [29] or PREFAB [24], and it is clear that this

benchmarking has had a positive effect on their development [30].

Most of the widely used MSA benchmarks were compared in [21]

and are also discussed in [31]. The use of objective benchmarks

leads to a better understanding of the problems underlying poor

performance, by highlighting specific weak points or bottlenecks.

Thus, benchmarking can help the developer improve the

performance of his software. In turn, the software improvements

imply that the benchmarks must continually evolve, if they are to

represent the current problems and challenges in the domain [31].

Today, new high throughout biotechnologies are providing us

with enough data to build complete evolutionary histories of large

sets of genes [32]. For the first time, it will be possible to compare

sequences from hundreds of diverse organisms, both present and

extinct, to perform detailed studies of the evolutionary patterns

and forces that shaped extant genes and to reconstruct the genetic

changes that are responsible for the phenotypic differences

between organisms. Although the current flood of data clearly

provides unique opportunities for systems-level studies, it also

poses many new challenges, in addition to the obvious scalability

issues. First, although the range of organisms studied has increased

recently, a relatively small number of model organisms still

dominate the public databases. Second, the protein families

represented in today’s sequence databases are often more

complex, with multidomain architectures, large unstructured

(natively disordered) regions, numerous splicing variants, etc.

Third, the new sequences are mostly predicted by automatic

methods and thus, contain a significant number of sequence errors

[33,34]. For example, the EGASP assessment of gene prediction

algorithms showed that the best gene prediction systems are able

to predict entirely correct sequences for protein transcripts in the

human genome only 50% of the time [35]. The problem has been

further exacerbated by the next generation (massively parallel)

DNA sequencing instruments that can sequence up to one billion

bases in a single day at low cost [36]. These new technologies

produce read lengths as short as 35–40 nucleotides, resulting in

fragmentary protein sequences that pose problems for bioinfor-

matics analyses [37].If MSA methodology is tokeep pace with the

new challengespresented by this complex and often ‘noisy’

sequence data, the alignment benchmarks used for evaluation

must now evolve to reflect this changing biological sequence space.

Here, we describe a new protein sequence alignment bench-

mark designed to reproduce today’s sequence exploration

requirements and a comprehensive assessment of the performance

of some of the most popular MSA programs. Our study was

motivated by two major observations. First, most of the existing

MSA benchmarks - and as a consequence, most MSA construction

algorithms - have focused on the patterns conserved in the

majority of the sequences and not enough attention has been paid

to the less frequent patterns, or SDPs, that might indicate

subfamily-specific or context-specific functions. Second, current

MSA programs for protein sequences generally model globular

domain structure and evolution. Nevertheless, many proteins,

particularly in eukaryotes, are unstructured (natively disordered)

or contain large unstructured regions.These regions frequently

contain motifs, such as signalling sequences or sites of posttrans-

lational modifications, that are involved in the regulatory functions

of a cell [38,39]. While this complexity alone represents a

significant challenge for today’s MSA algorithms, another major

goal of our study was to investigate the effect of the ‘noisy’ data,

including fragmentary or otherwise erroneous sequences, on MSA

program performance.

Our benchmark, representing 218 large, complex protein

families, has been incorporated in the BAliBASE benchmark suite

and provides a complementary test to the existing reference sets.

While the previous sets included mainly alignments of shared,

structured domains, the reference set described here focuses on (i)

subfamily specific features, (ii) motifs in disordered regions, (iii) the

effect of fragmentary or otherwise erroneous sequences on MSA

quality. The new benchmark tests were then used to evaluate the

quality of the alignments produced by some of the most widely

used programs for MSA construction. This comparative study

allowed us to evaluate the recent progress achieved and to

highlight a number of specific strengths and weaknesses of the

different approaches. Finally, we propose new directions for the

future development of multiple alignment construction and

analysis methods.

Results

Benchmark alignments
The BAliBASE benchmark suite contains multiple sequence

alignments, organised into 9 Reference Sets representing specific

MSA problems, including small numbers of sequences, unequal

phylogenetic distributions, large N/C-terminal extensions or

internal insertions, repeats, inverted domains and transmembrane

regions. Here, we have constructed a new BAliBASE test set,

Reference 10, composed of 218 reference alignments and

containing a total of 17892 protein sequences, which were

obtained using a query-based database search protocol. Details

of the benchmark alignments are provided in the Methods section.

For each reference alignment, we then identified the locally

conserved regions, or ‘blocks’, using an automatic method. This

led to the definition of 9131 blocks, covering on average 46% of

the total multiple alignment. The remaining regions of the

reference alignments, corresponding to the unalignable or unstable

segments, were excluded from the analyses performed in this work.

The resulting benchmark alignments reflect some of the problems

specific to aligning large sets of complex protein sequences. For

example, many of the protein families (.64% of the alignments)

have multidomain architectures and their members often share

only a single domain. Another important feature of the alignments

is linked to the distribution of the conserved blocks. The alignment

of the highly studied P53/P63/P73 family (Figure 1A), illustrates

this conceptwith only 18% of the blocks present in most (.90%) of

the aligned sequences, while 30% are found in less than 10%.

These ‘rare’ segments or patterns are often characteristic of

context-specific functions, e.g. substrate binding sites, protein-

Multiple sequence alignment methods
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protein interactions or post-translational modification sites.Finally,

the alignments have a high proportion of sequences with

‘discrepancies’,i.e. unexpected or discordant extensions, insertions

or deletions, as shown in Figure 2. These discrepancies may

correspondto naturally occurring variants or may be the result of

artifacts, including PDB sequences (typically covering a single

structural domain), proteins translated from partially sequenced

genomes or ESTs, or badly predicted protein sequences.In the

alignment in Figure 1A, 45% of the aligned sequences (61 out of

134) contain one or more of these discrepancies.

MSA program evaluation: overall alignment quality
For each of the 218 reference alignments in the benchmark, we

applied eight alignment programs, resulting in a total of 1744

automatically constructed MSAs. The overall quality of these

automatic alignments was measured using the Column Score (CS)

described in Methods. This initialexperiment generally confirmed

previous findings, in terms of program ranking (Figure 3).

Probcons, TCoffeeand the most recent version of Mafft (linsi)

(version 6.815) achieved the highestaverage scores (79.4% and

81.6% respectively).Nevertheless, Probcons and TCoffee took over

2.7 days to compute all the alignments, while Mafft (linsi) took

1.2 hours.The fastest program, Kalign, required only 3.0 minute-

scomputation time, although some loss of accuracy was observed

(74.3%). As expected, the more recent methods incorporating both

local and global algorithms were generally more accurate than

older methods, based on global (ClustalW: 64.4%) or local

(Dialign-tx: 73.8%) algorithms alone. Individual alignment

accuracy was highly variable even for the best programs (with a

standard deviation of 19.6, 19.1and 18.9 for Probcons, TCoffee

and Mafft (linsi) respectively). This is in agreement with previous

observations showing that some alignments are more difficult than

others [10,20].

To investigate in more detail the factors affecting the

performance of each program, we characterized each alignment

using a number of ‘global’ attributes describing the overall full-

length alignment, including the number of sequences to be

aligned, their length, an MSA objective function (norMD) [40]

and the percentage of the alignment covered by the blocks.

Figure 4(A–D) shows the distributions of the overall alignment

quality scores obtained by each MSA program for each global

attribute. These distributions, together with a correlation analysis

(Figure 4E), showed that more closely related sequences were

generally aligned better (positive correlation for all programs with

the norMD and percent coverage by blocks), as might be expected.

For the more difficult alignment tests, e.g. with norMD,0.2, the

mean CS scores were less than 0.5 for all the aligners included in

this study. The length of the sequences had less effect on alignment

quality, although longer sequences tended to be less well aligned.

In contrast to some previous studies [20,21], we observed a

negative correlation with the number of sequences in these

alignments, i.e. the alignments with a larger number of sequences

were less well aligned. For alignments with more than 80

sequences, only Mafft (linsi) achieved CS scores higher than 0.7.

Effect of sequence discrepancies on alignment quality
To study the effect of the new sequences resulting from high

throughput biotechnologies, we identified sequence discrepancies

that might be due to fragmentary or erroneous sequences using an

empirical rule-based approach (described in Methods). The

method exploits information from the reference alignments to

classify the sequences in each alignment into a number of

subfamilies and to construct a representative model for each

protein subfamily, including characteristic conserved blocks and

typical start/stop sites. Each subfamily sequence was then

compared to the model in turn, in order to identify ‘outlier’

sequences, with one or more discrepancies. The discrepancies we

considered included: (i) divergence of the sequence from conserved

core blocks that might indicate badly predicted exons, (ii)

insertions that may be due to introns predicted to be coding, (iii)

deletions that may be due to missing exons and (iv) potential start

and stop site mispredictions. Although the method used here to

detect sequence discrepancies may also identify a number of

naturally occurring proteins, such as splicing variants, our main

goal was to construct a set of reliable sequences for use in the

following experiments.

In the first experiment, all the sequences (the reliable sequences

and those with discrepancies) were used as input for each MSA

program. The alignment quality scores were then calculated based

only on the reliable sequences (ignoring the sequences with

discrepancies) and compared to the scores obtained in the previous

test for all sequences (Figure 5). Significant differences (one-tailed

student t-test)were observed for all the MSA programs tested,

implying that sequences with discrepancies are aligned less well

than reliable sequences.

In the second experiment, the sequences with discrepancies

were excluded from the benchmark test sets and each sequence set

was realigned using the eight MSA programs.The quality of the

resulting alignments was again measured using the CS score

(Figure 5). No significant differences were observed for the

alignment scores based on the reliable sequences, when sequences

with discrepancies were included or excluded from the MSA.

Based on these two experiments, we conclude that the MSA

programs tested are capable of accurately aligning the reliable

sequences, even in the presence of a large proportion of sequences

with discrepancies. Nevertheless, it is important to note that, in the

presence of sequences with discrepancies, the subsequent exploi-

tation of the MSA and in particular the identification of family-

wide or context-specific motifs, is more complicated. In order to

exploit the full potential of the new sequence resources, it is clearly

necessary to characterise precisely the conserved segments within

these sequences.

MSA program evaluation: alignment of locally conserved
motifs

To investigate the ability of the MSA programs to identify

context-specific or locally conserved motifs, we typified each

individual block in the reference alignments using a number of

different features: block length, sequence similarity in the block,

the frequency with which the block is observed in thealignment,

and the percentage of the block found in a natively disordered

region. The alignment quality for each individual block was then

measured using the Block Column Score (BCS) described in

Methods. Figure 6(A–D) shows the distributions of the block

scores obtained by each MSA program for each block attribute.

BCSgenerally increased with increasing block length and

increasing sequence similarity, as might be expected.Neverthe-

less, a correlation analysis (Figure 6A) showed that the programs

did not respond in the same way to the different block features.

For example, the scores obtained with the program Probcons

were highly correlated with the frequency of the blocks, which

implies that the blocks found in a small proportion of the

sequences were aligned less well than those found in the majority

of the sequences. In fact, for blocks found in less than 20% of the

sequences, the mean BCS score for Probcons is 0.33, compared

to 0.80 for blocks occurring in more than 80% of the sequences.

This may be due to the probabilistic consistency-based objective

function used in Probcons, which incorporates multiple sequence

Multiple sequence alignment methods
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conservation information during the alignment of pairs of

sequences. The defaultversion of Muscle and TCoffee were also

affected by the frequency of the blocks. In the case of Muscle, this

may be related to the iterative refinement stage, since the fast

version with only 2 iterations was less sensitive. In contrast,

Probcons and Muscle (default) were less sensitive than the other

programs to the similarity of the blocks. The localization of the

block in a natively disordered region had an adverse effect on the

scores obtained by all the programs tested. Thus, blocks with

more than 20% of the residues in natively disordered segments

were aligned with BCS scores less than 0.5 by all aligners. This is

in agreement with our original observation that most MSA

programs available today are designed to align the globular,

folded domains in proteins.

Figure 1. An example benchmark alignment. (A) Reference alignment of representative sequences of the p53/p63/p73 family, with the domain
organization shown above the alignment (AD: activation domain, Oligo: oligomerization, SAM: sterile alpha motif). Colored blocks indicate conserved
regions. The grey regions correspond to sequence segments that could not be reliably aligned and white regions indicate gaps in the alignment. (B)
Different MSA programs produce different alignments, especially in the N-terminal region (boxed in red in A) containing rare motifs and a disordered
proline-rich domain.
doi:10.1371/journal.pone.0018093.g001
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Improving local alignment quality by combining
methods

The experiments described above demonstrated some of the

strengths and weaknesses of the different MSA construction

methods. For a given set of sequences, different MSA programs

often provide very different solutions, particularly outside the most

conserved regions, as illustrated in Figure 1B. In order to test

whether these differences could be exploited to improve local

alignment accuracy, we determined a new score for each block,

corresponding to the highest score obtained by any of the

programs. This combined score was then compared to the block

scores for each program individually (Figure 7). Of course, our

combined score is a theoretical maximum, since it incorporates

knowledge about the blocks from the reference alignment.

Identifying ab initio conserved regions in different alignments and

combining them in a single consensus alignment is more

complicated. Nevertheless, the combined score represents a

significant improvement over all the individual methods, with an

increase in accuracy of almost 20%.

Based on these combined scores, we posed the following

question: can we model or predict the ‘alignability’ of specific

blocks based on the attributes we have defined here? In other

words, can we use these attributes to distinguish the blocks that can

be aligned from those that cannot? The good news is that, by

exploiting the individual capabilities of the recent algorithmic

developments, a new milestone is attained where the globular

domains present in a majority of the sequences can be accurately

aligned (Figure 8). Even short blocks (,10 residues)with low

similarity (,0.5) can be aligned with 40–60% accuracy (Figure 8A).

However, the frequency of occurrence in the alignment plays an

important role. Blocks that occur in a majority of the sequences,

even very divergent ones, are generally well aligned (Figure 8B).

Short blocks (,10 residues) that occur in a majority of the

sequences are also well aligned (Figure 8C). Blocks in natively

disordered regions are generally less well aligned than those in

folded regions, and short, divergent blocks are misaligned by all

programs (Figure 8D–F).

Discussion

We have used a new alignment benchmark to investigate

whether MSA programs are capable of constructing high quality

alignments for the sequences resulting from modern biotechnol-

ogies. The overall alignment quality scores obtained by the

different programs generally confirmed the trends observed in

previous benchmark studies. One notable exception was the fact

that increasing the number of sequences in the alignment did not

lead to more accurate alignments on average. We hypothesize that

this is due to the greater complexity of the large alignments,

generally representing divergent protein families with complex

domain organisations and an increased number of fragmentary

and erroneous sequences.

A more detailed study of local alignment quality then allowed us

to highlight a number of differences in the MSA methods tested.

For example, for very divergent blocks, Mafft (linsi), TCoffee and

Probcons were more successful. The local alignment method,

Dialign-tx, and Kalign performed better for blocks that were

conserved in small subsets of the sequences, while Mafft (linsi)

achieved the highest scores for short blocks less than 10 residues

long. Based on these results, we demonstrated that better

alignment accuracy could be achieved by combining the strengths

of the different programs. Unfortunately, the alignment accuracy

still decreases when the domains are found less frequently in the

alignment.In the future, new approaches will be needed to

Figure 2. Examples of sequence discrepancies detected. Four types of sequence discrepancies are identified and highlighted by red boxes in
the subfamily alignments. A. Potential mispredicted exons are predicted based on the scores of the conserved core blocks (blue boxes) in the
subfamily alignment. Here, the ninth sequence contains a segment ‘outlier’ that scores below the defined threshold for the central core block. The
region of the sequence identified as a discrepancy is extended to the nearest core blocks in which the sequence is correctly aligned. B. Potential start
and stop site errors are predicted based on the distribution of the positions of the N/C-terminal residues. C. Identification of a potential inserted
intron, based on the presence of a single sequence with the insertion in a given subfamily. D. Identification of a potential missing exon, based on the
presence of a single sequence with a deletion in a given subfamily.
doi:10.1371/journal.pone.0018093.g002
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specifically address the problems of identifying the subfamily- or

context-specific motifs and other blocks that occur less frequently

in the alignment, and to handle the noise introduced by the

numerousfragmentary and erroneous sequences.

There are a number of alternative solutions for coping with this

additional complexity. First, assuming that the fragmentary and/

or erroneous sequences can be identified, they can be excluded

from the alignment, although this would discard a significant

amount of information. Second, the missing or erroneous portions

of the sequences can be predicted [41]. This however is difficult

without the information from the alignment itself. Third, new

algorithms and programs can be developed to handle the specific

characteristics of the new sequences. Work in this direction has

begun, with the development for example, of enhanced database

searching algorithms such as CARMA [42], or MEGAN [43] that

are more robust to the sequencing errors common in high

throughput sequencing projects. In the MSA field, some aligners,

such as Kalign, TCoffee or Probcons, provide estimators of local

alignment accuracy that could be used to identify unreliable

regions and eliminate them from subsequent analyses. The

sensitivity/specificity of these accuracy scores has not been fully

evaluated yet, although a comprehensive test could be performed

using simulated sequences, where the true homology relationships

between all sequence residues are known.

Figure 3. Overall alignment performance for each of the MSA programs tested. (A) Overall alignment quality measured using CS. Programs
are shown ranked by increasing quality scores. Error bars correspond to one standard deviation.(B) Total run time for constructing all alignments (a
log10 scale is used for display purposes).
doi:10.1371/journal.pone.0018093.g003

Multiple sequence alignment methods

PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e18093



The alignment of blocks in the natively disordered regions is

even more problematic. This is probably because the default

parameters used in most MSA programs have been optimized on

alignments of globular, folded domains, and most of the

benchmarks used to evaluate the programs are based on

structural superpositions of these domains. Although the 3D fold

gives important clues to function, it does not represent the whole

protein [38,39]. The unstructured regions contain important

regulatory signals, such as cellular localization or post-transcrip-

tional modification sites, and many others waiting to be

discovered. A number of groups have recently begun to develop

new statistical models to represent many of these signals [44,45]

and it will be crucial to incorporate these models in future MSA

programs.

Figure 4. Factors affecting overall alignment quality.Average alignment quality scores (CS) for each MSA program tested and for eachglobal
alignment attribute:(A) CS versus NorMD, (B) CS versus the percentage of the alignment covered by the blocks, (C) CS versus mean sequence length,
(D) CS versus the total number of sequences.(E) Pearson correlation coefficients of overall quality scores (CS) for each program with global alignment
attributes (blue: positive correlation, red: negative correlation).
doi:10.1371/journal.pone.0018093.g004
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So far, we have considered only the alignment of the conserved

blocks that could be identified reliably, which cover less than 50%

of the total alignment. The structural and/or functional roles of

the remaining regions (shown in grey in Figure 1A) are still largely

out of reach. We can draw parallels here with the evolving view of

the human genome. When the genome was first sequenced, less

than 5% of it was considered functional, the rest being ‘junk

DNA’. Now, it is known that this so-called ‘dark matter’ does in

fact contain numerous functional elements [46].

It is clear that the sequence alignment field now needs to evolve

to cope with the challenges posed by the overwhelming flood of

data. We have shown that the partitioning of the alignment into

well characterised blocks allows a judicious combination of

complementary methods resulting in more accurate alignments,

particularly in the less well conserved regions. These alignments

will in turn allow to highlight both conserved family signatures and

specific regions that might suggest neo- or sub-functionalization, or

other important genetic events. The next generation of MSA

methods will undoubtedly incorporate other novel approachesthat

will allow us to reveal the detailed picture of a gene’s function and

evolution in the context of their complex interaction and

regulatory networks. We propose two major directions for future

developments. First, the definition of alignment and block

attributes opens the way to the exploitation of the latest

developments in the field of statistical pattern recognition and

data mining, aimed at extracting interesting or informative

correlations (rules, regularities, patterns or constraints) from large

data sets. Some recent research in this area has focused on the

identification of rare patterns e.g.[47] and the problems of how to

differentiate valid rare patterns from noise. Second, MSA

algorithms can benefit from the new structural and functional

‘‘omics’’ data. In the same way that 2D and 3D structure

information has already been used in methods such as 3D-

COFFEE [26] or Refiner [27], or information from database

homology searches in programs such as PRALINE[48]orPRO-

MALS [49], other important data resources could be exploited to

shed light on the unstructured and other ‘grey’ regions. For

example, information about cellular localizationor specific molec-

ular interactions could be used to guide the search for specific

signals in these complex sequences.

Integration of these different algorithmic approaches and data

types in knowledge-enabled, dynamic systems will ease and improve

the complete MSA construction and analysis process; from the

selection of a suitable set of sequences, via data cleaning and

preprocessing, data mining and the evaluation of results, to the final

knowledge presentation and visualization. Such systems could then

be used to fully exploit the potential of MSAs as models of the

underlying evolutionary processes that have created and fashioned

extant genes and fine-tuned their structure, function and regulation.

Materials and Methods

Construction of reference alignments
The protein families used as benchmark test sets were selected

to provide a variety of different multiple alignment problems

(Figure 9). Thus, the number of sequences in each alignment

ranges from 4 to 807. The mean sequence length for an alignment

ranges from 56 to 3271 and mean residue percent identity ranges

from 11 to 68. Detailed alignment statistics are available at ftp://

ftp-igbmc.u-strasbg.fr/pub/msa_reference/stats.txt.

For each family, the reference alignment was constructed using

a semi-automatic protocol similar to the one developed for the

construction of the BAliBASE [50] alignment benchmark. Briefly,

potential sequence homologs were detected by PSI-BLAST [51]

searches in the Uniprot [52] and PDB [53] databases using a given

query sequence. Of the 218 reference alignments, 122 (56%) have

at least one sequence with known structure.Sequences with known

3D structure were then aligned using the SAP [54] 3D

superposition program. Sequences with no known 3D structure

were initially aligned by (i) identifying the most conserved

segments in the PSI-BLAST HSP alignments with the Ballast

[55] program and (ii) using these conserved segments as anchors

for the progressive multiple alignment strategy implemented in

DbClustal [56]. Unrelated sequences were removed from the

Figure 5. Comparison of alignment quality scores for sequence sets with and without potential error sequences.Quality scores (CS) for
alignment of reliable sequences when discrepancies are included in the alignment set are shown in red. Quality scores for the same set of sequences
when discrepancies are removed from the alignment set are shown in green. Scores for all sequences (from figure 2) are shown (in blue) for
comparison purposes.
doi:10.1371/journal.pone.0018093.g005
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multiple alignment using the LEON [57] program and the quality

of the alignment was evaluated using the NorMD objective

function. Finally, structural and functional annotations (including

known domains from the Interpro database: www.ebi.ac.uk/

interpro/) were added using the multiple alignment information

management system (MACSIMS) [58].

The automatic alignment was then manually verified and

refined to correct any badly aligned sequences or locally

misaligned regions. The manual refinementincluded the alignment

of known secondary structure elements and functional residues.At

this stage, a subset of the complete set of sequences detected in the

database searches was selected to ensure that the benchmark

Figure 6. Factors affecting individual block alignment quality.Average block scores (BCS) for each MSA program and for each block
attribute:(A) BCS versus similarity ( = 1-MD) of the sequences in the block, (B) BCS versus block length: average residue length of the block, (C) BCS
versus frequency of occurrence of the block in the alignment, (D) BCS versus disorder: percentage of residues in natively disordered regions
compared to folded domains.(E) Correlation of individual block scores (BCS)for each program with the various block attributes.
doi:10.1371/journal.pone.0018093.g006

Multiple sequence alignment methods

PLoS ONE | www.plosone.org 9 March 2011 | Volume 6 | Issue 3 | e18093



contains test sets of different sizes, thus representing a wide

diversity of alignment problems. Alignments were edited with the

JalView [59] editor which allows the user to visualize alignment

conservation via various residue coloring schemes as well as

conservation and consensus plots. The conserved regions were also

explored according to the structural and functional information

available for the sequence family.

Alignment block calculation
For each reference alignment, blocks are defined that

correspond to the reliably aligned regions, using the RASCAL

[60] program. Briefly, the alignment is first divided horizontally

into sequence subfamilies using Secator [61]. For each subfamily,

sequence conservation is measured using the NorMD objective

function in a sliding window analysis (window length = 5) along the

length of the alignment. A block is then defined as a region in the

alignment consisting of at least 3 columns, in which the NorMD is

above the threshold value of 0.2. For each block in each subfamily,

a profile [62] is built from the alignment and pairwise profile-

profile comparisons are made to identify blocks shared between a

number of subfamilies. This protocol is similar to the method used

to identify blocks in the previous BAliBASE alignment benchmark

[50], although in this case only regions conserved in all the

sequences were marked as blocks.

This protocol led to the identification of 7985 blocks,

representing on average 46% of the total multiple alignment

(coverage ranged from ,20% to .80%). The remainder of the

sequence segments could not be aligned reliably based only on the

sequences and structures present in the alignment. Thus, the

blocks exclude local segments that are either (i) unalignable by

sequence alone or (ii) not biologically alignable.

Global alignment attributes
Four different attributes were calculated for each reference

alignment, which reflect the overall difficulty of the alignment:

i. the total number of sequences to be aligned,

ii. the average length of the sequences to be aligned,

iii. the norMD score which is an objective function for MSA

based on the Mean Distance (MD) scores introduced in

ClustalX [63]. A score for each column in the alignment is

calculated using the concept of continuous sequence space

introduced by Vingron and Sibbald [64] and the column

scores are then summed over the full length of the alignment.

The norMD scores also take into account the size of the

alignment by calculating the maximum score attainable

given the lengths of each of the unaligned sequences and

assuming that the sequences are all identical.

iv. the percentage of the alignment covered by the blocks.

Block attributes
Four different attributes were calculated for each block in each

reference alignment:

i. the average similarity of the sequence segments in the block

is estimated using: Similarity = 1-MD, where MD = mean

distance [40] of the sequences in the block,

ii. the length of the block, corresponding to the average number

of residues for each sequence in the block,

iii. the frequency of occurrence of the block in the alignment,

equal to the number of sequences in the block divided by the

total number of sequences in the alignment,

iv. the structural context of the block, measured by the

percentage of the residues in the block found in a predicted

natively disordered (unstructured) region. Natively disor-

dered segments were predicted using the IUPred program

[65].

Although the benchmark test sets are designed to represent

many different alignment problems, the sampling of the four

attributes described here is not always homogeneous. For example,

the test sets contain few blocks in disordered regions, which are

also long or which occur frequently in the alignments. This results

Figure 7. Comparison of block scores obtained by the different alignment programs. Mean block scores for the individual programs vary
between 0.49 and 0.65. Combining the results from each program leads to an increased mean score of 0.81.Error bars correspond to one standard
deviation. Asterisks indicate significant differences between the scores according to pairwise t-tests (significance level 0.05).
doi:10.1371/journal.pone.0018093.g007
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in some heterogeneity in the subsequent analyses, such as the

results shown in figure 3 in the main text.

Detection of sequence discrepancies
The sequences in the benchmark test sets were extracted from

the public protein databases and may contain errors resulting from

inaccurate gene structure prediction. Different types of prediction

error were considered, such as excluding coding exons, including

introns as part of the coding sequence, or wrongly predicting start

and termination sites. We used the information in the reference

multiple alignment to build a model of the protein family and

sequences that deviated from this model were annotated as having

potential sequence errors.

The sequences in the complete alignment were first divided into

more related subfamilies using the Secator program [61]. Then,

for each subfamily, sequences with discrepancies that might

indicate errors in the corresponding gene structure, were identified

using an empirical rule-based approach:

1. Badly predicted exons are identified using the RASCAL

algorithm [60] as ‘outlier’ sequence segments. The method is

summarized here and in Figure 2A. First, conserved ‘core

blocks’ are identified for the subfamily, representing the

sequence segments that are reliably aligned in the majority of

the sequences within the subfamily. Then, for each core block,

a weighted profile is built from the alignment and each

sequence within the subfamily is assigned a score against the

profile. Finally, a threshold score for each core block is defined

based on the upper and lower quartiles of the sequence scores.

Sequence segment outliers that score below the threshold are

annotated as ‘discrepancies’ or potential errors.

2. Badly predicted start or stop sites are identified by considering

the positions of the N/C-terminal residues for each sequence in

the subfamily alignment (Figure 2B). For each sequence, the

position of the terminal residue in the alignment is noted. A

window, W, of ‘normal’ values is then determined, as follows:

Q1-10,W,Q3+10, where Q1 and Q3 are the lower and upper

quartiles respectively of the distribution of terminal positions.

Sequences with terminal positions outside this window are

annotated as potential deletion/extension errors.

3. Inserted introns (Figure 2C)are detected using the following

rule: a potential inserted intron is detected if two subfamily

alignment columns (i,j) exist such that ((ni = Ni) AND (nj = Nj)

AND (Nk = 1 for i,k,j) AND (j-i. = 10)), where Ni is the total

number of sequences in the subfamily (excluding fragments at

column i), ni is the number of residues in column i.

4. Missing exons (Figure 2D)are detected using the following rule:

a potential missing exon is detected if two subfamily alignment

columns (i,j) exist such that ((ni = Ni) AND (nj = Nj) AND

(Nk = N-1 for i,k,j) AND (j-i. = 10)), where Ni is the total

number of sequences in the subfamily (excluding fragments at

column i), ni is the number of residues in column i.

Multiple alignment programs evaluated
The latest versions of 8 different multiple alignment programs

(see below) were used to construct an alignment for each of the

benchmark test sets. The programs were run using the default

options for protein alignment, except for Mafft and Muscle. Mafft

is a suite of programs offering various multiple alignment

strategies, of which two complementary versions were tested: a

rapid, less accurate version (fftns2) and an iterative refinement

(linsi). For Muscle, two versions were tested: a fast, average

accuracy version that limits the refinement to a maximum of 2

iterations (iters = 2), and the default options, which limits the

refinement to a maximum of 16 iterations. The parallel version of

TCoffee was run on 8 processors. Thus, a total of eight different

versions of the alignment programs were tested (Table 1).

All programs were run on a Sun Enterprise V40z server (4

Opteron processors with 4616 Gb memory) under RedHat

Enterprise Linux.

Evaluation procedure
Overall alignment quality scores. The alignments

obtained from each of the 8 programs were compared to the

corresponding reference alignments. Suppose we have a test

alignment of N sequences and M blocks. For each block, b in the

Figure 8. Alignability of blocks depends on various attributes.
By combining 8 different MSA programs, a majority of blocks can be
well aligned (red regions in the heat maps), but certain blocks remain
problematic (blue, green regions). (A) Short blocks (,10 residues) with
low similarity (,0.5) are aligned with 40–60% accuracy. (B) The
frequency of occurrence in the alignment plays an important role.
Blocks that occur in a majority of the sequences, even very divergent
ones, are generally well aligned. (C) Short blocks (,10 residues) that
occur in a majority of the sequences are also well aligned. (D to F)
Blocks in natively disordered regions are generally less well aligned than
those in folded regions, and short, divergent blocks are misaligned by
all programs (blue regions).
doi:10.1371/journal.pone.0018093.g008

Multiple sequence alignment methods

PLoS ONE | www.plosone.org 11 March 2011 | Volume 6 | Issue 3 | e18093



alignment containing nb sequences and mb columns, the ith

column of the block is assigned a score Cbi = 1 if all the residues in

the column are aligned correctly, otherwise Cbi = 0. The score for

each block ( = Cbi averaged over its columns) is then weighted by

the number of sequences in the block. The overall alignment

quality, or Column Score (CS), is then:

CS~

XM

b~1

nb

Xmb

i~1

Cbi

mb

XM

b~1

nb

Block alignment quality scores. For each block, b in the

alignment containing nb sequences and mb columns, the ith

column of the block is again assigned a score Cbi = 1 if all the

residues in the column are aligned correctly, otherwise Cbi = 0.

The ability of the programs to align a specific block was estimated

Figure 9. General statistics computed for the benchmark alignments. In the box-and-whisker plots, boxes indicate lower and upper
quartiles, and whiskers represent minimum and maximum values. Blue boxes correspond to the alignment of all sequences. Red boxes correspond to
the alignments containing only reliable sequences, with no identified sequence discrepancies.
doi:10.1371/journal.pone.0018093.g009

Table 1. Multiple sequence alignment programs used in this
study.

Program version Availability

ClustalW[67] 2.0.12 www.clustal.org

Dialign-tx [68] 1.0.2 dialign-tx.gobics.de

Kalign [69] 2.03 msa.cgb.ki.se

Mafft (fftns2) [70] 6.815 align.bmr.kyushu-u.ac.jp/mafft/
software

Mafft (linsi) [70] 6.815 align.bmr.kyushu-u.ac.jp/mafft/
software

Muscle (iters = 2) [71] 3.8.31 www.drive5.com/muscle

Muscle (default) [71] 3.8.31 www.drive5.com/muscle

T-Coffee (parallel)[72] 8.99 www.tcoffee.org

Probcons [73] 1.12 probcons.stanford.edu

doi:10.1371/journal.pone.0018093.t001
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by calculating the block column score, (BCS) = mean column

score in the block:

BCS~

Xmb

i~1

Cbi

mb

In this case, the block column scores are not weighted by the

number of sequences in the block. Instead, each block has a

maximum score of 1, regardless of the frequency with which it is

observed in the alignment.

Combining block alignment quality scores for different
programs

For each reference alignment, a ‘‘combined score’’ was

calculated corresponding to the maximal score possible if all

correctly aligned blocks from each program were combined in a

single alignment. For each block in the reference alignment, the

maximum score obtained by any of the programs was selected and

these maximal block scores were then averaged over the whole

alignment.

Availability
Unaligned sequences for all the reference alignments are

available in FASTA format from ftp://ftp-igbmc.u-strasbg.fr/

pub/msa_reference/msa_reference.tar.gz. The annotated align-

ments, including the block definitions, are provided in an XML

format based on the MAO Multiple Alignment Ontology [66] and

used by the MACSIMS systems [56]. The source code for the

scoring schemes used here is available from ftp://ftp-igbmc.u-

strasbg.fr/pub/msa_reference/bali_score_src_v4.tar.gz.
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ABSTRACT

The identification of orthologs—genes pairs descended from a
common ancestor through speciation, rather than duplication—
has emerged as an essential component of many bioinformatics
applications, ranging from the annotation of new genomes
to experimental target prioritization. Yet, the development and
application of orthology inference methods is hampered by the lack
of consensus on source proteomes, file formats and benchmarks.
The second ‘Quest for Orthologs’ meeting brought together
stakeholders from various communities to address these challenges.
We report on achievements and outcomes of this meeting, focusing
on topics of particular relevance to the research community at large.
The Quest for Orthologs consortium is an open community that
welcomes contributions from all researchers interested in orthology
research and applications.
Contact: dessimoz@ebi.ac.uk

Received on September 27, 2011; revised on December 2, 2011;
accepted on January 22, 2012

1 INTRODUCTION
The concepts of orthology and paralogy are central to comparative
genomics. These terms were coined more than four decades
ago (Fitch, 1970) to distinguish between two classes of gene
homology: those descended from a common ancestor by virtue of
a speciation event (orthologs) versus those that diverged by gene
duplication (paralogs). This distinction permits accurate description
of the complex evolutionary relationships within gene families
including members distributed across multiple species. Detection
of orthology and paralogy has become an essential component of
diverse applications, including the reconstruction of evolutionary
relationships across species (reviewed in Delsuc et al., 2005),
inference of functional gene properties (e.g. Chen and Jeong, 2000;
Hofmann, 1998; Tatusov et al., 1997), and identification and testing
of proposed mechanisms of genome evolution (e.g. Mushegian and
Koonin, 1996; Tatusov et al., 1997). In today’s context, with the
number of fully sequenced genomes growing by the day, accurate

∗To whom correspondence should be addressed.
†The complete list of members of the Quest for Orthologs Consortium is
provided in the Acknowledgement section.

and efficient inference of orthology has become an imperative.
A plethora of computational methods have been developed for
inferring orthologous relationships, many of which provide their
predictions in form of web-accessible databases (reviewed in
Alexeyenko et al., 2006; Gabaldón, 2008; Koonin, 2005; Kristensen
et al., 2011).

In 2009, the first Quest for Orthologs meeting was organized
to bring together scientists working in the fields of orthology
inference, genome annotation and genome evolution to exchange
ideas, tackle common challenges, aiming at removing barriers and
redundancy (Gabaldón et al., 2009). The main objectives identified
were concerted effort toward standardized formats, datasets and
benchmarks, and establishment of continuous communication
channels including a mailing list, a website and a regular meeting.

Following the first Quest for Ortholog meeting in 2009,
a second meeting was held in June 2011, bringing together
45 participants from 27 different institutions on 3 continents,
representing >20 orthology databases (http://questfororthologs.
org/orthology_databases). The meeting was structured to include
plenary sessions devoted to topics of general interest (reference
datasets, orthology detection methodology, practical applications of
orthology), and additional discussions focusing on benchmarking,
standardized formats, alternative transcripts, ncRNA orthology, etc.
In this letter, we summarize the discussions and specific outcomes
of the meeting, as well as some of the most important achievements
of the Quest for Orthologs community in the past 2 years.

2 DEFINITIONS AND EVOLUTIONARY MODELS
Orthology finds application in multiple, diverse research areas.
Depending on the context, the reasons for identifying orthologous
genes can vary considerably, sometimes driving the use of subtly
differing definitions of orthology and its extension to groups of
genes. Brigitte Boeckmann (Swiss Inst Bioinformatics, Geneva,
Switzerland) and Christophe Dessimoz (ETH Zürich, Switzerland)
reviewed the definitions and objectives of orthologous groups
within a unifying framework and discussed the implications of
these differences for the interpretation and benchmarking of
ortholog databases (Boeckmann et al., 2011). The need for clear
evolutionary definitions is particularly acute for multidomain
proteins, as their underlying coding sequences often have distinct,
and even conflicting, evolutionary histories. In an attempt to salvage
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the gene as the fundamental evolutionary unit, Dannie Durand
(Carnegie Mellon University, Pittsburgh, USA) proposed a model
of gene homology based on the genomic locus, not the constitutive
nucleotides of the gene (Song et al., 2008).

3 DEBATING THE ‘ORTHOLOG CONJECTURE’
The ‘ortholog conjecture’—that at a similar degree of sequence
divergence, orthologs are generally more conserved in function
than paralogs—has been a prevailing paradigm, originally supported
by theory rather than empirical studies. At the previous
Quest for Orthologs meeting, Bill Pearson (University Virginia,
Charlottesville, USA) questioned the ortholog conjecture and
contended that the sequence similarity be the primary determinant
of functional conservation (Gabaldón et al., 2009). Several studies
have now been undertaken to compare the properties of orthologs
versus paralogs, and generally appear to support the importance of
distinguishing orthologs from paralogs.

Erik Sonnhammer (Stockholm University, Sweden) reported
significant support for the ortholog conjecture based on conserved
domain architecture (Forslund et al., 2011) and intron positions
(Henricson et al., 2010). David Roos (University of Pennsylvania,
Philadelphia, USA) showed that protein structure is significantly
more conserved for orthologs than for paralogs, particularly within
protein active sites. Indeed, it is even possible to quantify the
importance of orthology, in terms of sequence conservation or
RMSD, for structural modeling (Peterson et al., 2009). Toni
Gabaldón (Center for Genomic Regulation, Barcelona, Spain)
and colleagues found that human–mouse orthologs exhibit more
conserved tissue expression than paralogs of a similar age (Huerta-
Cepas et al., 2011). Similarly, Klaas Vandepoele (Ghent University,
Belgium) reported that for 77% of orthologs between Arabidopsis
and rice, the expression patterns were more highly conserved than
the background distribution, and that expression patterns can also
be used to tease out functional similarity even among in-paralogs
(Movahedi et al., 2011).

In other tests, however, orthologs were not found to be
functionally more conserved than paralogs. Just days before the
meeting, Nehrt et al. (2011) reported that Gene Ontology (GO)
functional annotations (du Plessis et al., 2011) may be less
similar among orthologs than among paralogs, and that human–
mouse co-expression data across tissues argues against the ortholog
conjecture. Discussion at the meeting noted an inherent bias
favoring conservation between homologs in the same species, which
may inflate the scores of paralogs. Furthermore, using correlation
coefficients as a measure of gene expression conservation may
also cause problems (Pereira et al., 2009). Overall, this discussion
suggests that the debate remains far from being settled.

4 INNOVATIONS IN ORTHOLOGY INFERENCE:
INCREMENTAL METHODS AND
META-METHODS

Much of the meeting focused on innovations in orthology inference.
One trend involves the application of incremental methods,
minimizing the need to recompute results as new datasets are added.
Ikuo Uchiyama (National Institute for Basic Biology, Okazaki,
Japan) described how the Microbial Genome Database (MBGD)
uses such an approach to cope with new genomes, and also

to identify orthologs in metagenomic samples (Uchiyama et al.,
2010). Likewise, the most recent release of the OrthoMCL database
permits new genes (and even entire genomes) to be assigned to
putative ortholog groups (Chen et al., 2006). Ingo Ebersberger
(CIBIV, Vienna, Austria) showed how an incremental approach
based on hidden Markov models can be used to identify orthologs
in EST libraries, which typically only cover a fraction of all genes
(Ebersberger et al., 2009), and Radek Szklarczyk (2012) introduced
a new profile-based iterative procedures that pushes the boundaries
of reliable homology detection and helps identify disease genes in
human.

Another trend involves the application of meta-methods to
integrate predictions from multiple datasets, combining their
strengths so as to outperform any single underlying method.
Michiel Van Bel (Ghent University, Belgium) presented an ensemble
method intended to detect orthologs in plant species combining
different orthology inference methods—a notorious challenge due
to extensive whole genome duplication and paleopolyploidy. This
concept lies at the heart of the PLAZA database (Proost et al.,
2009). Michael S. Livstone (Princeton University, USA) described
how the P-POD database (Heinicke et al., 2007) enables users
to compare orthology and paralogy predictions from multiple
homology inference methods on 12 reference genomes from the
Gene Ontology Consortium (Reference Genome Group of the Gene
Ontology Consortium, 2009). With MetaPhOrs, Gabaldón showed
that combining the orthologs inferred from several large-scale
phylogenetic resources is not only meaningful to increase the total
number of predictions, but also to assess the accuracy based on the
consistency across different sources (Pryszcz et al., 2011).

5 STANDARDS AND BENCHMARKING
Aprimary motivation for this meeting has been to establish standards
for efficient data exchange in the orthology community. Until now,
virtually every ortholog database has used a different format, posing
a major impediment for consumers of orthology data, including
annotators and for comparative genomicists. Likewise, the source
data for orthology analysis (proteomes) has used a variety of
formats (mostly ad hoc variations of the Fasta format). To resolve
these issues, a working group has developed XML-based formats
for both sequence and orthology data (OrthoXML and SeqXML,
respectively) (Schmitt et al., 2011). These formats were endorsed
by meeting participants, representing many orthology databases,
and by the reference proteome project. Documentation and tools
are available at http://OrthoXML.org and http://SeqXML.org.

Following on from suggestions at the previous meeting, the Quest
for Orthologs ‘Reference Proteomes’ serves as a common dataset
to compare orthology inference methods. Eleanor Stanley (EBI,
Hinxton, UK) gave an overview of UniProt’s commitment to curate
this dataset. Meeting participants suggested that an annual release
schedule would be appropriate, and should ensure that most methods
are applied to a common and reasonably current dataset. Although
driven by the need to benchmark ortholog detection algorithms
against a common dataset, we anticipate that the reference proteome
project will be useful beyond the orthology prediction community.
For example, UniProt curators are eager to test how different
ortholog predictions against a consistent dataset can be used to
facilitate protein annotation. Complementing the reference proteome
project, Raja Mazumder (Georgetown University, Washington,
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USA) presented an automated approach to identify representative
proteomes—relatively small subsets of all proteomes that capture
most of the information available (Chen et al., 2011).

The availability of standardized datasets should significantly
ease the challenge of sourcing genomes faced by all providers of
ortholog detection, and holds great promise for orthology inference
benchmarking. Indeed, previous benchmarking studies have been
forced to evaluate orthology predictions based on inconsistent
datasets (Altenhoff and Dessimoz, 2009; Boeckmann et al., 2011;
Hulsen et al., 2006; Trachana et al., 2011), or have been limited to
comparatively small datasets analyzed only by methods available
as stand-alone programs (Chen et al., 2007; Salichos and Rokas,
2011). Leveraging the Reference Proteomes, Adrian Altenhoff
(ETH, Zürich, Switzerland) presented a web server prototype for
orthology benchmarking. The service gathers predictions submitted
by ortholog providers and runs a battery of tests, such as an
assessment of how well the predictions satisfy a standard definition
of orthology (Fitch, 1970), and a test assessing accuracy in predicting
GO function annotations (du Plessis et al., 2011).

6 FUNCTIONAL PREDICTIONS
One of the chief benefits of ortholog group assignment is the
potential for inferring putative function—particularly as new
sequencing methodologies make it increasingly possible to assemble
genomes and define genes from species where experimental data is
lacking. Such computational inference can be risky, however, as
the accuracy of existing annotations is often unknown, particularly
for electronically assigned annotations, leading to rampant in silico
propagation of errors (Gilks et al., 2002). Paul Thomas (USC,
Los Angeles, USA) outlined activities of the Gene Ontology (GO)
Reference Genomes Project (Reference Genome Group of the
Gene Ontology Consortium, 2009), and described a pilot project
assigning GO terms to internal nodes of a reference tree (Gaudet
et al., 2011). Incorporating a concept of evolutionary breadth (and
confidence) into the annotation process would greatly enhance
the specificity of orthology-based inference. Nives Škunca (ETH,
Zürich, Switzerland) reported an innovative effort to estimate
the quality of electronic GO annotations, by tracking changes in
stability, coverage and specificity over time. This study suggests
a strategy for identifying high confidence electronic annotations
that can be relied upon for transitive inference. The availability
of a web-based platform for comparing the performance of
orthology detection methods (see above) should greatly facilitate
the assessment of functional prediction performance. In addition,
the development of a curated catalog of ortholog genes with similar
function, using experimental data, such as RNAi, expression data or
mutant phenotype, would be a useful resource and could improve
functional prediction.

7 ADDITIONAL TOPICS
Homology prediction based on similarity is a prerequisite for
many orthology prediction methods, and a workshop was held to
discuss current approaches and upcoming challenges in assessing
sequence similarity. Much discussion was devoted to the need
for more realistic models of sequence evolution, which would
enable the proper assessment of what level of similarity is expected
for two evolutionary related sequences. Tina Koestler (CIBIV,

Vienna, Austria) and Jean-Baka Domelevo (LIRMM, Montpellier,
France) presented profile-based models of evolution, taking into
account particularities of functional or structural regions of protein
sequences. Further discussions stressed the necessity of elucidating
the mode of evolution of multidomain proteins, particularly in
the context of domain rearrangements. In a different take on
homology inference, Vincent Miele (LBBE, Lyon, France) reported
new methodology to identify robust homologous groups from the
structure of similarity networks.

Orthology inference has been traditionally focused on the study
of protein coding genes, but there is increasing interest in applying
similar analyses to non-coding RNAs (ncRNAs). For example,
both Ensembl (Flicek et al., 2011) and miROrtho (Gerlach et al.,
2009) have started to provide orthology predictions for a subset of
ncRNAs, largely based on synteny. Most of the discussion centered
on the difficulties in use of phylogenetic methods for the analysis of
ncRNAs: phylogenetic models used for protein coding genes usually
assume that sites evolve independently, but ncRNAs often violate
this assumption, owing to the importance of secondary structure
conservation. Several models specifically developed for RNA
sequences have been implemented in phylogenetic packages [e.g.
PHASE (Gowri-Shankar and Rattray, 2007) or RAxML (Stamatakis,
2006)], but these models are not widely known. Other limitations
hindering phylogenetic study of ncRNAs, include the difficulty in
reliably detecting these genes. The RFam database (Gardner et al.,
2011) contains a high-quality set of ncRNA families, but its scope
is limited to families for which an expert multiple alignment is
available. A central repository for RNA sequences has been recently
proposed (Bateman et al., 2011) and we see this as important for
boosting interest and helping to drive evolutionary studies on RNA
sequences.

8 ACHIEVEMENTS AND OUTLOOK
The disparate but interconnected communities represented at this
meeting have taken an important step toward better understanding
one another. Inferring orthology is a non-trivial task, for
many reasons. There are certainly significant computational and
algorithmic challenges, but at a more basic level, differing
applications driving the quest for orthologs has led to differing
definitions of orthology (particularly with respect to subcategories,
such as in-paralogs or co-orthologs), the use of different source
datasets and different metrics for evaluating performance. The most
important achievement to emerge from the Quest for Orthologs effort
thus far is a series of consensus agreements, on:

• reference proteome datasets, including a minimal set
suggested for benchmarking ortholog detection algorithms,
and a larger set, greatly facilitating data sourcing;

• data exchange formats, including OrthoXML and SeqXML;
and

• an analysis platform providing for comparison of developer-
supplied ortholog calls using diverse metrics (include metrics
supplied by users and developers).

The many different uses of orthology detection ensure that there
will continue to be a multitude of useful algorithms. Some will
be optimized for computational efficiency and/or scalability. Some
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will focus on specific phylogenetic groups, which may be highly
homogenous or relatively diverse, may or may not exhibit synteny
and may include introns or operons, etc. Still other methods will
be tailored to handle multidomain proteins, alternative transcription
units, metagenomics data, etc. (Dessimoz, 2011).

The availability of reference datasets permits all groups to use
the same proteomes, while also minimizing the effort to source
the raw data. The OrthoXML format allows predictions to be
exchanged efficiently, and the benchmarking platform permits
consistent assessment of the results. One of the highlights of the
June 2011 meeting was the discussion of orthology prediction
methods—a discussion that could only take place because different
algorithms were applied to the same source data. Proposed
benchmarks are publicly accessible from the Quest for Orthologs
portal (http://questfororthologs.org), in order to encourage other
researchers to use this platform.

It will be exciting to see the progress of Quest for Orthologs
initiatives over the coming years—the next meeting is tentatively
scheduled for 2013. In the meantime, the reference proteomes
will be updated and enlarged to sample taxonomic space, and the
benchmarking service will be made publicly available. We invite all
interested parties to join the orthology community, using the contacts
available at the aforementioned Quest for Orthologs portal.
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ABSTRACT

A major challenge in the post-genomic era is a
better understanding of how human genetic alter-
ations involved in disease affect the gene products.
The KD4v (Comprehensible Knowledge Discovery
System for Missense Variant) server allows to char-
acterize and predict the phenotypic effects (deleteri-
ous/neutral) of missense variants. The server
provides a set of rules learned by Induction Logic
Programming (ILP) on a set of missense variants
described by conservation, physico-chemical, func-
tional and 3D structure predicates. These rules are
interpretable by non-expert humans and are used to
accurately predict the deleterious/neutral status of
an unknown mutation. The web server is available at
http://decrypthon.igbmc.fr/kd4v.

INTRODUCTION

A wide variety of human diseases have been linked to
non-synonymous SNPs (nsSNPs), also called Missense
Variants, which result in an alteration of the amino acid
sequence of the encoded protein and can affect the
function, solubility or structure of the mutated protein.
Today, with the huge amount of protein information
available in various biomedical databases, it is now
possible to better understand the correlation between a
nsSNP and the associated phenotypes.

Several methods (1) have been developed to predict the
effects of nsSNPs on the 3D structure of a protein and its
function, based on the hypothesis that variants that
modify the structure/function at the molecular level are
more likely to be deleterious. The methods can be
divided into two main categories: (i) sequence-based
methods using multiple sequence alignments and
incorporating different approaches to quantify residue

conservation: SIFT (2), PANTHER (3), SNAP(4) and
SNP/GO (5) and (ii) methods combining sequence
and 3D structure features such as the widely used
Polyphen-2 (6), nsSNPAnalyzer (7) and SNPs3D (8).
Most of these methods can classify a nsSNP as either dele-
terious (strong functional effect) or neutral (weak func-
tional effect) with high accuracy. However, they only
provide a final score and in general, no information is
provided that could be used to evaluate the classification
and to estimate the relationships between genotypic and
phenotypic variation.
To overcome these limitations, the KD4v (Comprehen-

sible Knowledge Discovery System for Missense Variant)
server aims to discover, exploit and provide the user with
links between the computed impact of a mutation and the
human disease phenotype. We applied the ILP method (9)
to a set of nsSNPs involved in human diseases that are
mapped to 3D structure and annotated by the MSV3d
(MisSense Variant mapped to 3D structure) pipeline
(10). KD4v provides two complementary services: (i) a
knowledgebase consisting of ILP rules based on 16
sequence/structure/evolution predicates that characterize
deleterious mutations in any human gene and that can
be interpreted by biologists and (ii) a tool for mutation
prediction based on the ILP rules with performances
similar to the most widely used methods: PolyPhen-2
and SIFT. In addition, the KD4v server links the human
genes to a rich set of up-to-date information encompass-
ing tissue expression, protein-protein interactions or
phenotypic descriptions hosted by SM2PH (11).

MATERIALS AND METHODS

Missense variant annotation

The nsSNPs observed in all human proteins were
annotated by the MSV3d pipeline, which automatically
performs a sequence/structure/evolution analysis and has
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been shown to be robust and efficient (6,12). This includes
various parameters which describe, among others, the
physico-chemical changes induced by the amino acid sub-
stitution, the conservation pattern of the mutated residue,
the status of mutated residues with respect to functional
features. In KD4v, this multi-level sequence-based charac-
terization of nsSNPs is complemented by parameters
related to 3D models or the 3D Fold classification in
SCOP (13). This results in pre-computed annotations for
over 63 000 known nsSNPs in the 10 713 proteins with
known or modelled 3D structures currently available. In
addition, the user can also request a prediction for any
new or unknown missense variant, if the protein can be
mapped to a 3D structure.
The characterization of the background conservation

and exploitation of the different types of evolutionary
data has been described in detail previously (10). Briefly,
we used MACSIMS (14) to annotate a multiple alignment,
containing both Uniprot and PDB sequences, with infor-
mation such as: (i) taxonomic data, (ii) functional descrip-
tions, (iii) known domains or domains similar to a known
3D structure, (iv) potential disordered regions, (v) blocks
that do not correspond to disordered regions or known
domains but that are conserved at the family or subfamily
level and thus may constitute uncharacterized domains
and (vi) conservation pattern of domains and residues.
If the variant position is mapped to an identified 3D
structure, the structural context of each individual
mutation is modelled based on several descriptors
combining sequence/structure-related data using several
software tools such as MODELLER (15), CSU (16),
I-Mutant (17). Details of the predicates used in the
KD4v server and computational methods/software are
provided on the KD4v help page.

Dataset compilation and computer resource

We used the variant set from the Polyphen-2 training set
(6) extracted from SwissVar (18) to train and test the
KD4v server. Only nsSNPs that are mapped to 3D struc-
tures were retained and randomly split into a training set
(6000 disease-causing mutations associated with distinct
881 OMIM phenotypes and 2000 neutral polymorphisms)
and a first validation set (658 disease-causing variants
associated with 311 distinct OMIM phenotypes and 298
neutral polymorphisms). We also created a second valid-
ation set (173 disease-causing mutations associated with
distinct 39 OMIM phenotypes and 179 neutral poly-
morphisms), in which not only variants, but also protein
sequences, were different in the training and validation
sets. Our goal is to predict the deleterious nature of
human variants, i.e. those variants associated with
disease phenotypes, and it should be noted that these
datasets do not specifically identify mutations that have
a weaker effect on the function of the protein. The
datasets are available for download from our website.
To guarantee a permanent powerful CPU resource for

the KD4v server, we deployed the software on the
Décrypthon grid (19) including a total of 58 machines
and 475 processors under the AIX operating system
distributed on six nodes.

Induction logic programming implementation

Induction Logic Programming (ILP) combines Machine
Learning and Logic Programming (9). Briefly, given a
formal encoding of the background knowledge and a set
of examples, an ILP system will derive hypotheses explain-
ing all positive examples and none, or almost none,
negative examples. In this approach, logic is used as a
language to induce hypotheses from the examples and
background knowledge. The result of the learning step is
a set of rules represented as logical formula, typically a
Prolog program, that can be reused as a prediction service.
The creation of the KD4v is based on distinct predicates
deduced from the multi-level characterization provided by
MSV3d (Supplementary Table S1) and involves various
steps detailed in Supplementary Figure S1. We have
limited our study to the task of discriminating the muta-
tions linked to human diseases (deleterious) from those
associated with the ‘polymorphism’ term (neutral). Thus,
a positive example in Prolog syntax is defined as:
‘is_deleterious(m_Q92947.p.Gly390Ala)’ which indicates
that, in protein Q92947, the replacement of the glycine
at position 390 by an alanine is deleterious.

The implementation of the server also includes the
optimization of the predicates using a 5-fold cross-
validation on the training set with standard performance
indicators including sensitivity, specificity, precision,
recall, accuracy and F-measure (see legend of Sup-
plementary Table S2 for a complete description). Thus,
the final ILP model consists of 16 predicates
(Supplementary Table S1) which can be separated into
two major types: predicates describing the mutated
residue or protein (functional and structural features)
and predicates describing the physical, chemical or struc-
tural changes introduced by the substitution.

KD4v RULE SERVICE

Currently, the server hosts 111 rules that are comprehen-
sible by humans. These ILP rules can be used, for
example, to uncover the relationships between the deleteri-
ous effect of a mutation and the multi-class conservation
pattern or the type of the physico-chemical alterations
(e.g. size, charge and hydrophobicity) introduced by the
substitution. Figure 1 shows some induced rules on the
web page. To illustrate how to interpret ILP rules, we
can consider the humvar398_44 rule:

deleterious(A) :-
modif_charge(A, charge_increase) and
modif_hydrophobicity(A, hydrophobicity_decrease) and
secondary_struc(A, helix) and wt_accessibility(A, buried) and

mut_accessibility(A, buried).

This rule states that a mutation A is deleterious if:
(i) the charge of the residue is increased by the mutation;
(ii) its hydrophobicity is decreased; (iii) the residue is
found in a helix; (iv) the wild-type residue is buried; and
(v) the mutant residue is also buried. This rule correctly
identified 191 (3.18% of the 6000 studied) deleterious
mutations, while misclassifying five neutral mutations as
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deleterious (0.25% of the 2000 neutral mutations in the
training set).

KD4v PREDICTION SERVICE

Input and output

KD4v provides a service aimed at estimating nsSNP
effects based on the ILP rules. It can be accessed via the
web interface or via the SOAP Web Service, which can be
downloaded from the website. The input form of the web
interface (Figure 2a) is supported by Ajax to facilitate the
identification of the protein accession number and the
location of a mutation on the protein sequence or on
the schematic 3D map provided. Given the input data,
the MSV3d pipeline generates a multi-level character-
ization of the variant to be predicted. If a 3D model is
available, these values are translated into prolog facts,
which then become the input for the prediction service.
Thanks to the Prolog engine, the deductive reasoning
process immediately derives a conclusion (deleterious or
neutral nsSNP) with identified rules. Figure 2b shows the
KD4v output for the substitution Gly138Phe in the
human peroxisomal biogenesis factor 3, predicted to be
deleterious. In the 3D model of this protein, which is
involved in the Zellweger syndrome, this residue is

buried and located in one of the central helices shaping
the protein fold. Analyzing the rule associated with this
deleterious prediction, it can be seen that, although this
residue is not highly conserved (67% identity which cor-
responds to the rank2 in our conservation pattern classi-
fication), the gain in hydrophobic contact and the decrease
in the overall stability might be responsible for the dele-
terious effect.

Prediction evaluation

We compared the performance of our ILP-based predic-
tion service with two widely used methods: SIFT and
PolyPhen-2. The different measures of predictive perform-
ance are reported for two independent nsSNP validation
sets (Tables 1 and 2). The accuracy (72.28% in Table 1,
75.57% in Table 2) and F-measure (78.61% in Table 1,
71.52% in Table 2) indicate that the KD4v prediction
service based on ILP is comparable to SIFT and
PolyPhen-2 (although PolyPhen-2 is more accurate on
one of the validation sets) and thus represents a competi-
tive alternative solution. Moreover, the KD4v provides
ILP rules associated with deleterious predictions that are
more interpretable than the previous prediction methods.
These rules should help to improve the understanding of

Figure 1. ILP rules. The first column provides a link to the positive (deleterious mutations) and negative (neutral mutations) examples covered by a
given rule and that can be seen by clicking on the+icon. The second column provides the rule identifier (Id). The next two columns provide the ‘if’
and ‘then’ clauses of the induced rules. The two right most columns indicate the number of positive and negative examples covered by the rule in
each row.
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the relationships between physico-chemical and structural
features and deleterious mutations.

CONCLUSION

The KD4v server uses the available or modelled 3D struc-
tures and information provided by the MSV3d pipeline to

characterize and predict the phenotypic effect of a
mutation. The main advantages of KD4v are (i) valuable
predicates and ILP rules associated with the predictions,
allowing biologists to identify deleterious mutations and
interpret the results, (ii) an ergonomic web interface,
incorporating the comprehensive annotation of missense
variants, complemented with a SOAP-based remote API

Figure 2. (a) Screenshot of the input form of the prediction service. (b) Screenshot of the output page providing the prediction results as well as the
multi-level characterizations of the mutation. The rules are described if the variant is ‘deleterious’. The annotated information related to the mutated
position can be visualized in the MSV3d interface on the right.

Table 1. Comparison of prediction methods based on the PolyPhen-2 validation set [658 disease-causing (OMIM phenotype) mutations and 298

neutral polymorphisms]

TP FP FN TN Sensitivity Specificity Precision Recall Accuracy F-measure

SIFT 398 38 260 260 0.6049 0.8725 0.9128 0.6049 0.6883 0.7276
PolyPhen-2 576 111 77 184 0.8821 0.6237 0.8384 0.8821 0.8017 0.8597
KD4v 487 94 171 204 0.7401 0.6846 0.8382 0.7401 0.7228 0.7861

Table 2. Comparison of prediction methods based on the validation set that excludes proteins present in the training set (173 disease-causing

mutations (OMIM phenotype) and 179 neutral polymorphisms)

TP FP FN TN Sensitivity Specificity Precision Recall Accuracy F-measure

SIFT 106 23 67 156 0.6127 0.8715 0.8217 0.6127 0.7443 0.702
PolyPhen-2 139 70 34 109 0.8035 0.6089 0.6651 0.8035 0.7045 0.7278
KD4v 108 21 65 158 0.6243 0.8827 0.8372 0.6243 0.7557 0.7152
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for multiple predictions. Furthermore, the effects of any
unknown missense variant (1 of approximately 32 000 000
variants corresponding to all positions of mapped 3D
structures and all possible amino acid replacements) can
be predicted upon request by the user. In the future, we
will extend the background knowledge, first by adding
structural surface topology descriptions (20) of the
proteins, allowing the precise mapping of different func-
tional regions such as the protein core and the
non-interacting or interacting surfaces, and second, by
integrating useful knowledge about the functional
impact of missense variants from the SNPdbe database
(21). Finally, we intend to enhance the prediction perform-
ance by combining ILP with other machine learning
methods.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1 and 2, Supplementary Figure 1.
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Benjamin LINARD 

Développement de méthodes 
évolutionnaires d’extraction de 

connaissance et application à des 
systèmes biologiques complexes 

 

Résumé 

La biologie des systèmes s’est beaucoup développée ces dix dernières années, confrontant 
plusieurs niveaux biologiques (molécule, réseau, tissu, organisme, écosystème…). Du point de vue 
de l’étude de l’évolution, elle offre de nombreuses possibilités. Cette thèse porte sur le 
développement de nouvelles méthodologies et de nouveaux outils pour étudier l’évolution des 
systèmes biologiques tout en considérant l’aspect multidimensionnel des données biologiques. Ce 
travail tente de palier un manque méthodologique évidant pour réaliser des études haut-débit dans 
le récent domaine de la biologie évolutionnaire des systèmes. De nouveaux messages évolutifs liés 
aux contraintes intra et inter processus ont été décrites. En particulier, mon travail a permis (i) la 
création d’un algorithme et un outil bioinformatique dédié à l’étude des relations évolutives 
d’orthologie existant entre les gènes de centaines d’espèces, (ii) le développement d’un formalisme 
original pour l’intégration de variables biologiques multidimensionnelles permettant la représentation 
synthétique de l’ histoire évolutive d’un gène donné, (iii) le couplage de cet outil intégratif avec des 
approches mathématiques d’extraction de connaissances pour étudier les perturbations évolutives 
existant au sein des processus biologiques humains actuellement documentés (voies métaboliques, 
voies de signalisations…). 

Keywords : orthologie, extraction de connaissance, évolution, réseaux biologiques 

 

 

Summary 

Systems biology has developed enormously over the 10 last years, with studies covering diverse 
biological levels (molecule, network, tissue, organism, ecology…). From an evolutionary point of 
view, systems biology provides unequalled opportunities. This thesis describes new methodologies 
and tools to study the evolution of biological systems, taking into account the multidimensional 
properties of biological parameters associated with multiple levels. Thus it addresses the clear need 
for novel methodologies specifically adapted to high-throughput evolutionary systems biology 
studies. By taking account the multi-level aspects of biological systems, this work highlight new 
evolutionary trends associated with both intra and inter-process constraints. In particular, this thesis 
includes (i) the development of an algorithm and a bioinformatics tool dedicated to comprehensive 
orthology inference and analysis for hundreds of species, (ii) the development of an original 
formalism for the integration of multi-scale variables allowing the synthetic representation of the 
evolutionary history of a given gene, (iii) the combination of this integrative tool with mathematical 
knowledge discovery approaches in order to highlight evolutionary perturbations in documented 
human biological systems (metabolic and signalling pathways...). 

Keywords : orthology, knowledge extraction, evolution, biological networks 

 


