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Résumé en FrançaisInvestigation quantique des propriétés dynamiques etspe
tros
opiques de 
omposées 
ontenant des élémentslourds, étude du 
as CuNOL'intera
tion d'un monoxyde d'azote ave
 un atome de métal de transition reçoit uneattention 
roissante de la part d'études tant expérimentales que théoriques 
ar elle estimportante dans de nombreux 
hemins de réa
tion bio
himiques, en 
himie atmosphé-rique, 
himie des surfa
es et 
atalyse. Les ions du 
uivre jouent un role important dansla 
himie rédox des NOx dans la dénitri�
ation biologique. NO étant un sous-produitde la 
ombustion de 
arburants fossiles mène au brouillard photo
himique et sa natureradi
alaire en fait un 
ontributeur majeur de la diminution de la 
ou
he d'ozone.L'étude de réa
tions impliquant NO et des métaux de transition est parti
ulièrement in-téressante pour le développement de 
atalyses e�
a
es four la rédu
tion de NO. CuNO etses ions ont été observés par isolement en matri
e, et par spe
tre infrarouge dans l'argon.A�n de sonder la possibilité d'une 
atalyse homogène impliquant les fragments Cu et NO,une prévision pré
ise de la nature de l'intera
tion entre 
es deux fragments est né
essaireen phase gaz. Une série de questions demande des réponses : Quel est l'état fondamentaléle
tronique du système CuNO? Quelle est l'énergie de disso
iation du 
omplexe CuNO?Quelle est sa géométrie d'équilibre ? Ces quantités ne sont pas 
onnues expérimentale-ment. Peut-on les prévoir assez pré
isément ? Peut-on faire un potentiel analytique pourle 
al
ul des transitions de vibration de CuNO? A quel point 
es valeurs sont 
omparablesave
 le spe
tre infra-rouge, même si enregistré en matri
e ? Quelle est la dynamique de
ollision de Cu et NO? S'attent-on à observer une di�usion réa
tive ? Quelles sont lesétapes élémentaires de la 
inétique de réa
tion induite par la 
ollision de Cu ave
 NO?L'atome de Cu peut-il être utilisé pour réduire NO après une telle 
ollision ? Quelle estla barrière d'a
tivation ? Quelle est l'importan
e des états éle
troniques ex
ités dans larédu
tion de NO?Pour la plupart de 
es questions au
une donnée n'est disponible, tant de l'expérien
eque de la théorie. Au
un 
al
ul de dynamique quantique a été présenté dans la littéra-ture utilsant un métal de transition tel que Cu en dimensions 
omplètes, prin
ipalementà 
ause de la très haute densité d'états vibrationnels puisqu'il s'agit d'un élément lourd.Pour CuNO, les études théoriques n'ont pas en
ore été 
apables d'assigner sans ambigüitél'état fondamental. Les 
al
uls 
luster 
ouplé ave
 ex
itations simples et doubles (CCSD)donnent un état fondamental triplet de CuNO, alors que l'in
lusion d'ex
itations triples(CCSD(T)) donne un état fondamental singulet de symétrie 1A′ ave
 une stru
ture 
ou-dée ave
 
oordination en bout de fragment NO et un énergie de liaison estimée à 18,8k
al/mol. Dans les 
al
uls utilisant la théorie de la fon
tionnelle de la densité (DFT), desfon
tionnelles pure densité assignent un état fondamental singulet, alors que des fontion-nelles hybrides favorisent un état triplet 
omme état d'énergie éle
tronique le plus bas.1



Il est important de noter que les méthodes mentionnées 
i-dessus sont essentiellementmono-
on�gurationnelles.Dans 
ette thèse, nous répondons à la plupart des questions sus-mentionnées. Dans 
ebref résumé de la thèse, nous restreignons le rapport à :1) Des 
al
uls ab initio pré
is pour obtenir l'énergie de l'état éle
tronique fon-damental (et des états ex
ités). Dans la présente étude, une investigation sys-tématique des paramètres de 
al
ul relatives à une prévision pré
ise de la fon
-tion d'onde éle
tronique pour l'état fondamental et les états ex
ités est menéeau niveau de théorie 
hamp auto
ohérent multi
on�gurationnel (MCSCF) etintera
tion de 
on�gurations multi-référen
e internement 
ontra
tées (MRCI),même si restreintes aux ex
itations simples et doubles.2) La nouvelle représentation globale analytique de la surfa
e d'énergie po-tentielle (SEP) ab initio. Un ensemble d'énergies éle
troniques est ensuite
onstruit à partir des valeurs MRCI (et par une pro
édure originale de fu-sion de MRCI et CCSD(T)) pour l'état fondamental 1A′. Cet ensemble estensuite utilisé pour un ajustement d'une surfa
e d'énergie potentielle analy-tique globale pour le système. Un algorithme de Levenberg-Marquardt modi�éa été utilisé pour les ajustements. Du potentiel analytique, on obtient l'énergiede disso
iation de l'intera
tion Cu + NO, et la géométrie d'équilibre de l'étatfondamental du 
omplexe.3) La dynamique quantique du système CuNO à l'état fondamental éle
tro-nique. Le potentiel analytique global ave
 le meilleur ajustement des para-mètres est �nalement utilisé dans des 
al
uls de dynamique quantique à 3 ou4 dimensions pour la réa
tion Cu + NO où nous montrons que la 
ollision estbien réa
tive.Il est à noter que les trois se
tions de l'étude représentent un 
hallenge et requièrent uneoptimisation attentive de nombreux paramètres de réglages de 
al
uls pour obtenir desrésultats physiquement sensés.Pour des raisons de brièveté, n'ont pas été in
lues dans 
e résumé :Les réglages détaillés de l'optimisation pour les 
al
uls ab initio et de dynamique quan-tique. Les détails de la pro
édure d'ajustement de la représentation analytique in
luantles valeurs des paramètres d'ajustement. Les 
al
uls détaillés de stru
tures éle
troniquespour l'état fondamental et les états ex
ités des diatomiques CuO et CuN dont les valeursont été utilisées pour l'ajustement des paramètres dans le potentiel analytique. Les 
al-
uls CCSD(T) sont 
omplètement révisés et le r�le des 
orre
tions relativistes sur l'atomede Cu est également étudié. Nous avons trouvé d'importants e�ets relativistiques dansl'énergie de disso
iation (la profondeur du puit dé
roît), et les longueurs de liaisons (la2



distan
e Cu-NO diminue). Nous avons également 
al
ulé les transitions vibrationnelles dusystème qui se 
ompare le mieux ave
 l'expérien
e. En dynamique quantique, nous étu-dions l'e�et de l'énergie de 
ollision sur la di�usion et aussi l'e�et du 
hangement dans lefa
teur d'impa
t sur la di�usion. Nous avons aussi 
réé une nouvelle pro
édure de fusionpour 
omparer les données MRCI et CCSD(T) et ajusté 
e
i ave
 un potentiel global, quipourra être utilisé dans des 
al
uls de dynamique à l'avenir.Dans les se
tions suivantes, je résume de forme plus détaillé les points 1, 2 et 3 susmen-tionnés.Cal
uls ab initioLa 
on�guration tridimentionnelle de l'espa
e peut être dé
rite par les 
oordonnées rNO ,
rCu et θCu montrées en Figure 1, où rCu est la distan
e entre l'atome de 
uivre et le milieude la distan
e NO.

Cu

N O

θCu

r NO

r Cu

z

x

Fig. 1 � Coordonnées générales pour le système {Cu, N, O} ; rCu est la distan
e entrel'atome de 
uivre et le milieude rNO ; 0 ≤ rNO <∞, 0 ≤ rCu <∞, 0◦ ≤ θCu ≤ 180◦.Les 
al
uls de l'état fondamental et des états ex
ités ont été e�e
tués en utilisant le 
odede programmes MOLPRO pour les 
al
uls MCSCF, MRCI et CCSD(T). Dans les 
al
uls,nous utilisons la base augmentée 
onsistante ave
 la 
orrélation polarisée triple ζ (�aug-

-pVTZ�, mais abréviée i
i �AVTZ�) de Dunning et 
ollaborateurs, pour N et O, et deBalabanov et Peterson pour des bases 
onvergentes pour les métaux de transition. Unenouvelle base réduite, obtenue depuis la base AVTZ en ommettant la fon
tion g de Cuet les fon
tions f de N et O, appellée i
i RVTZ, donne aussi les énergies relatives ave
 lapré
ision attendue (mEh).Dans le présent résumé, nous restreignons la rapport au résultats impliquant les 
al
ulsMCSCF/MRCI, pour des raisons de brièveté. Nous 
hoisissons soigneusement le nombred'états 
al
ulés pour 
haque symétrie a�n de surmonter les défaillan
es au niveau MCSCF.Un nombre déséquilibré de ra
ines mène à une brisure de symétrie. Aussi, de grâves pro-blèmes d'inversion de ra
ines arrivent quand on arrive pas à in
lure tous les états d'un3



multiplet éle
tronique dans les 
al
uls MCSCF.Clairement, les orbitales s et d de Cu sont très pro
hes et on peut anti
iper que toutes
es orbitales doivent être in
lues dans l'espa
e a
tif. Un 
al
ul dans le groupe de symétrie
Cs 
orrespondant à 6 ra
ines 1A′ et 6 ra
ines 1A′′ est vraiment physique et vient natu-rellement des espè
es de symétrie des états asymptotiques de CuNO. Un espa
e a
tif qui
onsiste en 13 orbitales, 9× 1A′, 4× 1A′′ ave
 22 éle
trons, noté CAS (22, 13), donne une
onvergen
e propre.Cependant, les 
al
uls MCSCF ave
 12 ra
ines et CAS (22, 13), 
onvergent sur 2S 
ommeétat ex
ité et un 2D dégénéré 
omme état fondamental ave
 une di�éren
e d'énergie deplus de 90 mEh à l'asymptote. Experimentalement, pour Cu, le 2D se trouve au-dessus du
2S d'environ 11200 
m−1 . Cette inversion arti
i�elle des états dans les 
al
uls MCSCFest aussi observé pour l'atome de Cu seul si nous in
luons les orbitales 3d dans l'espa
ea
tif.

(a) (b)

Fig. 2 � Fon
tions énergie potnetielle V (rCu) pour l'état singulet linéaire le plus bas desymétrie A′ à rNO = 115 pm, et θCu = 180◦ (a), et θCu = 0◦ (b)Pour palier 
e
i, nous e�e
tuons des 
al
uls MRCI. Les orbitales naturelles obtenues parles 
al
uls MCSCF sont ensuite utilisées pour e�e
tuer des ex
itations simples et doublesin
lues dans le MRCI de 13 orbitales 
omme orbitales a
tives, ainsi 
orrélant 22 éle
trons,
.-à-d. un CAS (22, 13). Les 
al
uls MRCI remettent les états dans le bon ordre à l'asymp-tote. Une 
omposante 1A′ non-dégénérée est l'état fondamental. Il est à noter que toutesles 
on�gurations menant aux 6 états les plus bas relatifs à 
haque espè
e de symmétrieest né
essaire pour 
al
uler 
orre
tement l'état fondamental du système, rendant le 
al
ulvraiment multi-référen
e et très multi-
on�gurationnel.La �gure 3 montre l'état lié. Elle montre aussi 5 états ex
ités, qui deviennent dégénérés à4



Fig. 3 � Figure 3 : fon
tion énergie potentielle MRCI V (rCu) pour les plus bas étatsingulet et triplet de symétrie A′ (panneau (a)) et A′′ (panneau (b)) à valeurs �xées θCu= 130◦ et rNO = 115 pm. Les énergies ont été obtenues d'après un CAS (22,13) ave
 labase RVTZ.l'asymptote (niveau 2D de Cu) ave
 l'état 1A′, alors que les 6 états 3A′, les 6 états 1A′′ etles 6 états 3A′′ sont essentiellement repulsifs. La stru
ture de l'état lié est aux environs dufond du puit de potentiel du plus bas état 1A′ dans la Figure 2 ave
 une énergie de liaisonde 10 mEh (2188 
m−1 ), pour le CAS (22, 3) ave
 la base RVTZ. Alors que les présents
al
uls MRCI 
on�rment l'ordre des états singulets et triplets des résultats pré
édents, oùun 3A′′ stable est prévu se trouver 11 mEh plus haut que l'état 1A′, ils mènent à une pluslarge énergie relative triplet-singulet autour du minimum (environ 23 mEh i
i). D'autrepart, ils n'indiquent pas que l'état lié triplet existe, 
ontrairement à 
e qui a été suggérédans.Représentation analytique de la SEPLa surfa
e d'énergie potentielle totale du système CuNO (ou toute triatomique) peut êtredonné 
omme une somme
3
∑

i=1

V2bi + V3b (1)où V2b sont les termes à deux 
orps et V3b est un potentiel de 
isaillement.Nous utilisons un potentiel de Morse modi�é pour dé
rire les fon
tions de potentiel d'éti-rement de liaison. Il y aura un potentiel bien dé�ni et le paramètre re peut être interprété
omme la longueur de liaison à l'équilibre du potentiel "diatomique". Le terme à trois
orps es essentiellement un potentiel de 
isaillement. Il peut être vu 
omme le produitd'une fon
tion dépendant de θ et deux termes d'ammortissement y1 et y2

V3b = Vby1y2 (y1 − 2z) (2)
yi = e−ar(ri−re) (3)
z = −z1z2z3 (4)5



zi = bi − e−ai(cos θ−cos θe)(1+ci(cos θ−cos θe) (5)Les 
onditions appropriées parmi les paramètres bi et ai assurent que V3b prendra la va-leur −Vb au minimum global, qui est à l'angle d'équilibre θe, et 0, quand r1 et r2 tendentvers l'in�ni.

N O

−1hc cm−2000

7500 −1hc cm

Fig. 4 � SEP analytique à la valeur �xée de rNO = 115 pm ; la di�éren
e des lignes àniveau est de 500 hc cm−1 ; le zéro d'énergie 
orrespond à l'état Cu + NO.Cette représentation analytique de la SEP est nouvelle et sera expliquée en détail dans lestravaux. Pour la pro
édure d'ajustemen, un modi�
ation de l'algorithme de Levenberg-Marquardt a été utilisée. Nous ajustons 19 paramètres en utilisant 530 points de donnéesab initio. I
i, l'énergie de disso
iation est trouvée aux environs de 2000 hc cm−1 and lagéométrie d'équilibre du système est autour de rCu = 2.382 pm, rNO = 1.134 pm et
θCu = 133.495◦.Dynamique quantiqueLa représentation analytique du potentiel a par la suite été utilisée dans le 
ode multi
on-�guration time-dependent Hartree (MCTDH), pour 
al
uler l'évolution du paquet d'ondede la 
ollision de Cu et NO à plusieurs énergies de 
ollision et paramètres d'impa
t.Le 
omportement dynamique de l'état d'un système quantique isolé est dé
rit par l'équa-tion de S
hrödinger,

ih̄
∂

∂t
Ψ(t) = ĤΨ(t). (6)L'appro
he MCTDH de la fon
tion d'onde pour résoudre l'équation de S
hrödinger dé-pendante du temps est é
rite 
omme suit

Ψ(Q1, ..., Qf , t) =
n1
∑

j=1

...

nf
∑

jf=1

Aj1...jf
(t)

f
∏

k=1

φk
jk

(Qk, t) (7)6



où Q1, ...Qf sont les 
oordonnées nu
léaires, les Aj1...jf
représentent les 
oe�n
ients d'ex-pansion MCTDH et les φk

jk
sont les nk fon
tions d'expansion pour 
haque degré de liberté

k, 
onnus 
omme fon
tion d'une seule parti
ule.Comme example de résultat de 
al
uls de dynamique quantique , nous montrons i
i le �uxquantique Φ(t), ou la quantité de densité de probabilité, à travers une surfa
e divisante
S pla
ée à rCu = 800 pm.

Φ(t) =
∫

S

jrd
(t) · dS (8)où

jrd
(t) = −i

h̄

2µrd

(

ψ∗(t)
∂ψ(t)

∂rd

− ψ(t)
∂ψ∗(t)

∂rd

) (9)
(rd ≈ rCu). Dans la Figure 5 nous montrons le �ux entrant et le �ux sortant le long de lavoie de disso
iation de Cu-NO ave
 un temps de propagation total de 600 fs. I
i l'énergietotale du système est 
onservée. I
i aussi, à J = 0, le paquet d'onde s'appro
he de toutesles dire
tions vers NO dans une situation purement quantique (ℓ = 0).

-0.008
-0.007
-0.006
-0.005
-0.004
-0.003
-0.002
-0.001

 0
 0.001
 0.002

 0  100  200  300  400  500  600

Φ
 (

t)
/fs

-1

t/fsFig. 5 � Flux à la surfa
e divisante rCu =800 pm
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Nous 
al
ulons la probabilité de réa
tion au temps t
∆P (t) =

t
∫

−∞

Φ(t) dt (10)d'après le �ux MCTDH.Le paquet d'onde entrant bouge à travers la surfa
e divisante entre 145 fs et 240 fs. Le�ux sortant arrive 240 fs et 600 fs et montre 
lairement que 
'est une di�usion réa
tivepuisque l'intégrale globale du �ux ne s'annule pas, même à une é
helle de temps in�nie(∆P = −0.003779).Nous trouvons aussi que l'énergie de translation va vers un mode de vibration de pliage deCuNO pro
he des minima. C'est la première fois que les 
al
uls de dynamique quantiqueont été e�e
tués ave
 MCTDH pour des 
omposés métal nitrosyle. La 
onvergen
e estdi�
ile, à 
ause de la grande densité d'états vibrationnels, mais elle a été totalementatteinte.Con
lusionsDans 
ette thèse, nous avons optimisé ave
 su

ès tous les paramètres pour 
al
uler l'étatfondamental du système neutre [N,O,Cu℄.Il a été montré que les 
al
uls MCSCF in
luant 12 ra
ines est né
essaire pour avoir une
onvergen
e propre mais donne des états inversés à l'asymptote. Pour dé
rire proprementl'état fondamental, nous utilisons les 
al
uls 
oûteux MRCI sur 6 états par espè
e desymétrie simultanément. Aussi nous montrons par 
al
uls MRCI, que l'espa
e a
tif peut
ontenir tous les éle
trons 3d de Cu pour dé
rire pré
isément le système. I
i nous utilisonsun CAS (22, 13) qui est pro
he de l'espa
e de valen
e 
omplète du système.Nous avons développé une SEP analytique globale qui peut être utilisée pour modéliser lesdonnées ab initio obtenues. L'état lié est un état 1A′ ave
 une énergie de rCu = 2.382 pm,
rNO = 1.134 pm et θCu = 133.495◦. Les fondamentaux vibrationnels 
al
ulés se 
omparentbien ave
 les données expérimentales disponibles.Le potentiel analytique a été utilisé ave
 su

ès ave
 les meilleurs paramètres ajustés poure�e
tuer des 
al
uls de dynamique quantique sur le 
omplexe, dont les résultats indiquentune di�usion réa
tive ave
 un transfer de l'énergie translatoire vers l'énergie vibrationnelledans le domaine de temps de la femtose
onde.Des résultats plus avan
és non-in
lus dans 
e résumé impliquent des 
al
uls CCSD(T),in
luant des 
orre
tions relativistes, et une fusion originale entre les données MRCI etCCSD(T) et modélisées ave
 la SEP analytique, dont les résultats donnent un puit depotentiel plus profond et réduisent la distan
e de liaison rCu (distan
e Cu-NO). Nous8



avons aussi e�e
tué des études de dynamique quantique ave
 un fa
teur d'impa
t variant(J > 0) et une di�usion à di�érentes énergies de 
ollision, toutes deux dans une appro
hesoit isotrope, soit dire
tionnelle du paquet d'onde initial. Nous avons également e�e
tuédes 
al
uls pré
is sur l'état éle
tronique fondamental et sur les états éle
troniques ex
itésdes diatomiques CuO et CuN et obtenu l'énergie de disso
iation qui a ensuite été uti-lisée 
omme paramètre d'ajustement dans la représentation analytique. Ave
 
e résumé,nous répondons à plusieur questions posées au début de la thèse. D'autres questions ontégalement trouvé réponse dans le manus
rit 
omplet de la thèse.

9



“The first principle is that you must not fool yourself; and you are the easiest person to

fool.”

Richard Feynman, Cargo Cult Science



Abstract

This thesis aims at validating a theoretical protocol to develop global potential energy

surfaces for use in the spectroscopy and dynamics of transition metal nitrosyl complexes.

To get an insight into the homogeneous catalysis of NO with Cu and the chemical

reaction dynamics, an accurate prediction of the nature of the interaction, as well as of

the global potential energy surfaces (PES) is necessary in the gas phase. Experimental

data are difficult to obtain, hence the importance of carrying out calculations of the

lowest electronic states as accurate as possible to address the structure , spectroscopy

and dynamics of this system. All ab initio calulations we report here were performed

at the multi-reference configuration interaction (MRCI) and at the coupled cluster level

of theory. We aslo investigate the importance of relativistic effects in the systems. For

CuNO system, it is shown that a complete active space involving 18 valence electrons,

11 molecular orbitals and the prior determination of 12 roots in the MCSCF calculation

is needed for overall qualitatively correct results from the MRCI calculations. The

present calculations yield a bound singlet A′ ground state for CuNO and comparared

with previous results. We have obtained new, complete potential energy functions of

the ground electronic states of CuO and CuN systems. The lowest electronic state in

the CuO is the 2Π state. We also report the barrier to dissociation in the lowest 2Σ−

electronic state of which has not been observed before. Again, the active space is chosen

carefully so as to be able to describe both the predominantly neutral asymptote and

the predominantly ionic equilibrium geometries. Comparison of the term values for the

lowest electronic states of CuO and CuN with those previously reported in the literature

shows a quite good agreement. We derived a novel analytical representation of the

adiabatic potential energy surface in the ground electronic state of the CuNO system

as a sum of two-body and three-body terms. This compact and flexible representation

enables us to make a physically correct interpolation of the ab initio data points at the

MRCI level of theory. We use a modified Levenberg-Marquardt algorithm for fitting the

potential, which has 19 adjustable parameters and which now enables us to do scattering

dynamics of the CuNO system. We perform full dimensional quantum dynamical studies

with this new potential. Convergence of the time dependent wavepacket calculation has

been achieved. We find that the scattering in CuNO is highly inelastic. Intermediate,

excited meta stable reaction products CuNO∗ live for about 0.5 to 1 ps and maybe more.
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Chapter 1

Introduction

The interaction of nitric oxide with transition metal atoms is receiving increasing at-

tention from both experimental and theoretical studies as it is of importance in various

biochemical reaction pathways, atmospheric chemistry, surface chemistry and cataly-

sis [1]. Copper ions play an important role in the NOx redox chemistry in the biological

de-nitrification [2]. Many life-critical processes require metal ions, including respiration,

nitrogen fixation, photosynthesis, nerve transmission and muscle contraction. In biolog-

ical denitrification pathways, the reduction of nitrite to nitric oxide is carried out by the

dissimilatory nitrite reductase, NiR. Two types of NiR are known; those containing Cu

as cofactor and those containing heme.

By burning the biomass and fossil fuels, nitrogen, contained in the combustion air and

nitrogen as components in the biomass and the fuel, oxidize at higher temperatures to

NO, NO2 and N2O. NO being a bi-product of the combustion of fossil fuels leads to the

photochemical smog and its radical nature makes it a major contributor to the ozone

depletion [3]. Different sources of anthropogenic NOx emissions are known with the

most important due to combustion processes in various forms.

The term transition metal is generally restricted to that of an element with at least one

ion with an incomplete outer set of d-electrons, and for the first-row transition metals, all

valence electrons on the metal are regarded as d-electrons when the metal is in a complex.

Transition metal complexes comprise of transition metal ions covalently bonded to other

ions or molecules, generally termed ligands. Transition metals like Cu and its ions have

a rich chemistry due to close-lying energy bands made up of partly filled d-orbitals, and

thus serve as unique agents in a variety of biological processes. In particular, this is

1
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the case for the middle and late first-row transition metal ions, with typically single

occupation of at least some of their d-orbitals and the local structure about the metal

plays an essential role for catalytic mechanisms. For example, photochemistry of many

molecules adsorbed on metal surfaces frequently offers different reaction paths and lower

excitation thresholds to those found when they are in the gas phase non interacting with

the metal. The reason is the commonly found substrate-mediated mechanism, where

incident photons generate hot electrons (holes) in the metal, which in turn attach to

an unoccupied (occupied) electronic state of the adsorbate molecule. The threshold is

lowered by the energy difference between the occupied adsorbate state and the Fermi

level in the surface. This is of great interest in the development of better photocatalysts,

which ideally would make efficient use of the solar spectrum.

3d transition-metal oxides, in particular with copper, have shown great promise on a

wide range of important applications. They have for a long time challenged our ability to

construct a truly many-body theory of the solid state. Copper oxides exhibit interesting

properties in bulk which is actually related to the effects of electron correlations, induced

through strong Coulomb interactions among the cation 3d electrons, in the narrow d-

bands of these oxides. The most famous example of this is that of the Mott-Hubbard

insulators. In these oxide insulators, the large on-site Coulomb energy prevails over

the kinetic energy and thus suppresses the tendency of electrons to delocalize as driven

by their desire to lower the kinetic energy. The transition-metal nitrides are refractory

compounds and put forward a technologically important series of materials. Diatomic

transition metal nitrides and oxides also serve as simple models for the study of metal-

nitrogen and metal-oxygen bonding in inorganic/bioinorganic chemistry.

Investigation of reactions involving NO and transition metals are of particular interest

in the development of efficient catalysts for the reduction of NO. It is known that NO

dimer formation is one pathway to reduce NO.

Cu surface supports stable NO monomers which forms dimers on the surface; this allows

one to investigate the photochemical behavior for both NO monomers and dimers on

Cu(110). NO dimer formation is one reason why the noble metal surfaces show high

reactivity to NO dissociation and N2O formation even at liquid nitrogen temperatures.

The NO dimer exhibits a highly complex photochemistry in the gas phase. The precise
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relationship between the NO monomer and dimer photochemistry and the electronic

structure of the substrate Cu is still an open question.

For a fundamental understanding of the nature interaction of the interaction NO molecule

with Cu, and to check a possibility for homogeneous catalytic reduction of NO with Cu,

we start with the CuNO system in the gas phase. CuNO and its ion has been observed

in matrix isolation [5, 9], and infrared spectra in argon [7]. To get an insight into the

homogeneous catalysis involving the Cu and NO fragments, an accurate prediction of the

nature of the interaction between the two fragments is necessary in the gas phase [10, 11].

There is a series of questions which need to be answered. Starting with : a) What is the

ground electronic state of the CuNO system? b) What is the dissociation energy of the

CuNO complex? c) What is the equilibrium geometry? As of today, these quantities

are not known from experiment. d)Can we predict it accurately enough? e) Can we

make an analytical representation of the ab initio PES? f) How well do the theoretical

vibrational transitions of CuNO values compare with infrared spectra, albeit recorded

in matrices? g) What is the dynamics of the collision of Cu and NO? Do we expect to

observe inelastic or reactive scattering? h) What are the elementary steps of the reac-

tion kinetics inferred from the collision of Cu with NO? i) Can the Cu atom be used to

reduce NO upon such a collision? What is the activation barrier? j) How important are

relativistic effects with a heavy atom like Cu? h) What is the importance of electronic

excited states in the reduction of NO?

For most of these questions no data is available, neither from experiment nor from theory.

No quantum dynamical calculations have ever been reported in the literature using a

transition metal like Cu in full dimension, primarily because of the very high density of

vibrational states as it is involving a heavy element. For CuNO, the theoretical studies

have not yet been able to unambiguously assign the ground state.

The main concern of this thesis is to generate accurate ab initio potential energy surface

for use in spectroscopy and dynamics of molecules. Computational studies of molecules

is nowadays an accurate method for predicting molecular properties such as equilibrium

geometric structures, ground and excited electronic states, vibrational frequencies and

the energy of dissociation. However, the results obtained from the calculations in this

thesis refers to the gas phase and effects such as from solvent environment are neglected.
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The motivations for performing calculations of spectral data is in the determination of

molecular structure. The way in which a molecule vibrates and undergoes transitions

is very dependent on the symmetry and shape of the molecule, and also on the way in

which the atoms are connected. By carefully studying the transition frequencies and

overall patterns of the spectrum, information about the molecule can be extracted. For

example the strength of a bond directly affects the frequency of vibrational transitions

along that bond, and the symmetry of the molecule can give certain patterns in the

spectrum. In the reverse sense a predicted structure could be tested by performing a

calculation and comparing the result with experimental data.

In the thesis, we give answers to most of the questions mentioned above. In Chapter 1, a

brief summary of the general theoretical methods for solving the molecular Schrödinger

equation is given. This includes the way the Born-Oppenheimer adiabatic approximation

can be used to generate potential energy surfaces for molecules. In chemical physics, the

limits of the approximations are extended because calculations are becoming so accurate

that comparison with experiments show deviations which cannot be attributed to the

calculations alone.

In chapter 2 we give a summary of the specific methods to solve the electronic structure

and the methods we use in this thesis. We restrict ourselves here to the description

of the methods which are termed as ’wave function based’. The other popular method

based on Density functional theory is not described here.

In chapter 3 we describe accurate ab initio calculations of the ground (and excited

states) to obtain electronic energies of the CuNO system. A systematic investigation

of all calculation parameters is given in detail. Here we do calculations using Multi-

configurational self consistent field (MCSCF), and Multireference configuration inter-

action (MRCI) methods and coupled cluster methods to obtain the ground electronic

state. We also discuss extensively the importance of electron correlation and relativistic

effects in the ground electronic state.

In chapter 4 we also describe ab initiocalculations on the ground and excited states of

diatomic fragments CuO and CuN. In particuluar, we are interested in the dissociation

channels of CuNO system.
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In chapter 5 We derive a novel global analytical representation of the PES and fit it

with the MRCi data set with a modified Levenberg-Marquardt algorithm. From the

analytical potential, we obtain the dissociation energy of the Cu + NO interaction, and

the ground state equilibrium geometry of the complex. The analytical potential with its

best fit parameters are good enough to be used in preliminary full dimensional quantum

scattering calculations.

In chapter 6 We present the specific methods used here to solve the time-dependent

Schrödinger equation for triatomic systems. The quantum dynamics of the CuNO system

in the electronic ground state is described. The global analytical potential with the best

fit parameters is used in 3 and 4 dimensional quantum dynamical calculations of the Cu

+ NO reaction where we show that the collisions are indeed highly inelastic.

Chapter 7 is a conclusion



Chapter 2

Theoretical Concepts

In this chapter we will review the general formalism and introduce the basic approxima-

tion of molecular physics, the Born-Oppenheimer approximation. We also discuss how

relativistic effects can be incorporated in a quantum-mechanical formalism. However,

the basic theoretical framework on which the study of atoms and molecules is couched

is given by non-relativistic quantum mechanics. The principles of non-relativistic quan-

tum mechanics are discussed in depth in many monographs and we will not discuss them

here.

2.1 The Schrödinger equation

The time-dependent schrödinger equation is:

ı~
∂

∂t
Ψ(R, r, t) = H(R, r)Ψ(R, r, t) = [T (R) + T (r) + V (R, r)]Ψ(R, r, t) (2.1)

where

H is the Hamiltonian of the molecular system

H(R, r) = T (R) + T (r) + V (R, r) (2.2)

Ψ(R, r, t) is the wave function, R represents the nuclear Coordinates , r electronic

Coordinates, V is the electronic and nuclear Potential, T is the kinetic energy operator

6
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given as

T (R) =
∑M

i=1
1

2Mi
∇2

i (2.3)

T (r) =
∑N

i=1
1

2me
∇2

i (2.4)

Stationary states are the solution of the time independent Schrödinger equation (TISE)

H(R, r)Ψ(R, r, t) = EΨ(R, r, t) (2.5)

Separating the space and time variables in the TDSE we obtain,

H(R, r)Ψ(R, r, t) = EΨ(R, r, t) (2.6)

= ı~ ∂
∂t

Ψ(R, r, t) (2.7)

Ψ(R, r, t) = Ψ(R, r, 0)eıEt (2.8)

For simplicity, we write Ψ(R, r, 0) ≡ Ψ(R, r)

2.1.1 The Molecular Hamiltonian

Our starting point is the Hamiltonian for the system of electrons and nuclei,

Ĥ = −
∑

i

~
2

2me

∇
2
i −

∑

i,I

ZIe
2

|ri − RI|
+

1

2

∑

i6=j

e2

|ri − rj|

−
∑

I

~
2

2MI

∇
2
I +

1

2

∑

I 6=J

ZIZJe
2

|RI − RJ|
, (2.9)

where lower case letters denote the electrons and capital letters, the nuclei of charge

ZI and mass MI . Eq. (2.9) defines the so-called coloumb Hamiltonian Here we ignore

relativistic effects and magnetic fields. The Hamiltonian can be written

Ĥ = T̂N + T̂e + Û ≡ T̂N + Ĥe, (2.10)
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where the electron Ĥe contains all the potential terms Û . The nucleus-nucleus interaction

is included for convenience; it is just an added energy EII independent of electron

coordinates. We will use atomic units where ~,me, e are unit quantities, so that the

equations simplify and the nuclear kinetic energy becomes T̂N =
∑

I
me

2MI
∇2

I .

A direct solution of the TISE with this Hamiltonian without making any further ap-

proximation is an incredibly difficult task which has been pursued only for small atoms

and small diatomic molecules. There is one interesting parameter in the problem, the

mass ratio me

MI
. Therefore we start with an analysis which uses only this fact and no

other approximations, and which leads to an approximate decoupling of the electronic

and nuclear motions, the Born-Oppenheimer approximation.

Strictly speaking, if the charges are not static the Hamiltonian is not fully appropriate

as it does not include so-called radiation-reaction effects: a moving charged particle

loses kinetic energy as radiation, the main reason why orbits of electrons in atoms are

unstable in classical mechanics. A rigorous derivation of the Coulomb Hamiltonian in

the presence of a radiation field can be obtained using Quantum Electrodynamics.

2.2 Potential energy surfaces

The Schrödinger equation provides a way of calculating the forces which hold atoms

together. The approximate decoupling of nuclear and electronic motions is an important

approximation in molecular physics. It greatly simplifies practical computations and also

helps to rationalize the fundamental concept of a potential energy surface which is at

the basis of modern understanding of molecular dynamics. In the following section, a

short overview of this approximation will be presented. In molecules one expects to

observe essentially two different timescales for the motions of light particles (electrons)

and heavy particles (nuclei), so different that one may assume that, on the one hand,

nuclei see only the time-averaged distribution of the electrons while, on the other hand,

that the electrons follow instantaneously any movement of the nuclei. If we set the mass

of the nuclei to infinity, then the kinetic energy of the nuclei can be ignored, TN ≡ 0, it

is the so-called clamped-nuclei Hamiltonian, which corresponds to a system where the

nuclei are replaced by infinitely massive ones.
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2.2.1 The Born-Oppenheimer approximation

A theoretical justification of this procedure was given by Born and Oppenheimer. In

the following we will only provide a general outline of this approach.

In the first step, which depends parametrically on the nuclear geometry, the TISE is

solved for one of its ’electronic states’. The eigenvalue becomes then a function of

the nuclear geometry, and plays the role of a potential energy for the motion of the

nuclei in a second, nuclear-motion Schrödinger equation. This approach leads to division

of ”low energy scales for nuclear motion” in which the electronic states ”follow the

nuclei” adiabatically remaining in their instantaneous states, and ”high energy scales

for electrons” that describe the electronic excitations. Conceptually, the approach goes

as follows:

The wave function of the system is approximately given by the product of the electronic

and nuclear parts:

Ψ(R, r) = ψe(r;R)ψn(R) (2.11)

Solving for the electronic part of Schrödinger equation leads to the concept of potential

energy surface

Ĥeψe(r;R) = Ee(R)ψe(r;R) (2.12)

Thus we focus on the Hamiltonian for the electrons, in which the positions of the nuclei

are parameters.

This specifies the electronic problem which leads to the electronic states at fixed nuclear

positions R:

Ĥe(R)Ψi(r;R) = Ei(R)Ψi(r;R). (2.13)

This is the many-body equation for interacting electrons in the presence of fixed nuclei.

In a second step, the full solutions for the coupled system of nuclei and electrons

ĤΨs(r;R) = EsΨs(r;R) (2.14)

where s = 1, 2, 3, . . . , labels the states of the coupled system, can be written in terms of

Ψi(r;R), [19]
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Ψs(r,R) =
∑

i

χis(R)Ψi(r;R), (2.15)

if we assume that Ψi(r;R) define a complete set of states for the electrons at each R.

This assumption is often a very good one.

The states of the coupled electron–nuclear system are now specified by χis(R), which are

functions of the nuclear coordinates and are the coefficients of the electronic states Ψi

in state s . In order to find the equations for χis(R), insert expansion (2.15) into (2.14),

multiply the expression on the left by Ψ∗

j(r,R), and integrate over electron variables r

to find the equation

[

T̂N + Ei(R) − Es

]

χis(R) = −
∑

i′

Cii′χis′(R), (2.16)

where the matrix elements are given by Cii′ = Aii′ +Bii′ , with

Aii′(R) =
∑

J

1

MJ

〈Ψi(r;R)|∇J |Ψi′(r;R)〉∇J , (2.17)

Bii′(R) =
∑

J

1

2MJ

〈Ψi(r;R)| ∇2
J |Ψi′(r;R)〉 . (2.18)

Here 〈Ψi(r;R)|O|Ψi′(r;R)〉 means integrations over only the electronic variables r for

any operator O.

The adiabatic or Born-Oppenheimer approximation is to ignore the off-diagonal Cii′

terms, e.g the electrons are assumed to remain in a given state m as the nuclei move.

Although the electron wave function Ψi(r;R) and the energy of state m change, the

electrons do not change state and no energy is transferred between the degrees of freedom

described by the equation for the nuclear variables R and the degree of freedom of the

electrons only adiabatically. The diagonal terms can be treated easily. First, it can be

shown that Aii = 0 simply from the requirement that Ψ is in L2. The term Bii(R)

can be grouped with Ei(R) to determine a modified potential function for the nuclei

Ui(R) = Ei(R) + Bii(R). Thus, in the adiabatic approximation, the nuclear motion is

described by a purely nuclear equation for each electronic state i

[

−
∑

J

1

2MJ

∇
2
J + Ui(R) − Ein

]

χin(R) = 0, (2.19)
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where n = 1, 2, 3, . . . , labels the nuclear states within the electronic state i.

So long as we can justify neglecting the off-diagonal terms that couple different electron

states, we can solve the nuclear motion problem, Eq. (2.19), given the function Ui(R)

for the particular electronic state i that evolves adiabatically with nuclear motion.

This is an excellent approximation except for cases where there is degeneracy or near

degeneracy of the electronic states. The non-adiabatic terms will become large for config-

urations where potential energy surfaces cross or come very close to one another.At the

same time, while computing the adiabatic approximation is relatively straightforward,

the nonadiabatic formalism becomes extremely difficult. Special care must be taken for

cases such as transition states in molecules where electronic states become degenerate.

The practice of first solving the clamped-nuclei Hamiltonian and then using the resulting

potential surface for the nuclear motion can also be used very far from the potential

minumum or, indeed, it can be used for purely repulsive states which have no such

minimum at all.

2.2.2 Equilibrium geometry

By ’equilibrium geometry’ of a molecule one intends for the set of nuclear coordinate Re

for which the clamped-nuclei energy is a minimum in a given electronic state. It should

be remembered, however, that these values do not literally represent the equilibrium

position of the nuclei in a reality. Like electrons, nuclei are delocalized over the molecule

and the spatial density of a certain nuclear species can be calculated from the squared

modulus of the nuclear wave function integrating out the coordinates of all other nuclei.

These nuclear density distributions may be strongly peaked at the equilibrium values

Re, but need not be in all situations, like for example in the case of highly-excited

rotation-vibration states or in that of molecules with only a shallow minimum in the

clamped-nuclei Hamiltonian.

The Born-Oppenheimer approximation detailed previously is critical in any vibrational

calculation since it separates electron motion from the nuclear motion. This approxima-

tion makes it possible to consider a potential energy surface which represents the energy

of any configuration of the atoms for a particular electronic state. The vibrational prob-

lem can then be solved using a purely nuclear motion Hamiltonian with a potential for
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the given electronic state. The potential can be derived from either ab initio calculations

of the electronic energy of a given nuclear configuration R, or by adjusting an analytical

function of R to fit experimental data such as the line position of an infrared spectrum.

But it should be remembered that problems can arise when the electronic motion is not

separable from the nuclear motion and in this case the calculation of vibrational spec-

tra from isolated potential energy surface will likely not suffice. Then a set of coupled

vibrational Schrödinger equation must be solved.

2.3 Relativistic effects

2.3.1 The Dirac Hamiltonian

Dirac derived in 1928 a relativistic equation which describes a single particle of mass m

with spin 1/2 , e.g. an electron, in an external potential. The wave function of a Dirac

particle is a four-component object

Ψ(r) =

















ψ1(~r)

ψ2(~r)

ψ3(~r)

ψ4(~r)

















(2.20)

We are interested in an equation of the form

ı~
∂

∂t
Ψ = HΨ (2.21)

Because of the first derivative ∂
∂t

, we would like to have first derivatives ∂
∂x

etc. as well.

Note that the series expansion of the square root in

E − V = mc2
√

1 + p2/m2c2 (2.22)

would contain all powers of (p2/c2).
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Suppose now that the Hamiltonian is linear in all ∂
∂xµ

and that the wave function Ψ has

N components,

Ψ =











ψ1

...

ψN











(2.23)

Then the most general free-particle wave equation is

ı~
∂

∂t
Ψn =

N
∑

l=1

[c~αnl · ~p+ βnlmc
2]Ψl (2.24)

where n runs from 1 . . . N , and

~αnl · ~p = −ı~[(αnl)x
∂

∂x
+ (αnl)y

∂

∂y
+ (αnl)z

∂

∂z
(2.25)

In terms of the N ×N matrices ~α and β,

ı~
∂

∂t
Ψ = [−ı~c~α · ∇ + βmc2]Ψ ≡ hDΨ (2.26)

with the Dirac Hamiltonian

hD = c~α · ~p+ βmc2 (2.27)

The components of α are the N × N matrices (N ≥ 4, see below) ~αx, ~αy and ~αz. In

order for hD to be hermitian, ~α and β must be hermitian:

~α† = ~α, β† = β (2.28)

For all points in space-time to be equivalent, ~α and β must be constant and dimension-

less. Consequently they commute with ~r and ~p.

We still want to satisfy

E2 = c2p2 +m2c4

for all components ψ1 . . . ψN :

− ~
2 ∂

2

∂t2
Ψ = [−~

2c2∇2 +m2c4]Ψ (2.29)
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Then the Dirac equation

hDΨ = ı~
∂

∂t
Ψ

will connect the different components.

From Eq. (2.29), it turns out

αiαj + αjαi = 2δijI (2.30)

βαi + αiβ = 0 (2.31)

β2 = I (2.32)

I being the N × N unit matrix. Because ~α and β were hermitian, their eigenvalues

are real. According to Eq. (2.30), the squares of these eigenvalues equal 1. Hence the

eigenvalues are ±1. Dirac showed that Eq. (2.30) is satisfied by

β =





I 0

0 −I



 (2.33)

~α =





0 ~σ

~σ 0



 (2.34)

where

I =





1 0

0 1



 , ~σ1 =





0 1

1 0



 , ~σ2 =





0 −i

i 0



 , ~σ3 =





1 0

0 −1



 (2.35)

2.3.2 The many-electron Dirac equation

At variance with the Schrödinger equation, the Dirac equation is not rigorously general-

isable to systems of many particles and, more generally, a universally-accepted quantum

relativistic many-particle theory does not exist. However, applications to atoms and

molecules based on generalisations of the Dirac equation have been very successful and

the general consensus is that numerical results obtained from the Dirac equation are

adequate for chemical purposes.
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The Dirac-Coulomb-Breit Hamiltonian applied in a four-component formalism repre-

sents the theoretically most rigorous method available today to treat relativistic effects

in molecules; unfortunately, it is computationally very intensive and calculations are fea-

sible only on small systems. A two-component quasi-relativistic Hamiltonian for many-

electron systems with the inclusion of the Breit term, i.e. the Breit-Pauli Hamiltonian,

is gained from the Dirac-Coulomb-Breit Hamiltonian for two-electron systems through

the Foldy-Wouthuysen (FW) transformation and a generalisation to N electrons.[60]

2.3.2.1 The Douglas-Kroll-Hess Hamiltonian

The Douglas-Kroll-Hess method [54, 55] belongs to a family of methods where one

performs a unitary transformation of the Dirac Hamiltonian with the end of uncoupling

the negative energy degrees of freedom. If the transformation is exactly unitary the

transformed operator will have exactly the same electronic spectrum of the original

Dirac Hamiltonian, but will act on two-component wave functions. The methods, which

are sometimes called quasi-relativistic even though they are potentially equivalent to the

fully relativistic Dirac Hamiltonian, now available that perform this transformation in

a formally exact and computationally efficient way. Here is a very brief summary of the

method.

The DK formalism, is an all electron method, and is based on a series of unitary transfor-

mations U0,U1, . . . of which the lowest is the free-particle FW-transformation defined

by










U0 = A(1 + βR)

U−1
0 = (Rβ + 1)A

(2.36)

where we have

A =

√

Ep +mc2

2Ep

(2.37)

R =
c~α · ~p

Ep +mc2
(2.38)

Ep = c
√

p2 +m2c2 (2.39)

Applying U0 to hD = c~α · ~p+ (β − 1)mc2 + V gives

U0hDU−1
0 = βEp + E1 + O1 ≡ H1 (2.40)
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with

E1 = A(V +RV R)A

O1 = βA(RV − V R)A
(2.41)

For chemical purposes one more transformation is needed. One uses

U 1 =

√

1 + W 2
1 + W 1 (2.42)

with W 1 anti-hermitian, W
†

1 = −W 1. Performing the transformation through U1 and

expanding the square root in powers of W 1,

U1H1U
−1
1 = βEp − [βEp,W 1] + E1 + O1

+
1

2
βEpW

2
1 +

1

2
W 2

1βEp − W 1βEpW 1

+[W 1,O1] + [W 1,E1] + . . . (2.43)

omitting higher order terms. The first-order odd term is eliminated by setting

[βEp,W 1] = O1 (2.44)

and solving for W 1.

The final result is

Hdecoupled ∼= βEp + E1 − β
[

W 1EpW 1 +
1

2
[W 2

1, Ep]
]

. (2.45)

The DKH Hamiltonian [56, 57] has now been implemented in a large number of programs,

including MOLPRO, which we use in the calculation. Having to deal with an infinite

expansion is generally not a serious practical limitation because it has recently been

possible to efficiently compute corrections to essentially arbitrary order, and furthermore

the convergence in n is usually rapid. These methods can and usually are combined

with the neglect of spin-dependent terms; if this is done the methods operate on single-

component wave functions as in the non-relativistic case and, as the time required to set

up the transformation is essentially negligible, they have the same computational cost

as the corresponding non-relativistic method.
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For calculating properties, the operator has to be transformed as well, if transformed

Hamiltonians are used. This could be quite tedious.



Chapter 3

Solving the Many Body

Schrödinger Equation

3.1 Solving the electronic-motion problem

Finding the eigenvalues and the eigenvectors of the Hamiltonian given by the many

body Schrödinger equation is difficult and despite numerous studies previously, the task

remains challenging.[59, 61] As a general situation, exactly-solvable quantum many-body

problems are few.

Because analytical solutions are not obtainable the eigenvalue problem must be solved

numerically. This has so far proven to be a difficult task. Generic grid-based or finite

element numerical methods developed for partial differential equations scale exponen-

tially with the number of dimensions and thus become essentially impossible to use in

systems with more than one or two particles.

A comment on the subject was famously given by Dirac in 1929 [20]

The underlying physical laws necessary for the mathematical theory of a

large part of physics and the whole of chemistry are thus completely known,

and the difficulty is only that the exact application of these laws leads to

equations much too complicated to be soluble. It is therefore desirable that

approximate methods of applying quantum mechanics should be developed,

18
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which can lead to an explanation of the main features of complex systems

without too much computation.

3.2 The variational principle

Since exact closed form solutions of the Schrödinger equation are hard to obtain, the

search is often restricted to the ground electronic state. In chemistry, the ground elec-

tronic state plays a major role. Typical electronic excitations have energies which are

significantly higher than thermal energies. As a result the structure of molecules and

their thermodynamical properties are determined by the potential surface of the ground

electronic state alone.

Obtaining the ground state energy is based on the fact that any guess of a wave function

will lead to an energy greater than that of the actual ground state. This fact is called

the variational principle.

Consider a Hamiltonian Ĥ which has eigen functions φn with energies En with E1 ≤

E2 ≤ ... ≤ En unknown to us. A trial wave function Ψ is examined. Since the set of

eigen functions of Ĥ is complete the function Ψ can be expanded by using the set:

Ψ =
∑

n

anψn (3.1)

The expectation of the trial wave function becomes:

〈Ψ|Ĥ |Ψ〉 = 〈
∑

n

anψn|Ĥ |
∑

m

amψm〉

= 〈
∑

n

anψn|
∑

m

Emam|ψm〉

=
∑

nm

a∗namEm〈ψn|ψm〉 =
∑

n

|an|
2En (3.2)

This result can be used to construct the inequality:

〈Ψ|Ĥ|Ψ〉 =
∑

n

|an|
2En ≥

∑

n

|an|
2E1 = E1

∑

n

|an|
2 (3.3)

using the normalization condition 〈Ψ|Ψ〉 =
∑

n |an|
2 = 1 and the condition that

E1 is lower than any other energy.
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If the trial wave function Ψ is not normalized the theorem can be modified:

〈Ψ|Ĥ|Ψ〉 = 〈Ψ|Ĥ|
∑

m

amψm〉

= 〈Ψ|
∑

m

Emam|ψm〉

≥ 〈Ψ|
∑

m

E0am|ψm〉 = E0〈Ψ|
∑

m

am|ψm〉 = E0〈Ψ|Ψ〉 (3.4)

Which can be modified to:
〈Ψ|Ĥ|Ψ〉

〈Ψ|Ψ〉
≥ E0 (3.5)

The conclusion: any normalized trial function has an expectation energy value larger

than the ground state.

3.3 Hartree-Fock Method

All quantities in this section are dimensionless quantities Q∗ = Q
[Q] , where [Q] is the

unit of the quantity. We use atomic units, and for brevity, we omit the asterisk. It is

well-known that the difficulty in obtaining the two-electron wave function Ψ(~r1, ~r2) for

the helium Hamiltonian originates from the Coulomb interaction term between electrons

1 and 2. D.R. Hartree [21] proposed that the many-electron wave function can still be

expressed as a product of two single-particle functions, even in the presence of mutual

repulsion. In other words, we will now simply take the functional form Ψ(~r1, ~r2) =

ψa(~r1)ψb(~r2), but without yet specifying ψa or ψb.

Given this trial wave function, Hartree’s iterative method describes how to determine the

single-particle states ψa and ψb . Again, “iteration” implies that the algorithm analyzes

each electron one at a time. Staying with the Helium example, as a starting point, we

consider the doubly-charged helium nucleus stripped of both electrons. In assigning a

wave function to the first electron around this nucleus, the relevant potential is clearly

Vnucl = −2/r1, for which we have available an analytical form of the ground-state eigen

function ψ
(0)
a .

We then move on to electron 2. Recalling that |ψa(~r1)|
2 represents the spatial probability

distribution of electron 1, it is plausible to associate a repulsive potential Vee due to the

corresponding charge density, ρa = |ψa(~r1)|
2. Therefore, the Schrödinger equation (SE)
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for electron 2 will involve the electron-electron potential Vee in addition to Vnucl. The

electrostatic potential energy of the electron-electron interaction can then be obtained

as

Vee(~r2;ψa) =

∫

d3r1
1

r12
ρa(~r1) =

∫

d3r1
1

r12
|ψa(~r1)|

2 (3.6)

where r12 = |~r1 − ~r2|. The notation for Vee explicitly indicates its dependence on ψa.

Returning to electron 1, it is now possible to utilize ψb to similarly calculate Vee(~r1;ψb).

The new SE is solved, yielding ψ
(1)
a (~r1). The process is repeated, alternating between

the two electrons, until the sequences of functions
{

ψ
(i)
a

}

and
{

ψ
(i)
b

}

converge within

some desired precision.

Formally, we are solving the equations

[

−
1

2
∇

2
1 + Vnucl(~r1) + Vee(~r1;ψb)

]

ψa(~r1) = Eaψa(~r1) (3.7)

[

−
1

2
∇

2
2 + Vnucl(~r2) + Vee(~r2;ψa)

]

ψb(~r2) = Ebψb(~r2) (3.8)

in an iterative fashion. The essential idea of the Hartree procedure is the reduction

of the many-body Hamiltonian to several single-particle Hamiltonians. On the other

hand, due to the coupling through Vee, a direct solution to the above set of nonlinear

Schrödinger equations is difficult.

The Hartree method ignores the antisymmetry requirement for the many electron wave

function. In next section, we will rectify this by introducing the Hartree-Fock (HF)

approximation, which takes as its trial wave function Ψ a Slater determinant. The HF

approximation is an application of the variational principle described in previous section.

3.4 Slater determinant wave functions

An electron has a spin degree of freedom in addition to its spatial coordinates. In

fact, the antisymmetry requirement applies to an exchange of both spatial and spin

coordinates, whereas so far we dealt solely with space in our previous discussion of the

Hartree iteration. Hence, we must now augment our previous notation to explicitly

incorporate spin. The defining property of the Hartree-Fock (HF) approximation, as

an improvement on the Hartree method, is that the trial wave function Ψ is chosen
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to be a Slater determinant of orthonormal single-particle functions of spin and space

coordinates. The motivation arises from the fact that the mathematical properties of a

determinant trivially satisfy the antisymmetry requirement.

We use ~xi to denote the complete set of coordinates associated with the i-th electron,

comprised of the spatial ~ri and spin wi = ±
1
2 components

〈~xi|m〉 = χm(~xi) = χm(i) = ψm(~ri)λm (wi) (3.9)

The first form is useful when we wish to emphasize the one-electron state, rather than

the electron index. The complete one-electron state χm(~xi) (“spin orbital”), is separated

into its spatial ψm(~ri) and spin λm (wi) components.

With this, the trial determinantal wave function may be written [23]

Φ(~x1, ~x2, ..., ~xN ) =
1

√
N !

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(~x1) χ2(~x1) . . . χN (~x1)

χ1(~x2) χ2(~x2) . . . χN (~x2)
...

...
...

χ1(~xN ) χ2(~xN ) . . . χN (~xN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.10)

=
1

√
N !

N !
∑

n=1

(−1)pnPn {χ1(1)χ2(2) . . . χN (N)} (3.11)

In Eq. (3.11), the index n runs over all N ! permutations Pn of the N one-electron states.

The quantity pn takes on 0 or 1 depending on whether the permutation Pn is odd or

even, respectively. We may regard the action of Pn as permuting the n spin-orbital

indices and (−1)p2 = −1 by definition.

Our task in computing 〈Ψ|H |Ψ〉 is made simpler by recognizing the “one- and two-

electron” structure of the electronic Hamiltonian, and by using the indistinguishability

of electrons to take advantage of that structure. Begin by writing:

H =
N
∑

i=1

(

−
1

2
∇

2
i −

M
∑

A=1

ZA

riA

)

+
N
∑

i=1

N
∑

j>i

1

rij

=

N
∑

i=1

h1(i) +

N
∑

i=1

N
∑

j>i

h2(i, j) (3.12)
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Here, we have identified the one-electron operator

h1(i) = −
1
2∇

2
i −

∑M
A=1 ZA/riA (of the i-th electron)

and the two-electron operator

h2(i, j) = r−1
ij (involving electrons i and j).

Only one and two sets of electron coordinates are involved in the matrix elements of

h1(i) and h2(i, j) respectively. In particular, h1(i) is also termed the core-Hamiltonian

of the i-th electron, describing its kinetic and potential energy in the field of the nuclei.

〈Ψ|h1(1) |Ψ〉 can be expressed as:

〈Ψ|h1(1) |Ψ〉 =
(N − 1)!

N !

N
∑

m=1

∫

dτ1χ
∗

m(~x1)h1(1)χm( ~x1)

=
1

N

N
∑

m=1

〈m|h1(1) |m〉 (3.13)

where the sum is over the single-particle functions and the integral extends over spatial

and spin components. So, we find that the core-energy of electron 1 is an average of

the expected core-energy of every single-particle state that comprises the determinant.

This is a direct consequence of the indistinguishability of electrons. It is then clear that

h1(i) = h1(j) for every i, j. We can thus conclude:

〈Ψ|

N
∑

i=1

h1(i) |Ψ〉 =
N
∑

m=1

〈m| h1(1) |m〉 (3.14)

Conventionally, the integration variable of the one-electron integral is taken to be ~x1.

The two electron integrals can be obtained by,

〈Ψ|

N
∑

i=1

N
∑

j>i

h2(i, j) |Ψ〉 =





N

2



 〈Ψ|h2(1, 2) |Ψ〉 =
N(N − 1)

2
〈Ψ|h2(1, 2) |Ψ〉 (3.15)

This is valid since any pair of electrons will have identical 〈Ψ|h2(i, j) |Ψ〉 according to

indistinguishability. Furthermore, the double sum accounts for all of the unique pairs

among N electrons, of which there are N(N − 1)/2. Proceeding we obtain:
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N(N − 1)

2
〈Ψ|h2(1, 2) |Ψ〉 =

1

2

N
∑

m=1

N
∑

n=1

(〈mn|h2(1, 2) |mn〉 − 〈mn|h2(1, 2) |nm〉) (3.16)

We have then finished computing 〈Ψ|H |Ψ〉:

〈Ψ|H |Ψ〉 = 〈Ψ|

N
∑

i=1

h1 |Ψ〉 + 〈Ψ|

N
∑

i=1

N
∑

j>i

h2 |Ψ〉

=
N
∑

m=1

〈m|h1 |m〉 +
1

2

N
∑

m=1

N
∑

n=1

(〈mn|h2 |mn〉 − 〈mn|h2 |nm〉) (3.17)

In the Hartree-Fock theory, [22] the many-particle wave function Ψ is constrained to

remain a Slater determinant formed by mutually orthonormal single-particle functions

{χm |m = 1, 2, . . . , N}. However, as in the original Hartree procedure, the single particle

states are not yet identified, and therein lies the variational degrees of freedom.

More precisely, we view the energy expectation 〈Ψ|H |Ψ〉 as a functional on {χm}.

We can then apply the standard techniques of the calculus of variations, seeking an

optimal set of single-particle functions that makes 〈Ψ|H |Ψ〉 stationary under arbitrary

infinitesimal changes, χm → χm + δχm. The variational principle then shows that

the resulting set produces the best single-determinant approximation to the ground

state using the technique of Lagrange multipliers and minimization. The minimization

condition is equivalent to:

f(~x1)χm( ~x1) = ǫmχm(~x1) (3.18)

f(~x1) = h1 +

N
∑

n=1

∫

dτ2
1

r12
|χn(~x2)|

2
−

N
∑

n=1

∫

dτ2χ
∗

n(~x2)
1

r12
P2χn(~x2)

which holds for m = 1, 2, . . . , N . The action of P2 on χn is to exchange it against χm in

Eq. (3.18)
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These equations, having the form of a single-particle Schrödinger equation, are the

Hartree-Fock equations that characterize the optimal single-particle states to be used

in the Slater determinant. We can also conclude that the corresponding Lagrange mul-

tipliers have the important physical interpretation as the single-particle energies. The

operator f(~x1) is called the Fock operator, and the orthogonality of its eigen functions

is proved in literature. Unfortunately, the Fock operator couples the N equations, and

makes Eq. (3.18) a nonlinear SE; hence the need for iterative methods.

The electronic repulsion term
∑N

n=1

∫

d~x2
1

r12
|χn(~x2)|

2 in the HF equations, agrees with

the intuition embodied in the original Hartree iteration. However, the additional ex-

change term
∑N

n=1

∫

d~x2χ
∗

n(~x2)
1

r12
P2χn(~x2) originates from antisymmetrization of the

trial wave function.

Recall that to form the many-particle ground state, we seek the N lowest-energy single-

particle eigen functions of the Hartree-Fock equation (Eq. (3.18)). When N is even, the

Fock operator does not depend on electron spin. It then follows that we can focus on

the N
2 lowest-energy spatial states {ψn | n = 1, 2, . . . ,N/2}, and then doubly occupy each

with electrons of opposite spin. Then we just obtain the N
2 lowest-energy single-particle

eigen functions of the spatial Hartree-Fock equation:

f(~r1)ψn(~r1) = ǫnψn(~r1) (3.19)

3.4.1 Introduction of a basis and Roothan-Hall Equations

In 1951 C.C.J. Roothaan [24] demonstrated that, by introducing a set of known spatial

basis functions, the differential Hartree-Fock equations could be reformulated as an alge-

braic equation to be solved by standard matrix techniques. This technique is explained

here for a potentially closed shell system.(even number of electrons)

Suppose that {φµ} represents a set of basis functions for the space of square integrable

functions. In practice, we must choose some K-element subset of this basis for a com-

puter implementation. We can then approximate the i-th spatial wave function by a

linear combination

ψi =
K
∑

µ=1

Ciµφµ i = 1, 2, . . . , (K ≥
N

2
) (3.20)
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The above expression would be exact if the truncated basis set {φµ | µ = 1, 2, . . . ,K}

correspond in fact to a complete set.1 However, in practice, the basis functions typically

have no claim on rigorous completeness.

To obtain the HF equations in matrix form, consider again the spatial Hartree-Fock

equation (Eq. 3.19). Begin by expanding ψm(~r1) in the chosen basis,

f(~r1)
∑

ν

Cνmφν(~r1) = ǫm
∑

ν

Cνmφν(~r1) (3.21)

We then multiply by φ∗µ(~r1) on the left and integrate, to obtain:

∑

ν

{
∫

d~r1φ
∗

µ(~r1)f(~r1)φν(~r1)

}

Cνm = ǫm
∑

ν

{
∫

d~r1φ
∗

µ(~r1)φν(~r1)

}

Cνm (3.22)

This motivates the definition of two matrices. The first is the Fock matrix Fµν =
∫

d~r1φ
∗

µ(~r1)f(~r1)φν(~r1). The second is the overlap matrix Sµν =
∫

d~r1φ
∗

µ(~r1)φν(~r1).

With these definitions Eq. 3.22 becomes,

∑

ν

FµνCνm = ǫm
∑

ν

SµνCνm (3.23)

This result may more succinctly written as a single matrix equation, known as the

Roothaan equation:

FC = SCǫ (3.24)

Here, the matrix ǫ is diagonal and contains the single-particle energy ǫm as the m-th

element. Furthermore, C is the K × K coefficient matrix whose n-th column denotes

the expansion coefficients of ψn in the basis set {φµ}. Hence, solving for the optimal

single-particle states in the Hartree-Fock approximation is equivalent to solving for the

coefficient matrix C that solves the Roothaan equation.

F depends on the coefficient matrix. It then follows that the Roothaan equation is

nonlinear, and cannot be directly solved by standard linear techniques.

Instead, we use an iterative approach in which we first compute F(i−1) based on the

previous set of coefficients C(i−1) (or by an initial guess). The Fock matrix thus generated

1In order to obtain square matrices, we will seek K ≥ N/2 spatial orbitals. As long as we have at

least N/2 one-electron states, we’re fine.
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is then considered to be fixed, which allows us to solve for the next set of coefficients

C(i) via the Roothaan-Hall [25] equation, which may now be notated as:

F(i−1)C(i) = SC(i)ǫ (3.25)

As in the section on the Hartree ansatz, such iteration is tantamount to holding the

wave functions of the other electrons (j 6= i) fixed as we generate the new wave function

for the i-th electron. The limit of the sequence of matrices C(i) → C is then taken to

be the solution of the Roothaan equations. The columns of the coefficient matrix can

then be used to express the single-particle wave functions (in the chosen basis) of the

Slater-determinant, thus completing our implementation.

There are several matrix techniques for solving Eq. (3.25), which differs from standard

eigenvalue equations by the presence of the overlap matrix. We use methods imple-

mented in MOLPRO. The Fock operator determined at the end of a Hartree-Fock cal-

culation is a Hermitian operator and its eigen functions and eigenvalues are given by the

canonical molecular orbitals and orbital energies. The N/2 molecular orbitals which en-

ter in the definition of F constitute the occupied orbitals, while all the others are called

unoccupied or virtual orbitals. The single-particle picture of molecules which arises from

the method is still deeply engrained in modern chemical thinking.

The exact wave function Ψ is an eigen function of S2 and Sz. Many stable molecules have an even numb

The correlation energy Ecorr is defined as the difference between the true eigenvalue of

the Schrödinger equation and the Hartree-Fock energy EHF:

Ecorr = Eexact − EHF

In other words Ecorr is the residual energy not accounted for by the Hartree-Fock solu-

tion, generally intended in its restricted Hartree-Fock variant. For systems where the

RHF is not applicable, e.g. systems with an odd number of electrons, the ROHF or the

UHF energy are usually taken as reference.

The term correlation has a precise meaning in probability theory which is much more

specific and not equivalent to the use of the word in quantum chemistry. In probabil-

ity theory, a bimodal probability distribution P (x1, x2) is said to be composed of two
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independent monomodal probability distributions, if P (x1, x2) = P (x1) · P (x2); both

distributions can be correlated, however!

But in quantum chemistry the probability distributions of electrons are said to be un-

correlated, when the many-electron wave function is written as a Slater determinant of

one-electron spin orbitals. In quantum chemistry terminology, the Hartree-Fock solution

is said to be uncorrelated in this sense.

3.5.1 Dynamic and static correlation

The concept of electron correlation gravitates around the concept of electrons mutually

influencing each other’s motion, not only because they repel one another by Coulomb’s

law but also because of the anti-symmetry requirement on the wave function of the

system. The correlation energy contribution due to inadequacies of the Hartree-Fock

method has been called non-dynamic or static correlation, while the remaining part con-

stitutes the dynamical correlation. The correlation energy arising from overestimation

of short-range electron repulsions in Hartree-Fock wave functions is usually referred to

as dynamical correlation. The static correlation is correlation mandated by degeneracies

inforced permutation symmetry.[62, 68, 69]

Where dynamical correlation effects are important, Hartree-Fock will therefore generally

overestimate bond lengths and underestimate binding. An extreme example is that of

rare-gas dimers, which are unbound at the Hartree-Fock level, but in reality are hold to-

gether by dispersion, which can be thought of as a manifestation of dynamic correlation.

One useful visualization of non-dynamical correlation is that which is recovered with the

minimum CI expansion describing properly all correlation effects due to degeneracies of

the wave function; in contrast, convergence of the dynamical correlation energy with

increasing size of CI expansion is very slow.

When non-dynamical correlation is weak, Hartree-Fock theory already provides a qual-

itatively correct description of the wave function. Under such circumstances, which

apply generally for molecules in their ground state near equilibrium geometry, one may

use single-reference methods to recover the dynamical correlation effect. These methods

build on the HF reference determinant, typically using perturbative arguments to define

classes of configurations or excitations deemed to be of most importance in constructing
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an approximate correlated wave function. For many excited states, for molecules that

are close to dissociation, and for situations in which there is near electronic degeneracy,

Hartree-Fock is a poor approximation. When static correlation effects are important,

Hartree-Fock tends to artificially overbind molecules underestimating bond lengths and

overestimating vibrational frequencies. Thus the effects of dynamic and non-dynamic

correlation could be in opposition, and the partial cancellation of correlation errors could

obscure the value at the SCF level. Static correlation effects often mean that there is no

single Slater determinant that dominates the wave function, and perturbative or other

approaches that assume a good single-reference starting point are doomed to failure.

Under such circumstances, a viable way forward is to first deal with the static correla-

tion problem using a CI expansion that covers all of the important effects. One may then

go further using this many-determinant reference as a starting point for further recovery

of the dynamic correlation. Such approaches are termed multi-reference methods.

3.6 Configuration Interaction

Methods that improve the Hartree-Fock results by accounting for the correlation energy

are known as post Hartree-Fock methods. Configuration interaction (CI) [71] is

discussed in all major quantum chemistry textbooks. The general idea behind CI is

very simple. Express the wave function as a linear combination of Slater determinants

with the coefficients obtained variationally

|Ψ〉 =
∑

I

cI |ΦI〉 (3.26)

The exact wave function in a finite basis set is the full CI (FCI), which means include

all same-spin excitations up to n-tuple ones for n electrons:

ΨFCI = C0Φ0 +
∑

a,i C
i
aΦ

i
a +

∑

ik,abC
ab
ij Φab

ij + . . . (3.27)

(3.28)

where the coefficients, for example Cab...
ij... , are normally determined variationally.
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One Slater determinant may be chosen as the HF reference wave function ; others might

be obtained by exchanging orbitals in the HF reference state by virtual orbitals (”excited

determinants”) {Φi
a}, {Φ

ab
ij } and so on. The full CI is an unambiguous reference model

for the correlation problem as it is the best possible solution in any finite basis set. It is

variational, invariant to all orbital rotations, and is size extensive. In a complete basis,

the full CI, gives the exact solution to the Schrödinger equation. The full CI, however

becomes an impossibility for any but quite small molecules in small basis sets.

Assuming that the Hartree-Fock solution is a good approximation one may presume that,

in an expansion of the exact wave function in the basis of the single particle functions

of the Fock operator, contributions coming from basis functions which differ from the

Hartree-Fock ground state by multiple excitations should be smaller and smaller. This

assumption leads to a hierarchy of methods where the Hamiltonian is diagonalised in a

basis which includes configurations ΦI obtained from ”excited” single particle functions

up to a certain level of excitation. Inclusion of excitation orders up to single, double,

triple, quadruple, pentuple, hextuple, etc. gives origin to truncated-CI methods referred

to by the acronyms CIS, CISD, CISDT, CISDTQ etc [68, 69, 70].

Despite its logical simplicity, configuration interaction has several shortcomings. On

the one hand, the scaling in computer time with respect to the number of excitations

included rises very quickly; for a basis set containing N functions in the large-N limit

CISD scales as N6, CISDT as N8 and CISDTQ as N10.The consequence of this very

steep scaling is that CISD is for most systems the only computationally-feasible CI

level of treatment. Unfortunately CISD energies, even when the reference Hartree-Fock

wave function is a good approximation, are not particularly accurate, and higher-order

excitations (in particular, quadruple excitations) still give a significant contributions to

the correlation energy.

Another very relevant deficiency in the CI approach is that when the Hartree-Fock

solution is not a good approximation, for all molecular geometries. It often happens

when covalent bonds are broken, the approximate ordering of energy contributions with

respect to the level of excitation breaks down and CISD energies will in general be very

poor. This limitation, common to all methods which assume the Hartree-Fock solution

to be a reasonably good starting point, essentially rules out truncated CI as a method

to obtain reliable global potential energy surfaces. Finally, there is another significant
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problem with truncated CI which indicates that the strategy of selecting configurations

only on the basis of the level of excitation is intrinsically flawed. This problem is the

lack of the properties of size-consistency and of size-extensivity of truncated CI, which

we will discuss in the following section.

3.7 Size extensivity and size consistency

A precise definition of the concepts was given by Bartlett.[75].

A method is size consistent if the energy calculated for an ensemble of isolated atoms or

molecules (e.g., at infinite distance from one another) is equal to the sum of the energies

of the individual atoms or molecules calculated with the same method one-by-one. Exact

size consistency guarantees that when a bond M-A is stretched to infinity (M represents

the fragment molecule and A, the dissociating atom) the energy will asymptotically go

to E(M)+E(A) (where the energy of the fragments are computed by the same method).

This clearly looks a very desirable property for any method to be used for calculating

global potential energy surfaces. The energy of a system made up of two non-interacting

subsystems A and B far apart is equal to the sum of the energies A and B computed

separately by the same method. For closed-shell systems dissociating to closed-shell

fragments, a RHF (restricted Hartree-Fock) reference function is size-consistent e.g He-

He dimer.

The term size-extensivity is borrowed from thermodynamics, where an extensive prop-

erty is one that is proportional to the size of a homogeneous system of non-interacting

partcles. A method is size extensive if the energy becomes proportional to the number

of non-interacting electrons N in the limit N → ∞. Size-extensivity is then a suffi-

cient condition for size-consistency of a correlated model of the perturbation-theory or

coupled-cluster type based upon that reference function. The RHF method when ap-

plied to closed-shell systems is size extensive, as are RHF-based perturbation theory

and coupled cluster methods. On the other hand, all forms of truncated CI a part from

full-CI are not size extensive.

The lack of exact size consistency in a quantum chemical method may not be a severe

drawback if the size-consistency violation is smaller than other sources of error present

in the calculation such as basis set incompleteness or higher level electron correlation
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effects and if the error induced by size consistency is cancelled in relative energies such

as the dissociation energy.

One way to view the lack of size-consistency in variational CI is by considering the

Rayleigh quotient correlation energy functional itself:

3.7.1 Size-consistency corrections

ǫ =
〈Ψ|H−̂EREF |Ψ〉

〈Ψ| |Ψ〉
(3.29)

If Ψ is restricted to contain double excitation configurations only, and that the coefficient

of the reference wave function is kept fixed.
〈

Ψ|ΨREF
〉

= 1, then the numerator of this

expression can be shown to grow linearly with system size N; however, the denominator

also grows, but as 1 + λN , where lambda is a constant. This spoils the proper linear

scaling of the correlation energy. This analysis gives rise to a number of approximate

ways to correct for the effect of lack of extensivity. The simplest, the Davidson or ‘+Q’

correction [31], involves a straightforward rescaling of the correlation energy by 〈Ψ|Ψ〉

, i.e. by replacing the denominator of the above equation by 1 once the wave function

has been determined. More explicitly,

ǫCI+Q =
1 − c20
c20

ǫCI (3.30)

where c20 is the weight of the reference wave function ΨREF in the final normalized CI

wave function.Alternative approaches like ACPF [65] introduce at the outset a denom-

inator in the energy functional that does not increase with system size. This modified

approximate functional is then minimized to determine the wave function and energy.

3.8 Multi-configurational SCF Method

The main goal of the multi-configurational self consistent field (MCSCF) method is to

give a balanced description of the potential energy surface of a molecule even in regions

far away from equilibrium, where the Hartree-Fock solution is known to be poor. The

complete active space self consistent field method (CASSCF) is a particular version of a

class MCSCF of methods. This method is a CI method, in which the coefficients of the

Slater determinants in a linear combination are variationally optimized, simultaneously
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with the molecular orbitals included in these determinants. This variational optimization

is performed iteratively as in the single determinant SCF method. At the starting

point of the MCSCF method one considers the Hartree-Fock orbitals both occupied and

virtual. In the universally-adopted Hartree-Fock-Roothaan approach the orbitals are

expressed as a sum of one-electron basis functions. In the CI approach at this point one

would limit the number of configurations included in the expansion on the basis of the

level of excitation with respect to the Hartree-Fock reference, and then obtain the linear

CI coefficients by diagonalisation of the Hamiltonian matrix.

The static correlation can be accounted by inclusion of the quasi-degenerated configu-

rations in the MCSCF wave function [26].

|ΨMC〉 =
∑

I

cI |ΦI〉 (3.31)

The energy is then minimized with respect to not only the cI (as in the CI method) but

also but also to changes in the common set of orbitals φt which are used to construct

the ΦI . These orbitals are called ’active’ and the sub-space they define is called the

Active Space. In the MCSCF method then a full-CI calculation within the active space

is performed. Also, to partially account for excited configurations excluded from the

expansion , the coefficients defining the active orbitals are permitted to change. This

means that the optimised MCSCF active orbitals will differ from the original Hartree-

Fock occupied and virtual orbitals.

In the MCSCF method the selection of the configuration functions (CF) included is

different. In the MCSCF method [27], the spaces of the molecular orbitals are divided

into three sub-spaces (inactive, active, and external) according to the occupation num-

bers of electrons in the molecular orbitals. The orbitals in the inactive space are doubly

occupied in all the configurations and correspond to the core orbitals. The active space

consists of the orbitals which can take the occupation number among 0, 1, and 2. The

definition of the active space is essential in the MCSCF method. The orbitals in the

external space are empty in the MCSCF wave function. The multi-configurational char-

acter of the wave function due to these partially occupied molecular orbitals allows us

to recover a large part of the electronic correlation. Note that orbitals also not included

in the active space (inactive orbitals) are modified in the MCSCF method; this happens
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because inactive orbitals are defined as the eigen functions of the Fock operator, and

the Fock operator depends in turn on the occupied orbitals. This fact also guarantees

that all MCSCF orbitals, active and inactive, stay orthogonal between themselves.

If we disregard the change in the orbitals, a CASSCF calculation is equivalent to a regular

full CI calculation performed in the (generally small) basis set formed by the active

orbitals. If the orbital space is big enough MCSCF energies will thus be qualitatively

correct over the whole set of possible molecular geometries. On the other hand, as the

active space is necessarily small because of the computational cost, MCSCF energies

will not in general be quantitatively very accurate. This is usually expressed by saying

that MCSCF recovers the ’static’ part of the correlation energy, but is very inefficient

in treating the dynamical part.

As mentioned above, a MCSCF calculation involves optimising both the CI coefficients

CI and the active orbital coefficients. The energy depends linearly upon the CI but

highly nonlinearly upon the active orbital coefficients. The overall procedure is itera-

tive, each iteration consisting of the construction of the energy, gradient and hessian,

followed by solution of the linear Newton-Raphson equations. The Newton-Raphson

equations can be very large in dimension, particularly for a large CASSCF full CI ex-

pansion; therefore, usually, they have to be solved iteratively as well, using relaxation or

expansion vector techniques similar to the Davidson diagonalization algorithm. These it-

erations are usually referred to as microiterations to distinguish them from the enclosing

macroiterations in each of which a new expansion point is defined.

Finally, we would like to make a remark on the convergence pattern of the MCSCF

correlation energy with respect to basis set size. As we have discussed above the MCSCF

method is approximately equivalent to a FCI calculation performed in a chosen active

space. When the basis set is enlarged the orbitals defining the active space will change

but the size of the active space will always stay the same regardless of the basis set size.

As a consequence the MCSCF correlation energy is only very weakly dependent on basis

set size.
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3.9 Multi-reference configuration interaction

The multi-reference configuration interaction (MRCI) [28, 62] method is also a CI

method. Contrary to the single determinant expansion formula in Eq. (3.26), it uses

several determinants simultaneously to fill the space of single and double, and poten-

tially higher order excited determinants. The reference determinants can be those ob-

tained from a prior MCSCF calculation, or the linear combination thereof. The MCSCF

method is able to recover the static part of the correlation energy, but is very inefficient

in recovering the dynamical part. An interesting strategy to remedy this problem is to

perform a CI computation on top of a MCSCF one counting the level of excitations from

the MCSCF wave function. In general, the optimized MCSCF wave function is taken

as reference. For example, we can perform a multi reference configuration interaction

singles and doubles (MRCISD) calculation including single and double excitations from

all the MCSCF references into the virtuals. The MRCI method can thus account for the

interactions between the determinants with the single and double excitations from the

reference determinants.

The MRCI method can account for the interactions between the determinants corre-

sponding to the single and double excitations from a reference determinant which is

already an excited configuration with respect to the HF wave function. MRCI includes

hence configurations which from the point of view of single-reference CI are much more

than two times excited.

As the single reference CI methods, we write the MRCI wave function as a linear com-

bination of the CSFs ΦI taking the MCSCF function as reference.

Ψ =
∑

I

CIΦI +
∑

Sa

CS
a Φa

S +
∑

Pab

CP
abΦ

ab
P (3.32)

where I indicates the sum over the CSFs participating at the MCSCF calculations.

We call ”internal space” the set of orbitals which construct the reference configurations

and ”external space” the set of orbitals occupied by the single or double excitations

hereof. The orbitals in the external space are symbolized by a and b. The S and

P correspond to the single and double excitations from the reference configurations,

respectively. The main bottleneck of the MRCISD method is the fact that the size of
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the configurations expansion and the computational effort rapidly increases with the

number of reference configurations. This handicap becomes dramatic when studying

potential energy surfaces, where an reasonable number of configurations is needed to

describe the complete configuration space in a balanced way. Various approximations

have been proposed to reduce it. Practically, as a division of orbitals in the MCSCF

method, we can define the ”closed-shells” which are used to correlate electrons occupying

the internal space, and, the ”core” orbitals, which are always doubly occupied and do

not lead to an increase of electron correlation energy in a strict sense. This technique

can significantly reduce the size of calculations. We here refer to a scheme known as

internal contraction, which is implemented in the MOLPRO program.

In this scheme, whole classes of configurations are summed together with fixed coeffi-

cients (i.e. ”contracted”) and only the resulting sum is employed as a basis for the CI

expansion. Single and double excitations of these configurations are done in a connected

way. This reduces the number of free variational parameters and hence introduces an im-

portant simplification. In the internal contraction scheme the contraction coefficients are

determined from the expansion coefficients of the reference wave function. In the imple-

mentation of Werner and Knowles used in MOLPRO, [30], only configurations involving

two orbitals not belonging to the active space (so called doubly-external configurations)

are contracted as these are the most numerous in the calculations.

Internally contracted MRCI wave functions can be rewritten as follows [28, 30]

Ψ =
∑

I

CIΦI +
∑

Sa

CS
a Φa

S +
∑

D

∑

Sab

∑

p

Cab
DpΦ

ab
Dp (3.33)

where I indicates the sum over the CSFs. The configurations of the single excitations to

the external space are not contracted. If these configurations of the single excitations

were also internally contracted, the number of variational parameters would not depend

on the size of the reference space. The Hamiltonian matrix can be diagonalized by using

the popular procedure of Davidson, which relies upon the formation of residual vectors

that can then be used to generate an updated vector of CI expansion coefficients. Werner

and Knowles showed that the error introduced by the internal-contraction is only about

0.3 times the error of fully-uncontracted MRCISD to FCI and is hence negligible.
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An unfortunate feature of an MRCI calculation is that, just as in the single reference

CISD case, the energy is not an extensive function of the number of non-interacting

electrons as it should be. This undesirable feature of any truncated variational CI cal-

culation can to some extent be avoided in MRCI by error cancellation across a potential

energy surface; provided, for example, that dissociation asymptotes are computed as

super-molecules rather than by adding fragment energies, reasonable results can be ob-

tained for dissociation energies. It is also true that the size-consistency errors for MRCI

are usually smaller than for single-reference CISD, since MRCI already contains some of

the important quadruple configurations. However, the effects can never be completely

avoided.

3.10 Perturbative methods

Alternatively, correlation energy can be recovered by perturbation theory. There are per-

turbative methods which are size consistent by definition. The starting point for most

ab initio calculations of molecular energies is the Hartree-Fock (HF) approximation.

Therefore, a central problem of quantum chemistry is the construction of an extrapola-

tion from the HF energy to the true energy eigenvalue of the Schrödinger equation. A

particularly straightforward approach, at least in principle, is a perturbation theory pro-

posed by Møller and Plesset in which the HF wave function is taken as the zeroth-order

approximation for the eigen function. The theory can be formulated by partitioning the

Hamiltonian according to

Hz = H0 + (H −H0) z, (3.34)

where H0 is the sum of one-electron Fock operators, H is the Schrödinger Hamiltonian,

and z is a perturbation parameter. The energy is then obtained as a power series

E(z) = E0 +E1z+E2z
2 + · · · . Thus, in Møller-Plesset (MP) theory [40] the energy is a

function of z, in the complex z-plane, such that E(0) is equal to the sum of HF orbital

energies and E(1) is the extrapolation to the physical energy.

Traditionally, E(z) is calculated by partial summation, that is, the power series is trun-

cated at some given order and then evaluated at z = 1. Truncation at order n yields

the “MPn” approximation to the energy. Thus, E(z) is evaluated as a polynomial. The
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power series is an asymptotic series, which is a rigorously correct solution only in the

z → 0 limit. The true functional form of E is much more complicated than a polynomial.

3.10.1 Coupled cluster methods

We begin with the concept of the cluster function which may be used to include the

effects of electron correlation in the wave function. Using a formalism in which the

cluster functions are constructed by cluster operators acting on a reference determinant,

we justify the use of the “exponential ansatz” of coupled cluster theory.

Formally, the coupled-cluster method begins by postulating that the correlated many-

body wave function is given by [42, 67, 72]

| Ψ〉 = exp
(

T̂
)

| Ψ0〉 , (3.35)

where we define the correlation operator as

T̂ = T̂1 + T̂2 + T̂3 + · · · + T̂A . (3.36)

The correlation operators are defined in a second quantization scheme in terms of n-

particle n-hole (np-nh) excitation amplitudes as

T̂1 =
∑

i<εf ,a>εf

tai â
+
a âi , (3.37)

T̂2 =
∑

i,j<εf ;ab>εf

tab
ij â

+
a â

+
b âj âi , (3.38)

and higher order terms for T̂3 to T̂A. we use the notation that p, q, r, s refers to all

orbitals and i, j, k, l index sums the occupied and a, b, c, d index sums virtuals. The total

number of single-particle states in therefore is Ns = Np + Nh where Np refers to the

number of particle states, and Nh is the number of hole states. The creation â+
a and

annihilation âi operators create or remove an electron from a spin orbital.

Coupled-cluster theory may thus be hierarchically improved upon by increasing the

number of Ti operators one computes. We will call the theory in which only T1 and

T2 operators are present, CCSD, or coupled-clusters at the single and double excitation

level. CCSDT means that T3 is retained in the correlation operator, while CCSDTQ
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refers to keeping both T3 and T4 correlation operators. [75] In this uncoupled represen-

tation, the correlation amplitudes must obey the fermion-symmetry relations which for

the T2 correlation operators yield tab
ij = −tab

ji = −tbaij = tbaji . We will use the short-hand

notation t1 and t2 to represent the array of all 1p-1h and 2p-2h amplitude.

We compute the expectation value of the energy from

E = 〈Ψ0 | exp
(

−T̂
)

Ĥ exp
(

T̂
)

| Ψ0〉 . (3.39)

Because the energy is computed using projective, asymmetric techniques, an impor-

tant question concerns the physical reality of the coupled-cluster energy. Quantum

mechanics requires that physical observables should be expectation values of hermitian

operators. The coupled-cluster energy expression contains the non-Hermitian opera-

tor
[

exp(−T̂ )Ĥ exp(T̂ )
]

. However, if T̂ is not truncated, it can be shown that the

similarity-transformed operator exhibits an energy-eigenvalue spectrum that is identical

to the original hermitian operator, Ĥ, thus justifying its formal use. From a practical

point of view, the coupled-cluster energy tends to follow the expectation value result

even when T̂ is truncated.

The correlation energy is given by

Ecorr = Eexact − EHF =
∑

ia

fiat
a
i +

1

4

∑

aibj

〈ij || ab〉tab
ij +

1

2

∑

aibj

〈ij || ab〉tai t
b
j . (3.40)

For Hamiltonians having maximal two-body interaction terms, this equation is general

and is not restricted to the CCSD approximation since higher-order cluster operators

such as T̂3 and T̂4 cannot produce fully contracted terms with the Hamiltonian and

therefore contribute zero to the energy. Higher-order operators can contribute to the

energy indirectly through the equations used to determine these amplitudes. The three

terms in Eq.(3.40) are usually referred to as the T̂1, T̂2, and T̂ 2
1 contributions to the

correlation energy.

The equations for amplitudes are found by left projection of excited Slater determinants

so that

0 = 〈Ψa
i | exp

(

−T̂
)

Ĥ
(

T̂
)

| Ψ0〉 , (3.41)

0 = 〈Ψab
ij | exp

(

−T̂
)

Ĥ
(

T̂
)

| Ψ0〉 . (3.42)
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The Baker-Hausdorf relation may be used to rewrite the similarity transformation as

exp
(

−T̂
)

Ĥ
(

T̂
)

= HN +
[

Ĥ, T̂1

]

+
[

Ĥ, T̂2

]

+
1

2

[[

Ĥ, T̂1

]

, T̂1

]

+
1

2

[[

Ĥ, T̂2

]

, T̂2

]

+
[[

Ĥ, T̂1

]

, T̂2

]

+ · · · . (3.43)

The expansion terminates exactly at quadruply nested commutators when the Hamilto-

nian contains at most two-body terms, and at six nested commutators when three-body

terms are present. We stress that this termination is exact, thus allowing for a deriva-

tion of exact expressions for the t1 and t2 amplitudes. To derive these equations is

straightforward but tedious work[72].

In order to calculate expectation values of operators we may use the Hellmann-Feynman

theorem which states that if we perturb our Hamiltonian such that Ĥ ′ = Ĥ +λΩ̂ where

λ is a small quantity and Ω̂ is the operator (either bare or effective) of interest, then

the energy changes only by a small amount from its original value of E(λ = 0). As a

function of λ, the energy becomes E′ = E(λ = 0) + λdE/dλ, and the expectation value

of the operator is given by

〈Ω̂〉 =
dE(λ = 0)

dλ
. (3.44)

One deficiency of the conventional coupled cluster methods is that they apply only to

ground electronic states (or, more accurately, to the lowest-energy states of a given spin

and spatial symmetry). Alternatively to that, the equation-of-motion coupled cluster

(EOM-CC) method [33] has been devised such that higher-lying electronic states may be

studied. These methods have proven to provide reliable accuracy (on the order of 0.2 eV)

in the prediction of electronic excitation spectra for states which are well-described by

promotion of a single electron from the ground state. Perhaps the most important work

in excited-state coupled cluster theory in the next several years will be the development

of methods for treating “doubly excited” states and the improvement of the accuracy of

EOM-CC to better than 0.1 eV.

All coupled cluster methods depend implicitly upon a reference wave function (usually
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the single-configuration Hartree-Fock determinant). However, for cases where this refer-

ence fails dramatically, even the CCSD(T) method cannot be expected to provide reliable

results. Bond-breaking provides an excellent example of this behavior; as a σ bond is

separated, for instance, a single determinant fails to properly include both electronic

configurations [(σ)2 and (σ∗)2] needed to describe the dissociation process with even

qualitatively accuracy. In CuNO, the fragments can dissociate as open-shell singlet and

triplet. Here we expect to see the failure of CCSD(T) method far way from equilibrium

geometries and at dissociation unless a spin unrestricted method is used to calculate

the reference state. In our calculations, we use the CCSD(T) method implemented in

MOLPRO [52] where expressions give a perturbative correction for the effects of triple

excitations which is consistent to fifth order.

Since a complete potential energy surface is vital to research efforts in reaction dynamics,

for instance, much effort has been devoted to the construction of multi-reference cou-

pled cluster (MRCC) schemes based primarily on multi-configurational SCF (MCSCF)

reference wave functions. Of particular interest is the work by Piecuch, Adamowicz,

and co-workers, in which a MRCCSD wave function, for example, is obtained via se-

lected triple and quadruple excitations from a full CCSDTQ wave function constructed

from a single electronic configuration. This approach is similar to that used earlier in

multi-reference configuration interaction methods. By retaining a single-determinant

reference formalism, one avoids many of the difficulties of a “true” MCSCF-based ap-

proach and automated techniques for the construction of higher excitation levels (i.e.,

beyond quadruples) are promising.

The state selective MRCC by Kállay [76, 78] follows the idea mentioned above. We

use Kllay’s code as it is interfaced with MOLPRO to calculate CCSDT and also MRCC

calculations. This state selective MRCC procedure are closely related to the equation-

of-motion (EOM) or linear response CC theory. A complete reference space is assumed,

i.e., the active electrons are distributed in all possible ways among the active orbitals

and 0−, 1−, ...Ni-fold excitations from the resulting determinants are considered. One

of the reference determinants, practically the most dominant one is selected (|0〉). This

further divides the virtual and occupied orbital space into active and inactive part. The

active orbitals could be denoted by bold capital letters and bold lower case letters will

stand for inactive ones. Thus I, J, K,... indices label active holes;A, B, C are

active particles;i, j, k,... are inactive holes and a, b, c,... designate inactive virtual
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orbitals. Suppose that we have Nh active holes and Np active particles, then the maximal

excitation level in the active space is Na = minNh,Np. The reference space is spanned

by the 0−, 1−, ..., Na-fold excitations among active orbitals

|0〉 ,
∣

∣

∣
ΨA1

I1

〉

,
∣

∣

∣
ΨA1A2

I1I2

〉

, ...,
∣

∣

∣
ΨA1...ANa

I1...INa

〉

To account for Ni-fold and lower excitations from these functions, at most n = Ni +

Na-fold excitations which carry no more than Ni inactive particle or hole labels, are

included in the wave function. This consideration results in the following restricted

cluster operator:

T̂ =

Ni+Na
∑

k=1

T̂k (3.45)

with this excitation manifold corresponding to the configurations employed in a conven-

tional MRCI calculation provided that allowed excitations out of the symmetry forbidden

reference functions are also included in the excitation manifold with the cluster ampli-

tudes grouped according to the number of active/inactive labels.The main advantage

of the formalism is that it retains the simplicity and the size-extensive nature of the

single-reference CC methods.

Since coupled cluster theory is size consistent by construction, for properties such as dis-

sociation and fragmentation energies, coupled cluster theory used in conjunction with

large basis sets is often expected to provide “chemical accuracy,” i.e., ±1 kcal/mol. In

recent years, many researchers have asked what would be required to obtain “spectro-

scopic accuracy”, i.e., ±1 cm−1. The convergence of the coupled cluster (as well as

CI and perturbation theory) energies towards a “basis set limit” is much slower than

that possible with Hartree-Fock. That is, for a given level of electron correlation (e.g.,

CCSD), one must use much more complete basis sets (perhaps including high levels

of orbital angular momentum, s, p, d, f , etc.) relative to Hartree-Fock if additional

improvements to the basis are to make significant contributions to the computed energy.

3.11 Basis Sets

Historically,[34] the quantum calculations for molecules were performed as LCAO MO,

i.e. Linear Combination of Atomic Orbitals - Molecular Orbitals. This means that

molecular orbitals are formed as a linear combination of atomic orbitals:
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ψi =

n
∑

µ=1

cµiφµ

where ψi is the i-th molecular orbital, cµi are the coefficients of linear combination, φµ

is the µ-th atomic orbital, and n is the number of atomic orbitals.

Strictly speaking, atomic orbitals (AO) are solutions of the Hartree-Fock equations for

the atom, i.e. a wave functions for a single electron in the atom. Anything else is not

really an atomic orbital.

There is a lot of confusion in the terminology used. Later on, the term atomic orbital was

replaced by ”basis function” or ”contraction,” when appropriate. Early, the Slater type

orbitals (STO’s) were used as basis functions due to their similarity to atomic orbitals

of the hydrogen atom. They are described by the function depending on spherical

coordinates:

φi(ζ, n, l,m; r, θ, φ) = Nrn−1e−ζrYlm(θ, φ)

whereN is a normalization constant, ζ is called ”exponent”. The r, θ, and φ are spherical

coordinates, and Ylm is the angular momentum part (”shape” describing function).The

n, l, and m are quantum numbers: principal, angular momentum, and magnetic; re-

spectively.

3.11.1 Gaussian basis sets

Unfortunately, functions of this kind are not suitable for fast calculations of necessary

two-electron integrals. That is why, the Gaussian type orbitals (GTOs) were introduced.

One can approximate the shape of the STO function by summing up a number of GTOs

with different exponents and coefficients. Even if one uses 4 or 5 GTO’s to represent

STO, one will still calculate integrals much faster than if original STOs are used. The

GTO (called also cartesian gaussian) is expressed as:

g(α, l,m, n;x, y, z) = Ne−αr2

xlymzn



Solving the Many Body Schrödinger Equation 44

where N is a normalization constant, α is called ”exponent”. The x, y, and z are

cartesian coordinates. The l, m, and n are not quantum numbers but simply integral

exponents at cartesian coordinates, r2 = x2 + y2 + z2.

Calling gaussians GTOs is probably a misnomer, since they are not really orbitals.

They are simpler functions. In recent literature, they are frequently called gaussian

primitives. The main difference is that rn−1, the preexponential factor, is dropped, the

r in the exponential function is squared, and angular momentum part is a simple function

of cartesian coordinates. The absence of rn−1 factor restricts single gaussian primitive

to approximating only 1s, 2p, 3d, 4f ... orbitals. Examples of gaussian functions are

include:

1s = Ne−αr2

2pz = Ne−αr2

z

3dxx = Ne−αr2

x2

3dxy = Ne−αr2

xy

4fxyz = Ne−αr2

xyz

etc.

Sometimes, the so-called scale factor, f, is used to scale all exponents in the related

gaussians. In this case, the gaussian function is written as:

g(α, l,m, n, f ;x, y, z) = Ne−αf2r2

xlymzn

The sum of exponents at cartesian coordinates, L = l +m + n, is used analogously to

the angular momentum quantum number for atoms, to mark functions as s-type (L=0),

p-type (L=1), d-type (L=2), f-type (L=3), etc.

Gaussian primitives are usually obtained from quantum calculations on atoms (i.e.

Hartree-Fock or Hartree-Fock plus some correlated calculations, e.g. CI). Typically,

the exponents are varied until the lowest total energy of the atom is achieved. Basis
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sets for molecular calculations are therefore frequently augmented with other functions

which will be discussed later.

3.11.2 Contractions, diffuse and polarization functions

For efficient molecular calculations, the gaussian primitives have to be contracted, i.e.,

certain linear combinations of them will be used as basis functions. The coefficients

and exponents of Gaussian expansion which minimizes the energy of the hydrogen atom

were derived by Huzinaga in 1965. In this case, 4 primitives were contracted to 2 basis

functions. It is frequently denoted as (4s) → [2s] contraction (some use the (4s)/[2s]

notation). The coefficients in function φ2 are then fixed in subsequent molecular calcu-

lations.

Some basis sets are good for geometry and energies, some are aimed at properties (e.g.

polarizability), some are optimized only with Hartree-Fock in mind, and some are tai-

lored for correlated calculations. Finally, some are good for anions and other for cations

and neutral molecules. For some calculations, a good representation of the inner (core)

orbitals is necessary (e.g. for properties required to analyze the NMR spectrum), while

other require best possible representation of valence electrons.

There are two basic forms of contractions, namely ”segmented” and ”general”. The seg-

mented contractions are disjointed, i.e., given primitive appears only in one contraction.

The example given above (4s) → [2s] is a segmented contraction. Occasionally, one or

two primitives may appear in more than one contraction, but this is an exception to the

rule. The general contractions, on the contrary, allow each of the primitives to appear in

each basis function (contraction). The segmented contractions are far more popular and

will be described first. The reason for their popularity is not that they are better, but

simply, that the most popular ab initio packages do not implement efficient integral cal-

culations with general contractions. The computer code to perform integral calculations

with general contractions is much more complex than that for the segmented case.

Frequently, the core orbitals are long contractions consisting of many primitive gaussians

to represent well the ”cusp” of s type function at the position of the nucleus. The ”zeta”

terminology is often augmented with a number of polarization functions which will be
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described later. So, DZP means double-zeta plus polarization, TZP stands for triple-zeta

plus polarization, etc.

The original contractions derived from atomic Hartree-Fock calculations are frequently

augmented with other functions. The most popular are the polarization and diffuse

functions. The polarization functions are simply functions having higher values of L than

those present in occupied atomic orbitals for the corresponding atom. The exponents for

polarization functions cannot be derived from Hartree-Fock calculations for the atom,

since they are not populated.

The basis sets are also frequently augmented with the so-called diffuse functions. These

gaussians have very small exponents and decay slowly with distance from the nucleus.

Diffuse gaussians are usually of s and p type, however sometimes diffuse polarization

functions are also used. Diffuse functions are necessary for correct description of anions

and weak bonds (e.g. hydrogen bonds) and are frequently used for calculations of prop-

erties (e.g. dipole moments, polarizabilities, etc.). In our ab initio calculations we use

the basis sets from Dunning and coworkers and those from Kirk A Peterson [37, 51].

3.11.3 Effective core potentials

A significant reduction of the computational effort in quantum chemical investigations

can be achieved by restriction of the actual calculations to the valence electron system

and the implicit inclusion of the influence of the chemically inert atomic cores by means

of suitable parametrized effective (core) potentials. This approach is in line with the

chemists view that mainly the valence electrons of an element determine its chemical

behavior, cf., e.g., the periodic table of elements. From a quantum mechanical point of

view the partitioning of a many-electron system into subsystems is not possible, since

electrons as elementary particles are indistinguishable.

The development of Effective Core Potential (ECP) [32] approaches allow treatment of

inner shell electrons as if they were some averaged potential rather than actual parti-

cles. It is reasonable to replace the core electrons by effective potentials including all

informations about them and to treat explicitly the valence electrons. This procedure

has advantages specially for atoms owning the large atomic numbers. The size of cal-

culations is proportional to n4 (n is the number of electrons included in the system),
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thus inclusion of the inactive core electrons in pseudopotentials allows us to reduce the

actual cost of calculations without loss of the physical and chemical informations.

ECP’s are not orbitals but modifications to a hamiltonian, and as such are very efficient

computationally. The relativistic effects are very important in describing heavier atoms,

principally in the inner orbitals. Another advantage of pseudopotentials is the inclu-

sion of relativistic effects of heavy atoms, in the non-relativistic calculations of valence

electrons. All-electron relativistic computations are very expensive. ECP’s simplify cal-

culations and at the same time make them more accurate with popular non-relativistic

ab initio packages.

In effective core potential theory an effective model Hamiltonian approximation for Hnp

is searched, which only acts on the states formed by the valence electrons

Hv =

nv
∑

i

hv(i) +

gv
∑

i<j

hv(i, j) + Vcc + Vccp (3.46)

The subscripts c and v denote core and valence, respectively hv and gv stand for effective

one- and two-electron operators, Vcc represents the repulsion between all cores and nuclei

of the system, and Vccp is a core polarization potential (CPP). nv denotes the number

of valence electrons treated explicitly in the calculations.

nv = n−

N
∑

λ

(Zλ −Qλ) (3.47)

Here Qλ denotes the charge of the core λ. Several choices exist for the formulation of

such a valence-only model Hamiltonian, i.e., four-, two- or one-component approaches

and explicit or implicit treatment of relativity. Since a reasonable compromise between

accuracy and efficiency is desired, the standard effective core potential schemes use

the implicit treatment of relativity (i.e., a nonrelativistic kinetic energy operator and

inclusion of relativistic effects via parametrization of the effective core potential) and

a one-component (scalar-quasirelativistic) or a two-component (quasirelativistic) treat-

ment.

In this study the method of pseudopotentials we use have the electrons in the inner

shells represented by the energy-consistent pseudopotentials VPP and the Hamiltonian
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of the electrons in valence is given in atomic units by:

Hv = −
∑

i

∆i

2
+

1

2

∑

i,i′

1

ri,i′
+
∑

i

Vpp(i) (3.48)

where the indices i and i denote the valence electrons.

In this study, we employ the pseudopotentials (ECP10MDF) for Cu, recently reported by

Figgen et al. The term means the simultaneously adjusted two-component relativistic

pseudopotentials (i.e., scalar-relativistic and spin-orbit), based on the numerical all-

electron four-component multi-configuration Dirac-Hartree-Fock (MCDHF) calculation.

For Cu, using the ECP10MDF, the 1s, 2s, and 2p orbitals are replaced by pseudopoten-

tials and the outer core 3 spd shells, in addition to 4 sp shells are treated explicitly for

the valence.

3.11.4 Basis set superposition error

The basis set superposition error (BSSE) is a particular aspect of basis set incomplete-

ness. As an example, consider a model system composed by two non-interacting atoms

A and B and suppose that two atom-centred basis sets are defined for the two atoms. A

manifestation of the BSSE is that the energy of the composite non-interacting system

A-B is not constant as a function of the distance of the atoms. This happens because

when the atoms are infinitely far away each of them can make use only of its own basis

functions, while when they approach atom A can also use the basis functions coming

from atom B, and vice versa. This leads to an artificial lowering of the energy when the

atoms approach.

The error arises from the inconsistent treatment of the monomers. They are able to

access additional functions from the other monomer at shorter intermolecular distances,

but at large intermolecular distances, the other monomer is too far away (the overlap

integrals are too small) for its functions to provide stabilization. This inconsistent

treatment of the basis set for each monomer as the intermolecular distance is varied is

the source of the basis set superposition error. In the limit of a complete basis set,the

BSSE would be reduced to zero.
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The Boys and Bernardi counterpoise correction (CP) [35]is a prescription for removing

BSSE. The typical, uncorrected interaction energy between monomers A and B would

be computed as:

∆Eint(AB) =

AB
∑

AB

(AB) −

A
∑

A

(A) −

B
∑

B

(B) (3.49)

where the superscripts denote the basis used, the subscripts denote the geometry, and

the symbol in parentheses denotes the chemical system considered. One could obtain

the energy of the dissociation limit by a computation of the A+B super-molecule at

some very large intermolecular separation (where the distance between A and B would

be so large that the basis functions of one monomer would not overlap with those of

the other); this might be necessary for theoretical methods which are not size-extensive,

such as truncated CI. We can attempt to correct Eq. (3.49) by estimating the amount

by which monomer A is artificially stabilized by the extra basis functions from monomer

B (and vice versa).

The energy of monomer A in the dimer basis must necessarily be lower (more stable)

than the energy of monomer A in the monomer basis,
∑A

BSSE(A) =
∑AB

A (A)−
∑A

A(A)0

and similarly for monomer B
∑B

BSSE(B) =
∑AB

B (B) −
∑B

B(B)0. If we subtract this

error from the interaction energy defined in Eq. (3.49), the terms
∑A

A(A) and
∑B

B(B)

cancel, giving

∆ECP
int (AB) =

AB
∑

AB

(AB) −
AB
∑

A

(A) −
AB
∑

B

(B) (3.50)

Practically, to evaluate the energy of monomer A in the dimer basis, one places all the

basis functions of monomer B on the atomic centers of monomer B while neglecting

the electrons and the nuclear charges of monomer B. The atoms of B are referred to as

”ghost atoms” in such a computation.



Chapter 4

Ab initio calculations of the

lowest electronic states in the

CuNO system

4.1 Introduction

Computational studies to characterize the NO binding mode in CuNO have been carried

out in the past. But to get an insight into homogeneous catalysis and the chemical reac-

tion dynamics, accurate prediction of the nature of the bond, as well as of the global po-

tential energy surfaces (PES) is necessary in the gas phase [10, 11]. Metal mono-nitrosyls

are difficult to study and only limited reports are available. For CuNO, the theoretical

studies have not yet been able to unambiguously assign the ground state. Coupled clus-

ter calculations with single and double excitations (CCSD) give a triplet ground state

of CuNO, whereas perturbative inclusion of triple excitations (CCSD(T)) gives a singlet

ground state of the A′ symmetry species [12], with an end-on bent structure and an es-

timated dissociation energy of 18.8 kcal/mol (≈ 30 mEh or 6582 hc cm−1 per molecule;

Eh is the hartree, h is the Planck constant and c is the speed of light in vacuum). Also

in [12], the lowest triplet state, of the A′′ symmetry species, is predicted to contain two

stable isomers with CuON connectivity and facile isomerization. The CuNO+ cation was

treated at the DFT and CCSD(T) level of theory in [13], where it was found that also

the cationic system has an end-on bent minimum energy structure of the 2A′ type, and

50
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a dissociation energy into Cu+ and NO of 22 kcal/mol (at the CCSD(T) level; 30 kcal/-

mol with DFT), while configuration interaction calculations yield a linear structure [14].

To date, the enthalpies for both reactions CuNO = Cu + NO and CuNO+ = Cu+ + NO

are still unknown experimentally.

In calculations using the density functional theory (DFT), pure density functionals as-

sign a singlet ground state [7, 15], while hybrid functionals favor a triplet state as the

lowest electronic energy state [7, 16] (see also the review [17]). The difficulty in making

a clear assignment can be related to the small energy gap between the triplet and singlet

states. However, spin-orbit coupling is reported to be weak [16]. The combined theo-

retical and experimental investigation of the infrared spectrum of CuNO in the matrix

isolation studies [7] have also not enable the unambiguous assignment of the ground

state symmetry species.

It is important to note that the aforementioned theoretical methods are essentially based

on a single reference configuration, while it is not at all clear, whether the CuNO molecule

has a single reference wave function at all. Since both Cu and NO are radical species, the

wave function will eventually have a multi-reference character latest upon dissociation

of CuNO. Clarifying this question is essential, last but not least, for the determination

of global potential energy surfaces.

In the present study, a systematic investigation of calculation settings and technical as-

pects related to an accurate prediction of the electronic wave function for the ground and

excited states is carried out at the multi-configurational self-consistent-field (MCSCF)

and multi-reference configuration interaction (MRCI) levels of theory, albeit restricted

to single and double excitations. For the analysis, we focus first on three linear struc-

tures of the CuNO system, so as to enable direct comparison and confirm convergence of

C2v and Cs energy values. This investigation aims at establishing adequate settings of

MRCI calculations that give energy values to within 1 mEh (∼ 220 hc cm−1 ) accuracy,

which is sufficient to enable the calculation of a physically sound, global potential energy

surface for the electronic ground state of the CuNO system.

Calculations at bent structures finally allow us to elucidate the symmetry species of

the ground state and binding energies. We compare results from MRCI calculations

with new coupled cluster calculations at the CCSD(T) level, as well as with coupled

cluster calculations including triple excitations explicitly (CCSDT), with the aim of
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clarifying the accuracy of the predicted dissociation energy and equilibrium structure of

this system. We discuss to what extent the treatment of electronic correlation can be

improved also in view of a potential multi-reference character of the wave function. The

dissociation energy of CuNO is defined as the energy difference between the dissociated

Cu and NO fragments, where the nitrogen and oxygen atoms are separated by 115 pm

(see [18]), and the CuNO complex at its equilibrium geometry, the energy reference state

is that of dissociated Cu + NO. Thus, for any bound structure of CuNO, the energy has

a negative value.

4.2 Methods

The calculations on the ground and excited electronic states were performed using the

MCSCF method followed by the internally contracted MRCI method of Werner and

Knowles [27, 28, 29, 30] as implemented in the MOLPRO [48] suite of programs. The

orbitals used to set up the CI expansion were obtained by state averaged MCSCF calcu-

lations using Cs and C2v symmetry for the linear structures, with equal weights for all

the participating states. Here the number of roots to be state averaged at the MCSCF

calculations were varied. Spin-orbit energies were calculated as eigenvalues of the ma-

trix representation of the full Breit-Pauli operator in the set of singlet and triplet MRCI

states.

In the calculations, we use the augmented correlation-consistent polarized n-tuple ζ-

basis sets (“aug-cc-pVnZ”, but abbreviated here “AVnZ”, where n=D(2),T(3),Q(4),5)

of Dunning and co-workers [49, 50], for N and O, and of Balabanov and Peterson [51] for

convergent basis sets for transition metals. We found, however, that the AVTZ basis is

largely sufficient for the purposes and aims of this work. The use of a quintuple-ζ basis

was not possible within the large multiple states calculations carried out at the MRCI

level. Specifically, the AVTZ basis contains for both nitrogen and oxygen a regular set

of 10 s, 5 p, 2 d and one f primitive functions, which were contracted to 4 s, 3 p, 2 d and

one f function; for Cu 20 s, 16 p, 8 d, 2 f and one g primitive functions were contracted to

7 s, 6 p, 4 d, 2 f and one g function; for each angular momentum function present in the

regular set one additional diffuse function was added. We also considered a reduced basis

set obtained from the AVTZ basis by omission of the g function of Cu and f functions

in N and O. This basis set, which we call RVTZ in this paper, yields relative energies
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that agree with relative energies obtained with the AVTZ basis to within the expected

accuracy of 1 mEh. We should point out here that technical problems of the calculations

are primarily related to the choice of the active space and the number of roots, and less

with the size of the basis. Finally, we also used the Bauschlicher ANO (BANO) basis

implemented in MOLPRO, which is comparable to the basis set from [13]. The BANO

basis has more primitive f and g functions for Cu than the AVTZ basis.

For the calculations of the ground state, we also used the coupled cluster method. We

report results at the CCSD(T) as well as at CCSDT level of theory (coupled cluster with

single and double excitation and perturbative triple, respectively, with full triple exci-

tation). These results are obtained with the MOLPRO program suite, in particular the

methods denoted CCSD-T and RCCSD-T in [52] were used. The CCSDT calculations

used the currently available extension of the MOLPRO program to include the MRCC

code by M. Kállay [53].

In order to estimate relativistic corrections, we performed CCSD(T) calculations with

the Douglas-Kroll-Hess hamiltonian [54, 55] in the vicinity of the equilibrium, as well as

for the isolated fragments Cu and NO. In this case, the AVTZ-DK basis was used for

copper; for nitrogen and oxygen, the corresponding VTZ-DK bases were used, to which

the diffuse s and p functions from the augmented non-contracted bases were added,

i.e. s (with the exponent 0.0576) and p (0.0491) for nitrogen, as well as s (0.07376)

and p (0.05974) for oxygen. All contracted DK bases were used as implemented in the

2009.1 version of MOLPRO.

4.3 Results

The ground state of the copper atom is 2S ([Ar]s1d10) and the first excited state is

2D ([Ar]s2d9). NO has a Π ground state with a calculated bond length of 115 pm at

the AVTZ basis and the MRCI level of theory, which agrees with the experimentally

estimated value (115.1 pm [18]).

A transition metal atom like Cu can bind to NO in different ways [7, 12, and references

cited therein]. As NO is an open shell with a singly occupied π∗ orbital in the ground

state configuration, and the Cu atom has a single electron in a 4s orbital in its lowest

state, the Cu-NO interaction can be expected to result in a bent ground state. The
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three dimensional configuration space may be spanned by the coordinates rNO ,rCu and

θCu shown in Figure 4.1, where rCu is the distance of the copper atom from the point

at the center of the NO distance.

Cu

N O

θCu

r NO

r Cu

z

x

Figure 4.1: General coordinates for the {Cu, N, O} system, supposed in the xz-plane;
rCu is the distance of the copper atom from the point bisecting rNO ; 0 ≤ rNO < ∞,

0 ≤ rCu <∞, 0◦ ≤ θCu ≤ 180◦.

However, because we aim at establishing appropriate CAS spaces and orbitals, we con-

sider first to investigate the linear structures LS1, LS2 and LS3. Specifically, the coordi-

nates are rCu = 257 pm for both LS1 and LS2, while rCu = 0 pm for LS3; rNO =115 pm

for both LS1 and LS2, and rNO = 360 pm for LS3; θCu = 180◦ for LS1 and 0◦ for LS2.

In LS1 we understand a Cu interaction with NO via the nitrogen atom, in LS2 as a Cu

interaction with NO essentially through the oxygen atom, while in LS3, the interaction

is shared among both N and O atoms Figure 4.2.

LS1 LS2 LS3

CuO N O CuN OCuN

Figure 4.2: Three representative linear arrangements of the system composed of N,
O and Cu.

Atomic distances defining specific structures used in the calculations of Table 4.2 are:

d(NO)/pm d(CuN)/pm d(CuO)/pm

LS1 115.0 199.5 314.5
LS2 115.0 314.5 199.5
LS3 360.0 180.0 180.0

Table 4.1: The three representative linear structures LS1, LS2 and LS3
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4.3.1 MCSCF calculations

Table 4.2 shows the singlet MCSCF energies of the linear structures LS1, LS2 and LS3

of the neutral {N,O,Cu} system. All results are obtained from state averaged MCSCF

calculations with the AVTZ basis and a (18, 12) CAS which includes the d electrons

from Cu in the active space. More details about the CAS will be given below. For a

given structure, the MCSCF energy obtained at C2v and Cs symmetry are compared.

In the table, under C2v, the symbol 2442 means that 12 roots are calculated (2× 1A1,4×

1B1, 4 × 1B2, 2 × 1A2), and under Cs the corresponding (6 × 1A′, 6 × 1A′′) are also

given. Calculations are considered converged if the energy of the C2v and Cs structure

are within 1 mEh accuracy. Also the Π state degeneracy for the B1, and B2 representa-

tions is verified for physically valid convergence.

LS1 LS2 LS3
C2v Cs C2v Cs C2v Cs

roots 2442 66 2442 66 2442 66
1A1

1A′ -258.9 -258.9 -288.2 -288.3 -247.7 -247.7
-241.5 -241.4 -279.6 -279.6 -222.6 -222.7

1B1 -265.1 -265.1 -290.0 -290.0 -233.5 -233.5
-242.2 -242.3 -280.4 -280.4 -192.8 -192.8
-241.7 -241.7 -280.2 -280.2 -186.4 -186.4
-226.5 -226.5 -214.5 -214.5 -183.2 -183.2

1B2
1A′′ -265.1 -265.1 -290.0 -290.0 -233.5 -233.5

-242.2 -242.3 -280.4 -280.4 -192.8 -192.8
-241.7 -241.7 -280.2 -280.2 -186.4 -186.4
-226.5 -226.5 -214.5 -214.5 -183.3 -183.3

1A2 -241.4 -241.5 -279.6 -279.6 -222.7 -222.7
-241.2 -241.2 -279.4 -279.4 -222.0 -222.0

Table 4.2: Singlet MCSCF energies E of the linear structures LS1, LS2 and LS3. All
results using the AVTZ basis and a (18, 12) CAS. Values reported are −(1768 Eh +

E)/mEh .

4.3.1.1 MCSCF pitfalls

In this study, we carefully chose the number of states computed in each symmetry to

overcome convergence failures at the MCSCF level. Test calculations with only the

lowest roots gives bad convergence and Π degeneracy in Cs is broken, the energy values

differ by 100 mEh between Cs and C2v. Some of these are shown in Table 4.3
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It is necessary to calculate higher roots at the MCSCF level. The choice of the number of

roots calculated per irreducible representation has a dramatic effect in the convergence

of the ab initio calculation. An unbalanced number of roots leads to broken symmetries

as can be clearly seen from the table. For instance, when 2 × 1A1, 2 × 1B1, 2 × 1B2

roots are considered in C2v, energies differ significantly from those obtained with 4× 1A′,

2 × 1A′′ roots under Cs for the LS3 structure.

C2v Cs C2v Cs C2v C2v Cs C2v Cs

LS1 1110 21 1111 22 2220 2211 42 2222 44
1A1 -302 -220 -251 -254 -302 -303 -302 -303 -303

- - - - -287 -286 -287 -287 -287
1B1 -302 -254 -279 -272 -300 -297 -300 -300 -300

- - - - -288 -288 -288 -287 -287
1B2 -302 -254 -279 -274 -300 -303 -300 -300 -300

- - - - -288 - -288 -287 -287
1A2 - - -269 -238 - -290 - -287 -287

- - - - - - - -287 -287
LS2
1A1 -301 -299 -200 - -301 -301 -301 -301 -301

- - - -295 -293 -293 -294 -294 -294
1B1 -305 -296 -219 -303 -304 -301 -304 -303 -303

- - - - -294 -295 -293 -293 -293
1B2 -306 -297 -219 -303 -304 -306 -304 -303 -303

- - - - -294 - - -293 -293
1A2 - - -212 -295 - -296 -294 -294 -294

- - - - - - - -293 -293
LS3
1A1 -246 -246 ERR -247 -247 -247 ERR -247 -245

- - - - -222 -223 - -223 -221
1B1 -236 -236 - -236 -234 -235 - -234 -233

- - - - -195 -193 - -195 -194
1B2 -236 -236 - -235 -234 -235 - -234 -232

- - - - -195 - - -195 -194
1A2 - - - -224 - -223 - -223 -221

- - - - - - - -222 -220

Table 4.3: Singlet MCSCF energies E of the linear structures LS1, LS2 and LS3. All
results using the AVTZ basis and a (18, 12) CAS. Values reported are −(1768 Eh +

E)/mEh .

Also, severe root-flipping problems occur when we fail to include all states of an elec-

tronic multiplet in the MCSCF calculations, leading to erratic prediction of the order of

the states by the variational algorithm because states with higher energy may alternate
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during calculation with states of slightly lower energy, leading to slow or failing conver-

gence. ( ERR shown for LS3 in Table 4.3 So it is always prudent to include states in a

balanced way in order to minimize errors due to root-flipping between close lying states.

A calculation in Cs corresponding to 6 × 1A′ and 6 × 1A′′ roots is very physical and

comes out naturally from the symmetries of asymptotic states of CuNO. This can be

easily understood from the multiplication rules of representations. The six states of Cu

corresponding to 2S and 2D split into 3 × 2A1 , 1 × 2B1, 1 × 2B2, 1 × 2A2; NO has a

Π ground state and splits into 1× 2B1, 1× 2B2 under C2v. Therefore at the Cu + NO

asymptote we would obtain 2× 1A1 , 4× 1B1, 4× 1B2, 2× 1A2 under C2v or 6× 1A′,

6× 1A′′ under Cs, and similarly for the corresponding triplet states. The energies agree

within our accuracy criteria when we follow this as shown in Table 4.2, rather than just

opting to calculate an increasing number of roots. However, we should point out that

this method of checking the correct assymptotic states is possible as this is a triatomic

system, and will be increasingly difficult with the system size.

After getting the number of roots needed correct if we include 3d electrons of Cu in the

active space, in the next section, we give the details of optimising the active space in

the MCSCF.

4.3.2 Active Space

The choice of the active space was systematically increased for clean convergence. The

valence complete active space is composed of 22 electrons in 14 orbitals, a (22, 14) CAS

in short notation, with occupation scheme 19 × A′ + 6 × A′′ in Cs or 14 × A1 + 5 ×

B1 + 5 × B2 + 1 × A2 in C2v. The nature of these orbitals is reproduced in Table 4.4,

where the energy ordered natural orbitals obtained from the state averaged MCSCF

calculations are given at the dissociation asymptote Cu + NO. The symbols refer to the

most important atomic orbitals participating at the construction of the given orbital.

These orbitals maintain a high degree of localization on the individual fragments also

at close distances between them. In the table we indicate in bold face characters the

major admixtures from frontier orbitals that occur at a bent structure (BS) of the CuNO

molecule, which will be discussed below.
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1A′ 1A′′

closed 1.1 Cu 1s 1.2 Cu 2py

2.1 Cu 2s 2.2 Cu 3py

3.1 Cu 2px

4.1 Cu 2pz

5.1 O 1s
6.1 N 1s
7.1 Cu 3s
8.1 Cu 3pz

9.1 Cu 3px

active 10.1 NO σ 3.2 NO πy

11.1 NO σ 4.2 Cu dxy

12.1 NO σ∗ 5.2 Cu dyz

13.1 NO πx 6.2 NO π∗y
14.1 Cu dz2

15.1 Cu dx2
−y2

16.1 Cu dxz

17.1 (NO π∗x+) Cu 4s
18.1 (Cu 4s -) NO π∗x

virtual 19.1 Cu 4p

Table 4.4: MCSCF-orbitals at the asymptote of CuNO

Energy ordered MCSCF orbitals in Cs symmetry for CuNO at rCu = 450 pm. The z axis
is chosen as the NO binding axis and the molecule plane is the xz-plane (see Figure 4.1).
In the MRCI calculations these are natural orbitals and attributions correspond to the
leading contributions from fragment orbitals, which vary little when fragments approach
(bold face characters indicate the most important admixtures occurring at the BS struc-
ture - see also text and Table 4.5). In the coupled cluster calculations, orbitals are from
Hartree-Fock calculations, which are delocalized on both fragments, and the attribution
does not hold.

In the MCSCF calculations we found that, on top of considering all d orbitals, we also

needed to include all d electrons in the active space in order to obtain physically sound

results. Orbital rotations within the set of closed and active orbitals were observed at

several instances.

In the (18, 12) CAS used in Table 4.2 we close orbitals 10.1 and 11.1, where we essentially

neglect the correlation of electrons pertaining to the NO moiety.

4.3.2.1 Dissociation of CuNO

The dissociation of CuNO along θCu = 180◦ and θCu = 0◦ would result in Cu + NO. We

remember that at the asymptote, the MCSCF energies obtained should be exactly the

same,(within our accuracy limits of 1 mEh ) both θCu angles. This is obvious as Cu is
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now far away from the NO moiety and the absolute energy does not depend anymore on

the angle. Obtaining the correct asymptote along a θCu ray of dissociation is a physical

and stringent test of our choice of roots and depends importantly on the active space

used in the MCSCF calculations. In Figure 4.3 we show the dissociation of CuNO singlet

using the (18, 12) CAS along the linear rays, starting from the MCSCF wave function

at the LS1 geometry and dissociating outward along θCu = 180◦ and from MCSCF at

LS2 and dissociating outward along θCu = 0◦. Here a state averaged total of 12 roots

(2 × A1 + 4 × B1 + 4 × B2 + 2 × A2) in C2v are used. Only A′ symmetry (= A1 ⊕ B1)

are shown here.

a b

Figure 4.3: (18, 12) CAS -potential energy functions V (rCu) for the lowest linear
singlet states of A′ symmetry (= A1 ⊕ B1) at rNO = 115 pm, θCu = 180◦ (panel (a),
Cu-N-O configuration) and θCu = 0◦ (panel (b), N-O-Cu configuration). Lines are
cubic spline interpolations and give MCSCF electronic energies E as numerical function

1768+E/Eh of the copper distance rCu .

This graph clearly illustrates many things that can and will go wrong in a multi-reference

calculation. Even obtaining exactly same energies at C2v and Cs for LS1 and LS2

structures, the asymptotes obtained can be widely different.

We can clearly see the artificial, unphysical behaviour of LS1 like PES. That is of course

a problem. But even more troubling is the energy mismatch of 13 mEh at the asymptote

between the θCu = 180◦ and θCu = 0◦. This is a clear indication that in the MCSCF

calculations at least the asymptote is not converged. Some of these issues can be resolved

to an extent by increasing the p-space configurations used in MCSCF calculations, but

this does not solve everything. On careful study of orbitals at the MCSCF level, we find

that, at the asymptote, the highest active 1A′ orbital 19.1 corresponding to Cs turns out
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to be a 4p of copper instead of the expected NO σ∗ orbital.(c.f Table 4.4). This leads to

an unphysical lowering of energies in the state averaged calculations. This problem is not

possible to solve easily. We can do it point by point carefully with different strategies,

but that is not optimum for finding a global PES. A general solution is proposed in the

following section.

We mention here that problems like this do not go away with increasing the basis set

used in the calculations. In fact AVTZ is a very good basis for our calculations, we

even show later it is possible to get good results even with a reduced basis. Errors come

purely from the active space used in the calculations.

It should also be pointed out that these problems could not be solved by performing a

MRCI calculation on top of the MCSCF states.

We also see that the states at the asymptote are inverted with ECu(2S) > ECu(
2D)

which is at variance to known spectroscopic states of Cu atom. We come back to it

later.

4.3.2.2 MCSCF PES at Linearity

The (22, 13) complete active space thus consists of 13 orbitals, 6× 1A1, 3× 1B1, 3× 1B2,

1 × 1A2 with 22 electrons and gives rise to 645, 581, 581, and 559 configuration state

functions for 1A1,
1B1,

1B2 and 1A2, respectively. In (22, 13) CAS, we have removed the

orbital 19.1 from the active space.(it is marked as virtual in Table 4.4) It is possible, with

some additional effort, to have orbital 19.1 converged to be the NO σ∗ orbital within the

sensibly larger (22, 14) CAS. However, this calculation is difficult and expensive, while

the effect on the energies is negligible compared to a (22, 13) CAS calculation, where

orbital 19.1 has been omitted.

Figure 4.4 gives the singlet MCSCF states for the dissociation into Cu and NO where

θCu = 180◦ and θCu = 0◦. Here we use a (22, 13) CAS and the AVTZ basis.

We can clearly see the marked difference in this graph compared to Figure 4.3. The

asymptote at θCu = 180◦ and θCu = 0◦ are identical as expected. This shows that great

care must be taken during the calculation. Also at geometries where Cu is close to NO,

one has to take care to find the right MCSCF orbitals.
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(a) (b)

Figure 4.4: (22, 13) CAS - potential energy functions V (rCu) for the lowest linear
singlet states of A′ symmetry (= A1 ⊕ B1) at rNO = 115 pm, θCu = 180◦ (panel (a),
Cu-N-O configuration) and θCu = 0◦ (panel (b), N-O-Cu configuration). Lines are
cubic spline interpolations and give MCSCF electronic energies E as numerical function

1768+E/Eh of the copper distance rCu .
Legend:

� A1

⋄ B1

We find that using converged MCSCF orbitals from the asymptote as a starting point

for calculations at other geometries gives reliable results. However, the MCSCF cal-

culations provide 2S as the excited state and a degenerate 2D as the ground state for

the Cu product with an energy difference of more than 90 mEh (∼ 19700 hc cm−1 ).

Experimentally the 2D level lies above the 2S level by about 11200 cm−1 [58]. This

unphysical inversion of the states at the MCSCF level of calculation is also obtained for

the Cu atom alone if we include the 3d orbitals in the active space[63]. This problem

can only be solved at the MRCI level of calculations using natural orbitals following

from the MCSCF calculation, as discussed in the following.

4.3.3 MRCI calculations

In the remainder we report MRCI relative energies calculated with respect to energies

of the following reference structure at the asymptote: rNO = 115 pm and rCu = 450 pm

(θCu = 130◦, the potential becomes roughly an invariant of the angle here).

4.3.3.1 Linear structures

In order to be able to carry out the MRCI calculations in an efficient way, we froze the

closed orbitals used in the preceding MCSCF calculations with the MOLPRO “core”
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card, i.e. we froze 22 electrons in 11 core orbitals; singly and doubly excited configu-

rations were included in the MRCI from 13 active orbitals, thereby correlating 22 elec-

trons, i.e. in a (22, 13) CAS. The total number of contracted configurations is 7690805

in Cs symmetry, per irreducible representation, and corresponds to about 422241365

non-contracted configurations in MRCI. The next contribution to the correlation energy

may result from correlating the Cu (3)p shell which contains six additional electrons.

It was not possible to correlate this shell in the MRCI calculation as it demands much

higher computational effort. We checked for the effect of including orbital 19.1 within a

(22, 14) CAS and found it to be negligible also at the MRCI level.

Figure 4.5 shows the singlet and triplet A1 and B1 MRCI states for the dissociation into

Cu + NO at θCu = 180◦ and θCu = 0◦ ((22, 13) CAS, AVTZ basis).

(a) (b)

Figure 4.5: MRCI potential energy functions V (rCu) for the lowest singlet and triplet
states of A′ symmetry and θCu = 0◦ (panel (b)). Configurations are as in Figure 4.4,
but here lines, which are cubic spline interpolations, give wave numbers of relative
electronic energies E − Eref , where Eref = E(rCu → ∞), as functions of the copper
distance rCu . The MRCI energies were obtained from a (22, 13) CAS and 12 state
averaged MCSCF configuration states with the AVTZ basis. The multi-reference space
includes 2 A1 and 4 B1 roots as explained in the text. For both the singlet and triplet
symmetries, the lowest A′′ state, which is not shown in the figure, coincides with the

lowest A′ state to within the accuracy of the present work (1mEh ).
Legend:

� singlet A1

⋄ singlet B1

× triplet A1

∗ triplet B1

Here also, for both θCu = 180◦ and θCu = 0◦, we obtain the same asymptotes. More

importantly, the MRCI calculations have flipped the states into the correct order and

provide a non degenerate 1A′ component as the ground state and a five fold degenerate

1A′ component of the excited state with an energy difference of over 6500 hc cm−1 , at
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the asymptote. This energy difference is still about half the experimental value of the

excitation energy E(2D) −E(2S) in copper [58].

It is important to note that, technically, all reference configurations used to define the

lowest MCSCF states of each individual spatial symmetry species, that is 2 × A1 and

4×B1 in Figure 4.4, are needed to correctly describe the CI vectors of the states shown

in Figure 4.5. Also, asking for a single root in MRCI calculations, fails as there is a root

flipping from the MCSCF for example at the asymptote, where the ECu
2S is the sixth

and highest root. And this changes at different geometries, thereby forcing us to use

all six MCSCF roots as reference for the MRCI in each symmetry species, A′ and A′′ .

Even after correctly identifying roots, we found significant energy differences if we use

a single root MRCI calculation or if we use the more accurate 6 root calculations.

The potential energy surface is still repulsive at the linear structures. Also, the 3A′

MRCI states are slightly lower in energy compared to the singlet states. The lowest

singlet and triplet states have degenerate B1 and B2 branches and compose a Π level.

Spin-orbit coupling among these states might thus be significant, which will be addressed

below.

We also considered to use a (18, 11) CAS in which we also remove the 19.1 orbital from

the active space compared to the (18, 12) CAS. This gave results which are comparable

in accuracy to our (22, 13) CAS. In Table 4.5 we compare MRCI energies obtained at the

selected linear geometries with the (22, 13) and (18, 11) CAS, as well as the AVTZ and

RVTZ bases. In addition to results at linear structures, Table 4.5 contains also MRCI

results for a bent structure, that were obtained with several basis sets. We address these

results later.

We see that, within the (22, 13) CAS, the error of using the RVTZ instead of the AVTZ

basis is not larger than 400 hc cm−1 . Within the RVTZ basis, the error of using the

(18, 11) instead of the (22, 13) CAS is about 350 hc cm−1 , for the end-on geometries LS1

and LS2, while it is largest for LS3 (almost 2000 hc cm−1 ). Since the overall energy

at the LS3 structure is much higher anyway, the increased inaccuracy of our energy

calculations in this region of the molecular geometries is less relevant. The states at

the LS1 and LS2 geometries compose a Π level, while at LS3 electrons are in a Σ state,

which can be anticipated from inspection of Table 4.2.
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Eref/Eh (E −Eref)/hc cm−1

ref LS1 LS2 LS3 BS

MRCI-22-13-AVDZ -1768.8719 - - - -2107
MRCI-22-13-AVTZ -1769.0078 5662 5443 19316 -2224
MRCI-22-13-AVQZ -1769.0602 - - - -2250
MRCI-22-13-BANO -1769.0206 - - - -2197
MRCI-22-13-RVTZ -1768.9547 5774 5552 18906 -2036
MRCI-18-11-RVTZ -1768.8150 5500 5895 17160 -1983
MRCIQ-22-13-AVTZ -1769.1240 - - - -1768
MRCIQ*-22-13-AVTZ -1769.1467 - - - -
MRCI-18-11-ECPa -326.0360 - - - -3072.6
a for Cu the ECP basis as defined in section was used, where [Ne] is the
core; for N and O we used the RVTZ basis.Also rCu = 250 pm,which is
close to BS with rCu = 260 pm

Table 4.5: Singlet energies E of specific geometries calculated at several levels of the-
ory and with basis sets defined in the text; “ref” is the asymptotic reference molecular
structure, which is defined by rCu = 450 pm, rno = 115 pm and θCu = 130◦ for the
MRCI energies; for the coupled cluster results, the reference energy is the sum of the Cu
and NO energies calculated separately - the acronyms indicate the number of correlated
electrons and the basis used (see text); LSi (i = 1, . . . , 3) are linear structures defined
in the text, BS is the bent “end-on” structure defined by rCu = 260 pm, rNO = 115 pm

and θCu = 130◦.

4.3.3.2 Spin-orbit calculations

Spin-orbit coupling may be important when singlet and triplet Π-levels are close in en-

ergy. We checked this issue with point-wise calculations. Table 4.6 gives the eigenvalues

obtained from the diagonalization of the rank 48 matrix Hamiltonian of the Breit-Pauli

involving the first twelve singlet and triplet MRCI levels calculated with the (22, 13)

CAS and the RVTZ basis. Only the lowest levels of Π symmetry at the linear structures

LS1 and LS2 are reported in this table. The separation of the uncoupled singlet and

triplet levels is roughly 1000 hc cm−1 at the LS1 structure, and 200 hc cm−1 at the LS2

structure. The maximum shift in energy induced by spin-orbit coupling is around 300

hc cm−1 for both geometries.

4.3.3.3 Bent structures

We return to the discussion of Table 4.5, where we also compare results at a bent

structure (BS), defined by rCu = 260 pm, rNO = 115 pm and θCu = 130◦. Here, relative

energies with respect to the asymptote are negative, the molecule is stable. The BS
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ν̃/cm−1

LS1 LS2

B2 1367.79 541.15
B1 1367.73 541.15
A1 358.06 154.11
A2 356.16 154.11
B2 158.04 63.69
B1 155.70 63.67
A2 20.74 0.56
A1 0.00 0.00

Table 4.6: Wave numbers of spin-orbit energies at the LS1 and LS2 geometries cal-
culated using a (22, 13) CAS with the RVTZ basis (see text). The lowest 8 states

pertaining to the singlet and triplet Π level manifold are reported.

structure is indeed quite close to the equilibrium structure of the CuNO complex, as

will be shown below.

In order to discuss the effect of the basis set on the energy of bound states, we first

compare in Table 4.5 the energies obtained with the AVDZ, AVTZ and AVQZ bases.

While absolute energies decrease strongly, the variation of the relative energies at the

BS structure falls within the 1 mEh (220 hc cm−1 ) tolerance interval adopted in this

work. We expect thus the basis set error on the dissociation energy of CuNO obtained

with the AVTZ basis to be of the order of the variation from the AVTZ to AVQZ result,

i.e. less than 50 hc cm−1 . Using the BANO basis leads to a decrease of the absolute

energy by about 14 mEh for all 6 states at the asymptote. Relative energies are however

very similar to those obtained with the AVTZ basis. This agreement allows us to be

confident about the choice of the valence-ζ type basis in the calculations.

Using the RVTZ instead of the AVTZ basis decreases the absolute value of the rela-

tive energy at the BS structure from 2217 to 2041 hc cm−1 . This difference is almost

constant in the low energy domain of the potential, whereas the reduction of the active

space from (22, 13) to (18, 11) leads to an insignificant additional decrease from 2041 to

1975 hc cm−1 , here.

In concluding the discussion of the MRCI energies in Table 4.5, we estimate that the ex-

pected precision of a potential energy surface (PES) obtained at this level of theory, i.e.

from a (18, 11) CAS and the RVTZ basis should be at least 200 to 400 hc cm−1 in

the lower energy domain and that it increases by a factor 5 to 10 for energies of
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10 000 hc cm−1 and higher, above the minimum. The choice of the (18, 11) CAS with

the RVTZ basis seems appropriate to develop a global PES within these uncertainties.

Figure 4.6 shows the potential functions of singlet and triplet MRCI states for the

dissociation into Cu + NO along bent structures where rNO = 115 pm and θCu = 130◦.

These energies were obtained with the (22, 13) CAS and the RVTZ basis. One of the

6×1A′ states is a bound state, while the 6×3A′, 6×1A′′ and 6×3A′′ states are essentially

repulsive, along this section. The BS structure described above is close to the bottom

of the potential well of the lowest 1A′ state.

Figure 4.6: MRCI potential energy functions V (rCu) for the lowest singlet and triplet
states of A′ (panel (a)) and A′′ (panel (b)) symmetry at the fixed values θCu = 130◦

and rNO = 115 pm. Energies were obtained from a (22,13) CAS with the RVTZ basis.
The BS structure defined in the text and mentioned in Table 4.5 is located at the
minimum of the lowest A′ potential energy function in panel (a). The angle of 130◦ is

close to the equilibrium value for θCu from [12].
Legend:

⋄ singlet

∗ triplet

We recall that, technically, all reference configurations pertaining to the lowest six MC-

SCF states of each individual spatial symmetry species are needed to correctly describe

the CI vectors in Figure 4.6, in particular that of the bound ground state. The ground

state wave function has contributions from a large number of configurations. The most

important configurations, which compose 82 % of the wave function at the BS structure,

are given in Table 4.7.

The leading configuration is denoted Φ1 here, and has singly occupied orbitals 17.1 and

18.1 from Table 4.4; 17.1 is the Cu 4s and in-plane NO π∗x bonding orbital, denoted

simply “s+π∗x” here, for brevity, orbital 18.1 is the corresponding anti-bonding orbital -

we checked this attribution by inspection of the orbitals.
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I ΦI C2
I

0 . . . (πy)
2(dxy)

2(dyz)
2(dxz)

2(s + π∗x)
2(s − π∗x)

0(π∗y)
0 0.19

1 . . . (πy)
2(dxy)

2(dyz)
2(dxz)

2(s + π∗x)
1(s − π∗x)

1(π∗y)
0 0.53

2 . . . (πy)
2(dxy)

2(dyz)
1(dxz)

2(s + π∗x)
2(s − π∗x)

0(π∗y)
1 0.03

3 . . . (πy)
2(dxy)

2(dyz)
2(dxz)

1(s + π∗x)
2(s − π∗x)

1(π∗y)
0 0.06

4 . . . (πy)
0(dxy)

2(dyz)
2(dxz)

2(s + π∗x)
1(s − π∗x)

1(π∗y)
2 0.01

sum 0.82

Table 4.7: Leading configurations of the ground state wave function Ψ =
∑

I
CIΦI

at the BS structure - see Table 4.5; only the higher-most occupied orbitals are shown
and symbols are defined as in Table ?? - “S+π∗

x” denotes the Cu 4s and in-plane NO
pi∗x bonding orbital, “S-π∗

x” is the corresponding anti-bonding orbital; data are from
the (22,13) CAS AVTZ calculation.

This configuration correlates with the expected ground state configuration of the disso-

ciated Cu + NO system. The second most important configuration is denoted Φ0 and it

corresponds to the lowest closed shell configuration. See Table 4.4 for the explanation

of the remaining symbols. Similar decompositions of the CI vector were obtained and

discussed for the NiCO and FeCO compounds in [64]. Following [13], the stability of the

CuNO+ cation is essentially due to the formation of a one electron bond, where the sin-

gle occupied orbital has 12%Cu and 88% N (almost entirely 2p). That orbital is related

to orbital 17.1 from the present work. Quite astonishingly, the additional electron of the

neutral compound CuNO preferably occupies the anti-bonding orbital, rather than the

bonding orbital. Consequently, the cation could be expected to be more strongly bound

than the neutral molecule.

Configurations Φ2 and Φ3 may be assigned to the “d-to-π” back-donation mechanism

of the bonding, while configuration Φ4 is an internal NO double excitation. Note that

Φ1 to Φ3 are single excitations from configuration Φ0. Thus, in a single reference SD-

CI calculation, they would contribute negligibly to the correlation energy. In addition,

configuration Φ4 can be obtained from Φ0 via a triple excitation, only, and a SD-CI

calculation would not be capable to recover correlation stemming from the internal

excitation of the NO fragment. This demonstrates clearly the multi-reference character

of the wave function close to the CuNO equilibrium structure.
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4.3.3.4 CAS effects

The potential energy functions for the lowest 1A′ and 3A′′ MRCI-(22, 13) states are

repeated in Figure 4.7, where they are compared to results from the aforementioned

calculations based on (18, 11) and (6, 5) CAS. With the (18, 11) CAS, we close the

orbitals 10.1 and 11.1 whereby we neglect the correlation of electrons pertaining to the

NO moiety. Here, a similar potential energy function is obtained. The (18, 11) CAS

is therefore a very good alternative for calculating global PES as it allows for a more

economic determination of the potential energy surface with a similar data quality.

In the (6, 5) CAS, we keep only the 4s Cu orbital active. As is clearly shown in the

figure, the form of the potential function obtained from an MRCI calculation based on

the CAS (6, 5), where all the d orbitals of Cu are frozen, is very different. It should

also be noted here that there are several orbital rotations necessary with a series of

MCSCF calculations before we get the physically correct (6, 5) CAS at the MCSCF.

These orbitals are then used for subsequent MRCI calculations. Despite yielding a

similarly deep potential well, this rather limited calculation gives a much longer, non

physical equilibrium value of 300 pm for rCu. Here, since the d orbitals are not included

in the active space, we calculate a single root per symmetry in the MCSCF and MRCI

calculations and we do obtain the asymptotic 2S states for Cu in the MCSCF as well

as in the MRCI calculations. This comparison shows the necessity of correlating the Cu

d electrons to obtain a more accurate description of the potential energy surface of the

system.

Some of the d electrons could possibly be excluded from the active space. As indicated

in Table 4.7, some of the CAS orbitals have invariant occupancies in the leading con-

figurations. However, we cannot be sure that this picture holds in the overall space

of molecular geometries. With the aim of obtaining a global PES, we thus prefer to

consider a CAS containing all Cu d electrons.

4.3.3.5 Critical assessment of the MRCI energies

The present MRCI calculations confirm the order of singlet and triplet states from pre-

vious results [12]. The relative triplet-singlet energies around the BS structure are larger

than 5 000 hc cm−1 , spin-orbit coupling is not found to be important here. Furthermore,
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Figure 4.7: Potential energy functions V (rCu) for the lowest singlet and triplet states
at the fixed values θCu = 130◦ and rNO = 115 pm. See also Figure 4.6. Legend:

multi-reference CI energies - all energies shown here were obtained with the RVTZ
basis;

⋄ 1A′, (22,13) CAS, Eref = −1768.955 Eh (see Table 4.5)

∗ 3A′′, (22,13) CAS, Eref as for 1A′

�
1A′, (18,11) CAS, Eref = −1768.815 Eh (see Table 4.5)

· · · △ · · · 1A′, (6,5) CAS, Eref = −1768.295 Eh

they do not indicate that bound triplet states exist, contrary to what is suggested in [12],

where a stable 3A′′ state is predicted to lie about 2 500 hc cm−1 (11 mEh ) higher than

the 1A′ state, at quite a similar geometry.

They are also in qualitative agreement with results obtained at the DFT level of the-

ory, when pure functionals are used [7, 15]. They are in strong contrast to results

obtained from the use of hybrid functionals [16]. While the latter were confirmed there

by CAS MP2 calculations, which state that a triplet A′′ state is lowest in energy at a

bent geometry, we emphasize here that MRCI calculations involving at least 6 reference

configurations of each spatial symmetry species are necessary to correctly calculate the

ground state of the system, and that severe root flipping may occur. Perturbation theory

is therefore likely to fail.

In [12], a dissociation energy of more than 6500 hc cm−1 has been estimated for CuNO.

This is roughly three times larger than the energy required to dissociate CuNO from the
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BS structure.

We also carried out the spin-orbit calculations at specific geometries. In Table 4.8 we

report the spin-orbit correction to the BS geometry. As can be seen there, the effect of

spin-orbit coupling near the equilibrium is small.

ν̃/cm−1

BS

A′′ 6181.03
A′ 6180.57
A′′ 6180.36
A′′ 5235.80
A′ 4388.55
A′ 4387.54
A′′ 4387.40
A′ 0.00

Table 4.8: Wave numbers of spin-orbit energies at the BS geometry calculated using
a (22, 13) CAS with the RVTZ basis. The lowest 8 states pertaining to the singlet and

triplet A′ and A′′ level manifold are reported.

In Table 4.5, we also report an energy obtained from MRCI calculation using an ECP

basis for Cu, and RVTZ basis for N and O. The (18, 11) CAS was used as the active

space. The characteristics of the interaction between Cu and NO remains the same with

the ECP basis following our method of calculating 6 roots. But more importantly, we

find that it gives a significantly increased relative energy compared to the calculation

with RVTZ basis in Table 4.5 with the same active space.

It should also be noted that the potential function has a minimum at a slightly different

geometry while we are using the ECP basis. The deeper minimum obtained from the

ECP calculations is likely related to the relativistic effects included in the core potential.

But otherwise the form of the potential function remains the same for both singlet and

triplet states. Therefore we still do not find a minimum in the 3A′′, as reported in

coupled cluster calculations [12]. Our results show that we should wherever possible use

the ECP results for a global PES.

A more careful investigation of the MRCI results is nevertheless needed. Surely, size

inconsistency is a drawback. Benchmark calculations of several systems showed [29]

that the internally contracted MRCI method, as it is used here, is superior to other

methods that are expected to respect more closely size consistency, such as the average
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coupled pair approximation [65]. In that work, it was also shown that the best calculated

values for dissociation energies underestimated their experimentally estimated values by

an amount of the order of 1000 hc cm−1 , which could be related to the lack of correlation

arising from the neglect of higher lever excitations. In our calculations, we may consider

the multi reference formula of the Davidson correction to estimate the effect of quadruple

excitations. The CuNO system is particularly difficult to treat, however, because of the

ambiguities related to the definition of the reference wave function. We also have to

bear in mind the complete root flipping of states at the MRCI level of calculation in

oour system. In the 2010 version of MOLPRO, the Davidson correction is calculated

with respect to a rotated reference wave function, which has maximal overlap with the

MRCI wave function. The results are in Table 4.5.

We first note that the absolute value of the relative energy at the BS structure decreases

from 2224 to 1768 hc cm−1 when the Davidson correction is applied. Secondly, the

Davidson corrected energy of the super-molecule at rCu/pm is still 23 mEh higher than

the sum of the Davidson corrected energies of the fragments (acronym ”MRCIQ*” in

Table 4.5). The potential is already flat at this geometry. Therefore we can conclude that

the Davidson correction fails to recover full size consistency. The fragments’ MRCIQ

energies are −1639.4278 and −129.7189 Eh respectively for Cu and NO moities, including

Davidson correction. The CCSD(T) fragments’ energy on the other hand are −1639.4377

and −129.7254 Eh . We can see that the difference between the CCSD(T) and the

MRCIQ is almost 10 mEh for the Cu atom and about 6 mEh for the NO. The difference

on the NO molecule can be reduced to 0.6 mEh , when the full valence CAS is used

for this molecule. Reducing the difference on the Cu probably needs a very important

increase of the active space. We managed to reduce the difference between the CCSD(T)

and the MRCIQ energy of Cu to 9 mEh using a (11, 10) CAS on Cu i.e including the 5s

orbital, and calculations become prohibitively expensive beyond that. The failure of the

Davidson correction in recovering size consistency can thus be related to a rather poor

description of correlation by the singles and doubles MRCI method on the Cu alone.

We do conclude that our MRCI data suffer indeed from an important lack of correlation

arising from the neglect of excitations higher than double. Such excitations are inher-

ently accounted for at the coupled cluster level of theory and in the next section we show

the coupled cluster results. This can also be strongly seen in the trend in Figure 4.7
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where the increase in correlation with active space in the calculations does lead to a

deeper potential well and to shorter bond lengths.

4.3.4 Coupled Cluster calculations

In the remainder we report CCSD(T) and CCSDT dissociation energies. Since coupled

cluster results are inherently size-consistent at all truncation orders, reference energies

are obtained as the sum of separate Cu and NO fragment energies, with rNO = 115 pm.

But it should be remembered that, only calculations involving RHF wave functions of

closed shell molecules which also dissociate into separate into closed shell fragments are

fully size consistent. Here CuNO can be treated in a closed shell RHF calculation, but

the fragments are calculated with ROHF, which might have an effective size consistency

error, when we sum over these fragments.

The reference configuration for all coupled cluster calculations is obtained point-wise

from a Hartree-Fock calculation, where 17 orbitals of A′ and 5 orbitals of A′′ symmetry

species are doubly occupied, similarly to configuration Φ0 in Table 4.7. Here, the doubly

occupied orbitals remain delocalized on both Cu and NO fragments, when the distance

between them is augmented. Thus, the single reference configuration is not able to

describe the dissociation into the two open shell fragments properly. Nevertheless, close

to equilibrium, calculations might be reasonable.

We refer to Table 4.9, where we show CCSD(T) energies from several calculations, in

which we vary the basis set or the number of electrons that are correlated. Results

indicated by the acronym “CCSD(T)-22” include full valence correlation. From the

variation of the binding energy between AVTZ and AVQZ we estimate that the basis

set error on the dissociation energy of CuNO obtained with the AVTZ basis is on the

order of 50 hc cm−1 , similar to what was found with the MRCI calculations. Similarly,

the RVTZ binding energy at the BS structure is roughly 200 hc cm−1 weaker than the

AVTZ value.

For energies reported under “CCSD(T)-18”, the NO σ electrons in orbitals 10.1 and

11.1 are frozen. Here, the absolute value of the RVTZ binding energy decreases by

about 200 hc cm−1 , compared to the CCSD(T)-22-RVTZ value; the decrease is almost

a factor of 3 larger than that obtained in the corresponding MRCI calculations. When
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Eref/Eh (E − Eref)/hc cm−1

ref BS

CCSD(T)-22-AVDZ -1768.9988 -3081
CCSD(T)-22-AVTZ -1769.1631 -3215
CCSD(T)-22-AVQZ -1769.2250 -3242
CCSD(T)-22-RVTZ -1769.0996 -2974
CCSD(T)-18-RVTZ -1768.9225 -2626
CCSDT-18-RVTZ -1768.9216 -2465
CCSD(T)-22-AVTZ-DK a -1783.4014 -3446
BCCSD(T)-18-RVTZb -1768.9218 -2580
a for Cu the aug-cc-pVTZ-DK basis was used; for N and O we used
the VTZ-DK bases and added diffuse s and p functions with exponents
0.0576 and 0.0491, respectively, for nitrogen, and exponents 0.07376 and
0.05974, respectively, for the s and p functions of oxygen.
b Brückner coupled cluster theory

Table 4.9: Singlet energies E of specific geometries calculated at several levels of the-
ory and with basis sets defined in the text; “ref” is the asymptotic reference molecular
structure, which is defined by the sum of the Cu and NO energies calculated separately
- the acronyms indicate the number of correlated electrons and the basis used BS is the

bent “end-on” structure defined by rCu = 260 pm, rNO = 115 pm and θCu = 130◦.

18 electrons are correlated in CuNO, care is taken for the calculation of the reference

energy of separate Cu and NO fragments to put the four NO σ-orbital electrons into the

core space, so that seven electrons in the NO fragment are correlated, whereas in Cu

the eleven valence electrons are correlated.

When all valence electrons are correlated, the binding at the BS structure obtained from

the CCSD(T) calculations with the AVTZ basis is about 1000 hc cm−1 stronger than in

the corresponding MRCI calculation. The difference reduces to 900 hc cm−1 for the cal-

culations with the RVTZ basis, and to 800 hc cm−1 when 18 electrons are correlated.

These differences are in line with the aforementioned estimations from benchmark calcu-

lations [29] and seem to underline, at a first sight, the superiority of the coupled cluster

calculations.

4.3.4.1 To multi-reference or not?

We should note that the T1-diagnostic is roughly 0.07 for the calculation with 22, and

0.09 with 18 correlated electrons. This is not unexpected, given the number of singly

excited configurations contributing to the CI vector in Table 4.7. Coherently with [66],

this value is an additional indicator of the multi-reference character of the wave function
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at the BS structure. Yet, a single reference coupled cluster calculation based on a

sufficiently large basis and an adequate inclusion of higher excitations could in principle

recover much of the missing correlation [67]. Multi-reference coupled cluster calculations

can be used to indicate that the accuracy of the CCSDT calculations is within 1 mEh [76,

78]. While the accuracy of CCSDT results based on restricted Hartree-Fock single-

determinant references for simple bond breaking reactions such as in F2 = 2F is at least

5 mEh , when evaluated asymptotically in the super-molecular approach, calculations

at this level of theory severely overestimate the correlation energy for the triple bond

breaking reaction N2 = 2N, where at least a CCSDTQ level of theory is needed to obtain

a qualitatively correct behavior at dissociation (see [67] and references cited therein).

In order to investigate the T1 diagnostic further, multi-reference coupled cluster calcu-

lations should be carried out. In MOLPRO, such calculations can be performed with

the MRCC code by M. Kállay [53], when the numbers of active particles (Nap) and

holes (Nah) are chosen to be different from zero [79]. These calculations are difficult to

converge and expensive. We obtain the following electronic energies at BS for 18 cor-

related electrons at the CCSDT level of theory and the AVDZ basis:−1768.8568 Eh for

Nap = Nah = 1 and −1768.8569 Eh for Nap = Nah = 2 , while the single determinant

yields −1768.8569 Eh . Variances are thus in the sub-millihartree domain. With the

same code one could obtain a single reference CCSDT result, when Nap = Nah = 0

with the RVTZ basis. Table 4.9 contains the CCSDT value from a calculation with 18

correlated electrons and the RVTZ basis. With the CCSDT calculation the binding at

the BS structure is about 300 hc cm−1 weaker than with the CCSD(T) calculation, ap-

proaching thus the MRCI value. We should keep in mind that as we go towards CCSDT,

CCSDTQ etc in coupled cluster, we are getting closer and closer to the full CI solution.

The calculation with CCSDT can in some sense find configurations through connected

triples that can be found in the multi-determinantal calculation, even though we start

with a single reference wave function.

A larger portion of the potential energy surface is shown in Figure 4.8, where the evo-

lutions of the CCSD(T) energies are given for different types of calculations as functions

of rCu. We discuss first results obtained from the correlation of 18 electrons and the

use of the RVTZ basis, in order to conclude the comparison with the CCSDT data.

One clearly sees that the CCSD(T) calculations start to give unphysical results for rCu
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Figure 4.8: Potential energy functions V (rCu) for the lowest singlet and triplet states
at the fixed values θCu = 130◦ and rNO = 115 pm.

Legend:
Coupled cluster energies: - the acronyms indicate the number of correlated electrons

and the basis used;
�

1A′, CCSD(T)-18-RVTZ, Eref = −1768.922 Eh (see Table 4.5)

· ◦ · 1A′, CCSDT-18-RVTZ, Eref = −1768.922 Eh

⋄ 1A′, CCSD(T)-22-AVTZ, Eref = −1769.163 Eh (see Table 4.5)

∗ 3A′′, CCSD(T)-22-AVTZ, Eref as for 1A′

exceeding 280 pm, which we relate to the perturbational treatment of triple excita-

tions based on a Hartree-Fock reference function that does not have the appropriate

physical behavior at dissociation. When triple excitations are fully taken into account

in the CCSDT calculations, a physically sound asymptotic behavior of the potential

function is obtained. However, the asymptotically constant CCSDT energy is roughly

1100 hc cm−1 (∼ 5 mEh ) higher than the reference energy, which are related again to

the inappropriate Hartree-Fock reference configuration used in these calculations. If the

choice was made to use a reference function from an unrestricted Hartree-Fock calcula-

tion, the general behavior of the CCSDT potential function could probably be improved

to yield the expected size consistent result. We refrain from using symmetry breaking

methods, here.

The quite expensive CCSDT calculations allow nevertheless to corroborate the quality

of the CCSD(T) data around the bottom of the potential well in Figure 4.8, where the
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difference between the CCSDT and CCSD(T) values decreases and is even smaller than

at the BS structure. We conclude that the remaining error of the CCSD(T) values should

be within the ranges reported in previous work and discussed above, i.e. about 1 mEh ,

for bound open shell systems. We also expect the minimum of the CCSD(T) PES to be

closer to rCu ≈ 240 pm, rather than 250 pm from the MRCI values. These results show

a definite trend where the increase of correlation in the ab initio calculations leads to a

deeper potential well and to shorter bond lengths.

Lines given by the acronyms “CCSD(T)-22” in Figure 4.8 are results from calculations

where all electrons in the full valence space are correlated. Here, the AVTZ basis is

used. We see that the minimum of the 1A′ state is further shifted to smaller values

of rCu , and the depth of the potential well is further increased, when compared to

the calculations where only 18 electrons are correlated. This result is at an interesting

variance with the MRCI calculations: It seems that the NO σ-orbital electrons, while

not directly participating at the formation of the bond, contribute considerably to its

strength, when they are correlated via excitations to degrees higher than two. The

difference between the coupled cluster and the MRCI energies increases to more than

2000 hc cm−1 , when all valence electrons are correlated and geometries are relaxed.

So far, our calculations did not include relativistic corrections. Scalar relativistic effects

have been shown in [51, 63] to be quite relevant for the correct description of excitation

energies in the copper atom.

4.3.5 Relativistic corrections

Relativistic corrections are estimated here from CCSD(T) calculations using the Douglas-

Kroll-Hess (DKH) hamiltonian to fourth order. While the corresponding bases imple-

mented in MOLPRO were contracted with respect to order two DKH calculations on

the atoms, we considered to go to order four and higher DKH calculations to verify the

convergence behaviour. We found that energies are converged with order four.

In all DKH calculations correlation involves the full set of valence electrons. The reported

values in Table 4.9 indicate the size of relativistic corrections to the ground state energy

of the CuNO system. At the BS structure, the binding is strengthened by roughly

240 hc cm−1 .
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In Figure 4.9 the potential energy functions from the non-relativistic coupled cluster

calculations are repeated and compared to the DKH calculations. We conclude that

the relativistic corrections lead to an additional shift of the minimum geometry toward

smaller values of rCu , and that the binding is strengthened by additional 1000 hc cm−1 ,

roughly.

In contrast to the MRCI results but in agreement with [12], the present CCSD(T)

calculations indicate that the triplet A′′ state might be bound around θCu = 130◦, al-

though weaker than the singlet state. Results from the 3A′′ are also shown in Figure 4.8.

From the figure we estimate the difference to the singlet A′ state to be on the order of

2500 hc cm−1 . We also see that the energy of the 3A′′ does not show significant increase

in the binding with the inclusion of the relativistic effects. The minimal CCSD(T) en-

ergy in Figure 4.8 indicates that the dissociation energy of CuNO should be expected to

be around 4000 hc cm−1 , which is about 60% of the value reported in [12]. We should

note that, in that paper, relativistic effective core potentials have been used.

Figure 4.9: Potential energy functions V (rCu) from CCSD(T) calculations, includ-
ing full valence shell correlation and AVTZ basis. The calculation with relatisvistic
effects lowers the energy slightly. (see text) Geometries as in Figure 4.8. Reference
states are the separated Cu and NO fragments with rNO =115 pm; reference energies

from Table 4.9

In the next section, we determine the equilibrium structure and the corresponding energy

of the CuNO system following the various levels of theory studied in this work.



Ab initio calculations of the lowest electronic states in the CuNO system 78

4.3.6 Equilibrium structure and dissociation energy

The equilibrium geometry and the dissociation energy are obtained from the adjustment

of a quadratic force field to a limited set of relative energy data restricted to the intervals

220 ≤ rCu/pm ≤ 270, 113 ≤ rNO/pm ≤ 118, and 120◦ ≤ θCu ≤ 140◦, for the MRCI

data. For the coupled cluster energies, the cube is shifted to 220 ≤ rCu/pm ≤ 240

and 113 ≤ rNO/pm ≤ 121, in case of the 1A′ state, respectively to 220 ≤ rCu/pm ≤

240, 118 ≤ rNO/pm ≤ 124, and 130◦ ≤ θCu ≤ 150◦, in case of the 3A′′ state. The

relative energies are defined with respect to the reference energies given in Table 4.5.

MRCI energies were calculated with the RVTZ basis and 18 correlated electrons; for

the CCSD(T) energies, all valence electrons were correlated and the AVTZ basis was

used. The non-linear adjustment on typically 50 data points was carried out following

the Levenberg-Marquardt algorithm (see [82] for an extension of this algorithm), and

yields satisfying residuals that do not exceed the desired 1 mEh uncertainty. Results

are reported in Table 4.10. Essentially, the dissociation energy is 2100 hc cm−1 for the

singlet A′ ground state at the MRCI level of theory, it increases to 4200 hc cm−1 when the

CCSD(T) method is used, and to 5100 hc cm−1 when relativistic effects are additionally

considered; the triplet A′′ state is metastable with a calculated dissociation energy of

roughly 2900 hc cm−1 , at the CCSD(T) level of theory, while it is repulsive from MRCI

calculations.

rCu/pm rNO/pm θCu/deg De/hc cm−1

MRCI 1A′ RVTZ 253 ± 1 113 ± 1 129.7 ± 0.5 2124 ± 40
CCSD(T) 1A′ AVTZ 234 ± 1 117 ± 1 130.7 ± 0.2 4189 ± 40
CCSD(T) 1A′ AVTZDK 227 ± 1 117 ± 1 131.5 ± 0.1 5080 ± 20
CCSD(T) 3A′′ AVTZ 230 ± 1 121 ± 1 138.8 ± 1.0 2885 ± 90

Table 4.10: Ground state equilibrium geometries and equilibrium dissociation energy
of
CuNO = Cu + NO (at rNO =115 pm). “MRCI” refers here to the (18, 11) CAS
MRCI calculations. In the CCSD(T) calculations all 22 valence electrons were
correlated. Error bars are statistical uncertainties from the fit, on top of them

systematic errors might apply (see text).

4.3.6.1 Error bars in the prediction of dissociation energy

To the statistical error bars indicated in the table we need to add systematic errors which

we estimate as follows. First, the error of using the RVTZ basis set for the MRCI energies
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should lead to an effective increase of the dissociation energy by about 300 hc cm−1 ,

because the AVTZ-RVTZ difference is between 200 and 250 hc cm−1 (see Table 4.5),

to which a remaining error of 50 hc cm−1 for the AVTZ basis is added. The error for

using the AVTZ basis in the CCSD(T) calculations is probably less than 100 hc cm−1 .

In [12], the overall increase of the dissociation energy due to basis set incompleteness

was estimated to be 4 kcal/mol (roughly 1400 hc cm−1 ).

Secondly, the basis set superposition error (BSSE) is estimated here with the counter-

poise correction and leads to a reduction of the dissociation energy by approximately

150 hc cm−1 for the MRCI data with the RVTZ or AVTZ basis (the counterpoise correc-

tion is on the order of 400 hc cm−1 when an aug-cc-VDZ basis is used); for the CCSD(T)

calculations, the counterpoise correction is about 240, with the RVTZ or AVTZ basis,

and 500 hc cm−1 , when the aug-cc-VDZ basis is used. The latter value corresponds

roughly to 1/3 of the BSSE estimation of 4.4 kcal/mol in [12]. The present calculations

with the RVTZ or AVTZ bases are clearly more accurate. Note that in [12] the energy

from the BSSE estimation was added to the calculated dissociation energy of about

10 kcal/mol, while the counterpoise correction must be deduced from the raw calculated

value of the dissociation energy. When this logical inconsistency is removed, the BSSE

correction in that work almost compensates the energy of 4 kcal/mol added there to the

calculated dissociation energy in order to account for the basis set incompleteness, such

that the final dissociation energy of CuNO from [12] including all corrections should be

about 9.6 kcal/mol (3360 hc cm−1 ), which agrees rather well with the present value for

the dissociation energy from the present non-relativistic CCSD(T) calculations with the

AVTZ basis, when 18 electrons are correlated.

Finally, there is the error stemming from the method used. Here, we trust that the

CCSD(T) calculations yield the more accurate results for the electronic energies at

configurations close to the equilibrium, despite the inappropriate values from the T1-

diagnostic. These calculations recover a quite large portion of correlation energy, since

they are comparable with the CCSDT calculations. They carry an intrinsic error related

to the use of a single reference wave function. Based on multi-reference coupled cluster

calculations carried out at the CCSD level of theory, we make a rough estimation of this

uncertainty to be smaller than 220 hc cm−1 , which is in line with error estimations for

similar systems [76, 78].
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Inclusion of triple and disconnected quadruple excitations in the coupled cluster calcula-

tions apparently helps to augment the correlation energy by about 50%, when compared

to the present MRCI calculations, which are limited to single and double excitations. In

absolute numbers, differences are larger than those from benchmark calculations [29],

i.e. 2000 instead of 1000 hc cm−1 . One could ry to add manually highly excited configu-

rations in the hope of grasping the missing states that would help to improve the MRCI

energy further, but this task is difficult to automatize and it is questionable, whether it

would be useful for the derivation of a global PES.

Relativistic effects are visibly important for copper. We thus make a conclusive estima-

tion of the dissociation energy of CuNO to be 4940 hc cm−1 , from the present relativis-

tic CCSD(T) calculations (5080 from Table 4.10, -240 from the counterpoise correction,

+100 from basis set incompleteness; values in hc cm−1 ). This energy is about 2/3 the

dissociation energy of the cation CuNO+ reported in [13] (22 kcal/mol ∼ 7700 hc cm−1 ),

and corroborates our estimation from the analysis of the CI vector in Table 4.7. Er-

ror bars are on the order of ±400 hc cm−1 and include both statistical (from the fit)

and other remaining potential systematic errors such as core electron effects, or the

additional the uncertainty related to single-reference based coupled cluster calculations.

The CCSD(T) values for the geometric parameters in Table 4.10 yield an equilibrium

CuN distance of 193 pm and an end-on Cu-N-O binding angle α = 118◦, which are

both sligthly smaller than the values 207 pm and 119◦ from [12]. The NO distance

obtained there (119 pm) is larger than the value obtained here, which in turn agrees quite

well with the NO distance for CuNO+ from [13]. The MRCI values for the geometric

parameters probably suffer from a poorer description of electronic correlation. We expect

the CCSD(T) relativistic equilibrium geometries from Table 4.10 to be quite realistic.

4.4 Conclusions on the ab initio calculations

In this study, we have investigated the electronic structure of the neutral triatomic

system composed of N, O and Cu. We have successfully optimized settings to calculate ab

initio the ground state at varied positions of the nuclei. Both coupled cluster and multi-

reference configuration interaction (MRCI) methods have been used - the latter with
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singly and doubly excited configurations, the former to up to perturbative (CCSD(T))

and full inclusion of triple excitations (CCSDT).

Focusing on linear structures at the first place provides a handle to actually compare

energies obtained using C2v symmetry to those obtained in Cs symmetry. It has been

shown that 12 roots are necessary in the MCSCF calculation to get a clean convergence

and comparable states of Cs or C2v symmetry.

We also show that the active space in the MCSCF calculations should contain all 3d

electrons of Cu to accurately describe the system.It is also shown that the MCSCF

calculation alone gives asymptotically inverted roots and that in order to describe the

ground state properly we have to use the computationally expensive MRCI calculations

over 6 states per symmetry simultaneously. The MRCI calculations invariably lead us

to obtain the PES for the 12 lowest states in CuNO, the 6 lowest states of each spatial

symmetry. The largest active space used here for the MRCI calculations is a (22, 13)

CAS which is close to the full valence space of the system. With a smaller (18, 11) CAS

it is possible to obtain MRCI energy values that are semi-quantitatively correct.

With these settings, we definitely show that the ground state belongs to the 1A′ irre-

ducible representation, with a minimum at a bent end-on-structure in the nuclear config-

uration Cu-N-O, in agreement with some of the previous work on this system [7, 12, 15],

and in disagreement with a more recent work using DFT [16]. The dissociation energy

from the 1A′ ground state equilibrium of CuNO into Cu an NO is estimated to be ap-

proximatively 2150 hc cm−1 , from the MRCI calculations. Since the MCSCF reference

states are inverted at the asymptote, the Davidson correction is difficult to be included.

We also show that single reference coupled cluster calculations that include to up to triple

excitations yield more accurate results for the ground state in these regions of the nuclear

position space. Non-relativistic coupled cluster calculations involving all 22 valence

electrons yield a dissociation energy of (4200±400) hc cm−1 , where uncertainties include

possible errors related to the multi-reference character of the wave function. When

relativistic effects are included with the Douglas-Kroll-Hess hamiltonian, the dissociation

energy increases to about (4940 ± 400) hc cm−1 . This value corresponds to 59 kJ/mol

(≈ 14 kcal/mol), which is sligthly larger than the result from [12], if the basis size

superposition error is correctly accounted for in that work.
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The lowest triplet state belongs to the A′′ irreducible representation. The CCSD(T) cal-

culations confirm that this state has a metastable structure about 1200 to 2000 hc cm−1 above

but displaced with respect to the singlet A′ state, roughly in agreement with findings

in [12], while the MRCI calculations yield repulsive states.

With the present data we plan to develop a global PES to be used for quantum dynamical

calculations of the CuNO system, with focus on the lowest electronic states of each spin

and spatial symmetry. While the MRCI data should be very reliable to obtain an overall

qualitatively correct shape of the PES, the ground state equilibrium structure, bound

potential wells and the corresponding dissociation energies are more reliably described by

the CCSD(T) and CCSDT results. In order to adjust an analytical representation of the

PES to the energies calculated ab initio, both data sets can either be used simultaneously

in a merging procedure [83, 84], or by appropriate scaling [85, 86].



Chapter 5

Theoretical study of low-lying

electronic states of Diatomics

CuO and CuN

5.1 Introduction

We are primarily interested in the understanding of the dissociation channels of CuNO

system. With this purpose in mind we investigate the electronic states which could be

produced by dissociation of CuNO, in its 1A′ as the ground state. Some computational

studies aiming at characterizing the ground and the lowest electronic states of CuO

and CuN have been reported in the literature [88, 89, 90, 91, 92, 93, 94, 96]. None of

these give trustworthy potential energy functions in the complete range of inter-atomic

distances, which are necessary for a detailed quantum dynamical study of the reactions

between Cu, N and O.

83
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Hence, we need to review the complete potential energy function of both CuN and

CuO, which is definitely difficult and requires cautious convergence criteria . The po-

tential energy surface of transition metal complexes are governed, in general, by multi-

configurational wave functions as was explained in the case of CuNO in the previous

chapter. Therefore, wave function calculations for the ground and excited states is car-

ried out at the multi-configurational self-consistent-field (MCSCF) and multi-reference

configuration interaction (MRCI) levels of theory, albeit restricted to single and double

excitations. As in the previous chapter, this investigation aims at establishing adequate

settings of MRCI calculations that give energy values to within 1 mEh (∼ 220 hc cm−1 )

accuracy.

The ground state of the copper atom is 2S and the first excited state is 2D, O is 3P and

N is 4S. We observe these states as such with the AVTZ basis and at the MRCI level of

theory.

When one considers the probable dissociation channels, we see that

(1A′ )CuNO → (3P)O + (3X)CuN (5.1)

or

(1A′ )CuNO → (4S)N + (4X)CuO (5.2)

or

(1A′ )CuNO → (1P)O + (1X)CuN (5.3)

or

(1A′ )CuNO → (2D)N + (2X)CuO (5.4)

(1X) CuN would not dissociate into (2S) Cu and a (4S) N, as the lowest energy channel;

thus we can conclude that the singlet CuN must be an excited state. And henceforth,

Eq. (5.3) is likely closed for conventional energies.

(4X) CuO in Eq. (5.2) can further dissociate into (2D) Cu and (3P) O asymptotes, and is

thus possibly the lowest state. From [92], we can say, however, that of the two channels

given by Eq. (5.2) and Eq. (5.4), the doublet channel Eq. (5.2) will be the lowest energy.
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5.2 Methods

The calculations on the ground and excited electronic states were performed using the

MCSCF method followed by the internally contracted MRCI method of Werner and

Knowles [27, 28, 29, 30] as implemented in the MOLPRO [48] suite of programs. The

orbitals used to set up the CI expansion were obtained by state averaged MCSCF calcu-

lations using C2v symmetry and with equal weights for all the participating states. Here

the number of roots to be state averaged at the MCSCF calculations were varied. In the

calculations, we use the augmented correlation-consistent polarized triple ζ-basis sets

(“aug-cc-pVTZ”, but abbreviated here “AVTZ”) of Dunning and co-workers [49, 50],

for N and O, and of Balabanov and Peterson [51] for convergent basis sets for transition

metals. This was described in detail in the previous chapter on CuNO. For the coupled

cluster calculations, we use the AVTZ-DK basis[51].

5.3 The lowest electronic states of CuO

The doublet and quartet electronic states of CuO are those corresponding to the chan-

nels, with (2S) Cu + (3P) O and with (2D) Cu + (3P) O. There are more than one

bound state of Π symmetry.

5.3.1 MCSCF and MRCI

In this study, we carefully chose the number of states computed in each symmetry to

overcome convergence failures at the MCSCF level. A state averaging procedure was

used to optimize a common molecular orbital basis set for describing the states of interest

in a given spin multiplicity. All results described here are obtained from state averaged

MCSCF calculations with the AVTZ basis and aan active space consisting of 25 electrons

in 14 orbitals, a (25, 14) CAS. This essentially includes the 3s, 3p 3d, and 4s electrons

from Cu and 2s, 2p electrons of O in the active space. For a given structure, the MCSCF

energies are obtained at C2v symmetry and doublet spin symmetry.

Under C2v, 54 roots were calculated (17 × 2A1 ,13 × 2B1, 13 × 2B2, 11 × 2A2). Cal-

culations are considered converged if the energies reach 1 mEh accuracy. Also the Π
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state degeneracy for the B1, and B2 representations is verified for physically valid con-

vergence. An unbalanced number of roots can lead to broken symmetries. Also, severe

root-flipping problems occur when we fail to include all states of an electronic multiplet

in the MCSCF calculations, leading to erratic prediction of the order of the states by

the variational algorithm because states with higher energy may alternate during the

calculation with states of slightly lower energy, leading to slow or failing convergence.

The number of roots here correspond to the number of states that can be obtained by

taking both the neutral and ionic product states producing a doublet state. This is

easily obtained by examining the symmetry of the ground electronic states of individual

fragments Cu and O. We reiterate that it is important to consider the ionic states also

in the MCSCF calculations to obtain physically sound dissociation of the fragments.

We report MRCI relative energies calculated with respect to energies of a reference

structure with the inter-atomic distance r = 650 pm. In order to be able to carry out the

MRCI calculations in an efficient way, we froze the closed orbitals used in the preceding

MCSCF calculations with the MOLPRO “core” card, i.e. we froze 12 electrons in 6 core

orbitals; singly and doubly excited configurations were included in the MRCI from 14

active orbitals, thereby correlating 25 electrons, i.e. in a (25, 14) CAS. The total number

of contracted configurations is 4017821 in C2v symmetry, per irreducible representation,

and corresponds to about 88908448 non-contracted configurations in MRCI. The next

contribution to the correlation energy may result from correlating the Cu (2)p shell

which contains six additional electrons. It was not possible to correlate this shell in the

MRCI calculation as it demands much higher computational effort.

5.3.2 Lowest doublet state

We derive an analytical potential energy function for the ground electronic state. The

analytical form, is described in the V2b potential in Chapter 6. This form is adjusted

to adiabatic energy data calculated ab initio at the MRCI level of theory. The function

is a generalization of the well known Morse potential. The fit is done following are

an extension of the Levenberg-Marquardt algorithm using external conditions described

previously by R. Marquardt.

The Figure 5.1 shows the potential energy function for the lowest electronic state of 2B1

symmetry. The fit gives an equilibrium distance of 174 pm with a dissociation energy of
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19920 hc cm−1 (≈ 2.47 eV) for the lowest bound electronic state. The 2B2 energy points

follow the exact same form.

Figure 5.1: MRCI potential energy function V (rCu) for the lowest 2B1 state. Here
lines, give wave numbers of relative electronic energiesE−Eref , where Eref = −1714.608

Eh at r = 650 pm, as functions of the copper - oxygen distance r.

The 2B1 minimum is close to the minimum reported earlier in the literature. In the

literature, for CuO, the bond length Re calculated with CCSD(T) differs from the ex-

perimental data by 0.037 Å.[95]. The experimental values for the equilibrium bond

length and fundamental vibrational transition are Re = 1.724 Å, and ωe = 640.2cm−1 .

The discrepancy in the CCSD(T) results for CuO, compared with the experimental

data was attributed to the multi-configurational character or the incompleteness of the

basis set [95, 96]. By increasing the basis set on the oxygen atom to aug-cc-pVQZ,

the CCSD(T) results improved for CuO with Re = 174.2 pm , and ωe = 613cm−1 ; a

dissociation energy D0 ≈ 2.97 eV is also close to experimental values [95].

The present MRCI calculations perform well and gives Re = 174 pm and ωe = 643cm−1

values. The value of ωe corresponds to the vibrational fundamental on the analytical

potential energy function and was obtained by a 1D hermite polynomial DVR of the

vibrational Hamiltonian. The difference in the Re from experiments may be due to

further lack of dynamical correlation in the Cu atom in MRCI, which we have seen

earlier for CuNO system.
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Next we study the lowest electronic state of 2A2 symmetry species in Figure 5.2.

Figure 5.2: MRCI potential energy functions V (r) for the lowest doublet states of 2A2

symmetry species.Here lines, give wave numbers of relative electronic energies E−Eref ,
where Eref = −1714.608 Eh at r = 650 pm pm, as functions of the copper - oxygen

distance r.

This state has an equilibrium distance of 169 pm with a dissociation energy of 6508

hc cm−1 for the lowest electronic state. We find that there is a barrier in the fit of the

lowest electronic state of 2A2 symmetry species. This is not seen in the potential function

of 2B1 symmetry. Such a barrier to dissociation has not been reported before for the

CuO system. The question is whether the barrier is real or not. Since we are using

many roots in MRCI calculation, we must be sure that this barrier is not an artefact

from the method of calculating the electronic energies.

The calculations reported here with a reasonably big basis and a big active space at the

MRCI level of theory still retain this significant barrier in the potential. Since this is a

diatomic system, two potential functions do not cross if they are in the same symmetry

species, which might lead to a barrier. This is well known as avoided crossing in the

literature.

One way to check if the barrier is real is to investigate if there is a change in the

configuration in the lowest electronic state of the 2A2 symmetry species at the asymptote

from that of equilibrium geometry. For this purpose, we follow the variation in the
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permanent dipole moment along the lowest 2A2 state as a function of the interatomic

distance.

2B1
2A2

Figure 5.3: Spline interpolation of the permanent dipole moment for the lowest dou-
blet states of 2B1 and 2A2 symmetry species.

In Figure 5.3, we follow the interpolation of the values of dipole moments along the

lowest electronic energy states of 2B1 and 2A2. Here, the dipole sign is defined along the

z axis as follows: positive value corresponds to oxygen having a net fractional positive

charge, and the negative value corresponds to copper having a net positive charge. At

the asymptote, there is only a very small dipole in both 2B1 (0.00335 a0e) and 2A2

(0.00526 a0e) symmetry species. This is a reflection of the fact that at the asymptote,

both Cu and O fragments are neutral. CuO is well known to be polarized Cu+ + O−

near the equilibrium and this reflects as a huge negative dipole moment near equilibrium

geometries.

Here we see that, in the case of 2B1 symmetry species, the permanent dipole moment

starts from close to zero at the asymptote, and as the Cu and O approach towards the

equilibrium geometry, the value of dipole moment monotonically becomes more negative.

There is a fractional positive charge at Cu and a fractional negative charge in O. This

increase in the dipole moment behaves as expected from the Cu and O interaction, with

oxygen being the more electronegative species.

However, when we analyse the permanent dipole moment in the 2A2 symmetry species,

it shows a different trend. We find that the value of dipole moment actually increases

from close to zero in the asymptote to (0.1845 a0 e) at 300 pm (in the positive sign of

dipole moment) as we move towards smaller internuclear distances. This means that,
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remarkably, at these geometries, Cu is gaining electron density, and has a fractional

negative charge at these geometries. And as Cu and O approach even more closer to

equilibrium, the sign of the dipole moment inverts and becomes negative. As the system

goes to geometries on the other side of barrier, the dipole becomes hugely negative

as it reaches the equilibrium geometry. Therefore, we could infer that , in the MRCI

calculations here, there is clear change in the configurations that make up the lowest

state at the equilibrium geometries and at the asymptote. This change in configurations

reflects as the barrier in the lowest electronic potential energy function.

We should mention that, the maximum negative value of the dipole moment does not

exactly coincide with the Re in both 2B1 and 2A2 symmetry species. The largest value of

dipole is on a slighly higher internuclear distance. Finally, we point out that the barrier

can vanish, or vary, or be much higher, if the number of appropriate roots is too small.

The result shown in Figure 5.2 is fairly well converged with respect to the number of

roots considered i.e the reference space for the MRCI calculation is complete.

5.3.3 Exited doublet states

2B1
2A2

Figure 5.4: The lowest doublet states of 2B1 and 2A2 symmetry species. Energies
were obtained from a (25,14) CAS with the AVTZ basis. The lines are cubic spline

interpolations

In Figure 5.4, we plot the lowest adiabatic electronic energy states of 2B1 and 2A2 sym-

metry species. We note that for most of the adiabatic electronic states the potential

energy functions are complicated by several avoided crossings between possible neutral

or ionic states of CuO. We could follow the permanent dipole moment of each of these



Theoretical study of low-lying electronic states of Diatomics CuO and CuN 91

states at different geometries. We find that, indeed, the electronic states change leading

configurations several times between the asymptote and the equilibrium geometries. By

following the dipole moment of the many electronic states here we could identify, the

states that give rise to the neutral dissociation channel at the asymptote. The configu-

rations that are ionic in nature are prominent and give a stable lowest electronic energy

near the equilibrium. They should also be seen at higher energies at the asymptote.

However, all 11 ×2 A2 asymptotic states, shown in Figure 5.4 are neutral in nature and

have a permanent dipole moment close to zero at the asymptote.

We need to calculate a significantly larger number of roots to completely see the asymp-

totes from the ionic channels, which are much higher in energy. This is at the moment

beyond our computational capabilities. It was found that it becomes extremely difficult

for the MRCI calculations to converge accurately with additional roots. Also we need

more roots in the state averaged MCSCF. This also poses convergence issues.

Again, we should note that, all reference configurations used to define the lowest MCSCF

states of each individual spatial symmetry species, that is 17 ×2 A1, 13 ×2 B1, 13 ×2 B2

and 11 ×2 A2 are needed to correctly describe the CI vectors of the states shown in

Figure 5.4.

Te/cm
−1 Exp: Te/cm

−1 Te
a/cm−1 Te

b/cm−1

1 2B1 0.0 X 2Π 0.0/277 c X 2Π 0.0 X 2Π 0.0
2 2B1 12511 2 2Π 15166 c 2 2Π 15616 γ2Π 18581
3 2B1 19140 3 2Π 18812 d 3 2Π 18122 C 2Π 20259
4 2B1 19140 4 2Π 21222 e 4 2Π 20384
5 2B1 20680 5 2Π 21800 e 5 2Π 23365
6 2B1 21340 6 2Π 25191 e 6 2Π 24932
7 2B1 21560
8 2B1 28380

1 2A2 12980 Y 2Σ+ 7865/7825 g/h Y 2Σ+ 7600 Y 2Σ+ 5564
2 2A2 13420 1 2Σ− 16492 e 1 2Σ− 18020
3 2A2 17600 2 2Σ− 2 2Σ− 15280 β2∆ 21920
4 2A2 19800 1 2∆ 15317 c 1 2∆ 19017
5 2A2 20680 2 2∆ 19473 f 2 2∆ 20877
6 2A2 30020 3 2∆ 21104 e 3 2∆

a [92] b [94] c [100] d [98] e [99] f [101] g [102] h [106]

Table 5.1: The comparison of doublet states with those previously reported in the
literature
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In Table 5.1, we report the values of energies obtained from the MRCI calculations and

compare them with those published earlier[92, 94]. We point out that the excited state

energies reported here are of attractive states (that there is a minimum compared to the

asymptote energy in that adiabatic electronic state). We generally obtain quite good

agreement with the values reported by Peyerimhoff and Hippe [92]. The agreement with

those reported in [94] is clear less good. The Te values in this work give a lower energy

for the excited states than reported in [92]. We do not calculate 2A1 state therefore we

cannot comment on the Y2Σ+ state.

Our calculations for the first two states of each symmetry species should be well con-

verged with in the reference space considered. In [92], relativistic effects have been

considered and the reference space was also specially expanded to consider excitations

higher than double increasing hence the correlation energy of the result. Note that

the present result for the second 2A2 state at 13420cm−1 could be related to the 2A2

component of the first 2∆ state in [92] at 15280cm−1 . We trust hence that the results

are quite accurate, in particular to the ground states. We definitely doubt the results

obtained from the CIPSI method discussed there.

5.3.4 Lowest quartet states

The quartet states of CuO are calculated at MRCI level of theory from the converged

doublet MCSCF wave function as described previously. This provides a reliable handle

to check the absolute energies of the lowest doublet and quartet states at the asymptote

structure where they should be degenerate due to symmetry. The Figure 5.5 shows the

potential energy function for the lowest electronic state of 4B1 and 4A2 symmetry.

In Figure 5.5, we see that the lowest electronic states in both 4B1 and 4A2 symmetry

species show remarkably deep minima. The fit gives an equilibrium distance of 175 pm

with a dissociation energy of 11193 hc cm−1 for the lowest bound electronic state in

the 4B1 symmetry species, while the 4A2 has an equilibrium distance of 171 pm with a

dissociation energy of 11632 hc cm−1 for its lowest bound electronic state. These deep

minima are much lower than previously reported values. These states also seems to have

a barrier in the potential energy functions.



Theoretical study of low-lying electronic states of Diatomics CuO and CuN 93

4B1
4A2

Figure 5.5: MRCI potential energy functions V (rCu) for the lowest quartet states of
4B1 and 4A2 symmetry species. Here lines, give wave numbers of relative electronic
energies E−Eref , where Eref = −1714.608 Eh at r = 650 pm, as functions of the copper

- oxygen distance r.

In [94], from CIPSI calculations, the 4Σ− and 4Π potential functions have a maxima

that occurs near 211.7 pm and 195.8 pm, respectively. The minima being at 171.4 pm

and 159.8 pm. They then define the potential barrier as the energy difference between

minimum and maximum, and obtain a value of 710 hc cm−1 for the 4Σ− state and 4180

hc cm−1 for 4Π state. Following the authors of [94], these energy barriers are necessary

for dissociating these states into (2D) Cu + (3P) O. Furthermore, the location of the

maximum at a distance near the equilibrium bond length Re of the 2Π ground state and

with a small energy above their (2D) Cu + (3P) O dissociation limit suggests that this

might be a pre-dissociative state.

However, in the earlier work [92], the picture is different. Here, the authors obtained for

the 4Σ− and 4Π potential functions an equilibrium bond length of 171.9 pm and 173.6

pm respectively. Their potential functions are limited to internuclear distances of 200

pm. They do not mention or find a barrier. In the later publication [94], the extensive

(and contrasting) data reported in [92] is neither discussed nor cited.

We can see that these values are quite different to the values of Re reported here. For

4Π state, our Re is somewhat closer to the value in [92]. Also our ground state potential

functions do not follow those given in [94] and the barriers we obtain are at larger

internuclear distances for both 4B1 and 4A2 states.
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Again, the question is whether the barrier we see in this work is real or perhaps an

artifact of the calculations.

4B1
4A2

Figure 5.6: Spline interpolation of permanent dipole moment for the lowest doublet
states of 4B1 and 4A2 symmetry species.

In Figure 5.6, we follow the same strategy we used before. When we analyse the perma-

nent dipole moment in 4B1 and 4A2 symmetry species, it shows the trend. We again find

that the value of dipole moment increases from the asymptote to the positive as we move

towards equilibrium geometries and reach the barrier. Cu is gaining electron density,

and has a fractional negative charge at these geometries. And as Cu and O approach

more closer to equilibrium, the sign of the dipole moment inverts and becomes negative

at close to the equilibrium geometries. Therefore, we may say that, in the present MRCI

calculations, there is a possible change in the configurations that contributes most to

the lowest state at the equilibrium geometries and at the asymptote and might be the

reason for the barrier. However, we do recognise that at the moment, it is impossible to

completely rule out the chance that barrier may modified if larger reference spaces are

used.

5.3.5 Exited quartet states

Figure 5.7 shows the quartet 4B1 and 4A2 MRCI states close to equilibrium for the

dissociation channel Cu + O at (25, 14) CAS, AVTZ basis. Again, all reference config-

urations used to define the lowest MCSCF states of each individual spatial symmetry

species, are used in the MRCI calcualtin of the quartet states also to correctly describe

the CI vectors of the states.
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4B1
4A2

Figure 5.7: MRCI potential energy functions V (r) for the lowest quartet states of
4B1 and 4A2 symmetry species. Energies were obtained from a (25,14) CAS with the

AVTZ basis. The lines are cubic spline interpolations.

Te/ cm−1 Te
a/cm−1 Te

b/cm−1

1 4B1 8800 1 4Π 13434 4Π 15000
2 4B1 17600 2 4Π 21884
3 4B1 17380
4 4B1 24860

1 4A2 8360 1 4Σ− 10469 4Σ− 8823
2 4A2 16940
3 4A2 28820 1 4∆ 21017

a[92]b[94]

Table 5.2: The comparison of doublet states with those previously reported in the
literature.Te = 0 for lowest 2Πstate.

In Table 5.2, we show the energies of the lowest quartet electronic states shown in

Figure 5.7. The lowest electronic state we obtain for 4B1 symmetry species is at 8800

hc cm−1 above the 2B1 ground state. This value is lower than the previously reported

values in [92, 94]. And we find at least three exited 4B1 states within the energy range

that have a potential well. These states have not been reported. The 4A2 energies

are also given in Table 5.2. The lowest electronic state of 4A2 symmetry species is

8360hc cm−1 above the 2B1 ground state. This value corroborates with the values given

in [94] and is lower than that reported in [92].

5.3.6 Coupled cluster calculations

In this section we report the term values obtained from coupled cluster calculations per-

formed using the Douglas-Kroll-Hess (DKH) hamiltonian to fourth order. The reference
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configuration for all coupled cluster calculations is obtained point-wise from a Hartree-

Fock calculation. Since coupled cluster results are inherently size-consistent, reference

energies are obtained as the sum of separate Cu and O fragment energies.

2B1
2A1

Figure 5.8: Coupled cluster potential energy functions V (r) for the lowest doublet
states of 2B1 and 2A1 symmetry species. Here lines, give wave numbers of relative
electronic energies E − Eref , where Eref = E(r → ∞), as functions of the copper -

oxygen distance r.

In Figure 5.8, we see that the lowest electronic states in both 2B1 and 2A1 symmetry

species show deep minima. The equilibrium distance was found to be 171 pm with a

dissociation energy of 20900 hc cm−1 for the lowest bound electronic state in the 4B1

symmetry species. This dissociation energy is ≈ 1000 hc cm−1 more than those obtained

from the MRCI calculation for the 2B1 symmetry species. Also the equilibrium bond

length shorten in the coupled cluster calculation. The increase in the dissociation energy

can be attributed to the combined effect of recovering more dynamical correlation and

the inclusion of scalar relativistic effects in the Coupled cluster calculations.

The lowest 2Σ+ state has a dissociation energy of 12065 hc cm−1 with an equilibrium

bond length of 169 pm. The Te of this state is 8835 cm−1 which is slightly higher than

the experimental values in [102] and [106]. However, the value we report agrees well

with a previously reported coupled cluster value of Te = 8065cm−1 for this state by

[103].

The 4Σ+ state has a Te = 32824 cm−1 from the lowest 2Π state in coupled cluster

calculation. The efforts to calculate the electronic states of other symmetry species in

both doublet and quartet states of CuO did not converge at the coupled cluster level.
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Figure 5.9: Coupled cluster potential energy functions V (r) for the lowest quartet
state of 4A1 symmetry species. Here lines, give wave numbers of relative electronic
energies E − Eref , where Eref = E(r → ∞), as functions of the copper - oxygen

distance r.

5.4 The lowest electronic states of CuN

The lowest triplet state of the CuN molecule has been previously reported in [94, 95, 97].

5.4.1 MCSCF and MRCI

As described above, all results are obtained from state averaged MCSCF calculations

with the AVTZ basis. The active space consists of 14 electrons in 9 orbitals i.e.a (14, 9)

CAS. This includes the 3d and 4s electrons from Cu and 2p electrons of N in the active

space. For a given structure, the MCSCF energies are obtained at C2v symmetry.

Under C2v, 72 state averaged roots were calculated (18 × 3A1 ,18 × 3B1, 18 × 3B2,

18 × 3A2). Similar convergence criteria have been followed as for the CuO system

discussed above. The number of roots considered here correspond to the number of

states that could be obtained by taking all the neutral and ionic configurations giving

a singlet state by examining the symmetry of the ground states of individual fragments

Cu and N.
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We report MRCI relative energies calculated with respect to energies of a reference

structure at the asymptote with an inter-atomic distance of 1000 pm.

As described above, we froze 22 electrons in 11 core orbitals; singly and doubly excited

configurations were included in the MRCI from 9 active orbitals, thereby correlating 14

electrons. The total number of contracted configurations is 2682462 in C2v symmetry,

per irreducible representation, and corresponds to about 18390104 non-contracted con-

figurations in MRCI. The next contribution to the correlation energy may result from

correlating the N 2s and Cu 3 s and (3)p shell which contains 10 additional electrons.

5.4.2 Lowest triplet state

The Figure 5.10 shows the potential energy function for the lowest electronic state of

3A2 symmetry. The fit gives an equilibrium distance of 179 pm. The dissociation energy

De is 9904 hc cm−1 and ωe is 616cm−1 . These values are close to values obtained at the

CCSD(T) level in [95].

Figure 5.10: MRCI potential energy functions V (rCu) for the lowest triplet states of
3A2 symmetry species. but here lines, give wave numbers of relative electronic energies
E−Eref , where Eref = −1693.783 Eh at 1000 pm, as functions of the copper - nitrogen

distance r.

The energy point at internuclear distance 280 pm seems to indicate a barrier. Here again

we need to ask, whether this is a real barrier or not. We use the strategy of following the
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change in permanent dipole moment to see signs of change in configuration. In contrast

to CuO, here, the permanent dipole moment does not show any inversion in the direction

of the dipole on moving towards equilibrium geometries. N is gaining electron density,

and has a fractional negative charge as when approaching the equilibrium geometry.

This leads us to two options: either the method of analysis of the permanent dipole

moment is wrong or the MRCI values are not converged.

Indeed, on inspection at internuclear distance of 280 pm we find that the calculation

is not converged at this geometry. The CI state tries to include a root that is not

present in the underlying MCSCF reference space. The high energy at this geometry

and the resulting barrier is hence artificial. Therefore we do not fit this energy point in

our potential energy function. The analysis of changes in permanent dipole moment at

different geometries thus helped in identifying correctly a wrongly converged calculation.

From the fit we still see that there is a small barrier at 300 pm. From our previous

experience in CuO, we find that using a bigger active space was capable of removing

artificial small barriers in the diatomic as we are including more correlation. It might

be that the active space used here for the CuN is not large enough. An active space

comparable to that of CuO would be a CAS (24, 14) in CuN. But all our attempts of

calculations with this bigger active space did not converge correctly. So we cannot say

more about the smaller barrier in CuN with our current level of understanding.

5.4.3 Excited triplet states

Figure 5.11 shows the triplet 3A2 MRCI states close to equilibrium for the dissociation

channel Cu + N with the (14, 9) CAS and the AVTZ basis.The figure shows the lowest

12 electronic states.

The MRCI calculations have the states into the correct order and again it is important

to note that, technically, all reference configurations used to define the lowest MCSCF

states of each individual spatial symmetry species, that is 18×2A2 are needed to correctly

describe the CI vectors of the states shown in Figure 5.11.

In Table 5.3, the Te values some lowest 3A2 states are given, the potentials of which can

be seen in Figure 5.11. Our first excited 3A2 state lies above some of the excited states

reported in [94] as the first excited state of the CuN system. We do not calculate these
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Figure 5.11: MRCI potential energy functions V (rCu) for the lowest triplet states
of 3A2 symmetry species. Energies were obtained from a (14, 9) CAS with the AVTZ

basis.

Te/ cm−1 Te
b/cm−1

1 3A2 0.0 3Σ− 0.0
2 3A2 15308 5Σ− 9395
3 3A2 20303 1Σ+ 12291
4 3A2 21901 1∆ 11710
5 3A2 22628 3Π 12162
6 3A2 24273 1Π 20243

b[94]

Table 5.3: The comparison of some CuN excited states with those previously reported
in the literature

states in our work as we know that this might not be a dissociation channel of CuNO,

which we are primarily interested in understanding.

We also tried coupled cluster calculations for CuN system. However, convergence was

not achieved.

5.5 Conclusions on ab initio calculations on CuO and CuN

In this study, we have investigated the lowest electronic states of the neutral diatomic

systems CuN and CuO.
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We have successfully optimized settings to calculate ab initio the ground state and

the excited state potential energy functions, which show several avoided crossings. All

methods were used as implemented in the MOLPRO program suite [48] The MRCI

results allow to identify the multi-reference character of the electronic ground state

wave function.

The potential energy function of the CuO doublet and quartet states show bound ground

states with deep minima. Converged CuO needed large active spaces of 25 electrons in

14 orbitals. The MCSCF calculations are state averaged over 17, 13, 13, 11 roots for 2A1,

2B1,
2B2,

2A2 symmetry species, respectively. Subsequent MRCI calculations over all

the MCSCF references.

We derive an analytical function for the diatomic potential which is a modified Morse

potential. The fit gives an equilibrium distance of 174 pm with a dissociation energy of

19920 hc cm−1 for the lowest bounded electronic state in the 2Π symmetry species. In

contrast to this, the 2Σ− state has an equilibrium distance of 169 pm with a dissociation

energy of 6508 hc cm−1 .

In the lowest electronic state of the 2A2 symmetry species, we find a barrier to the

dissociation. We use the method of following the change in permanent dipole moment

in this state to get an insight into the nature of the barrier. This analysis shows a change

in the direction of the dipole moment before and after the barrier as the internuclear

distance approaches the equilibrium distance. This indicates that, there is a change in

the major electronic configuration that is responsible for the stable ground state near

equilibrium when compared with that of the asymptote. At the asymptote, these are

predominantly neutral and near the equilibrium the major configurations are ionic in

nature.

We report the spectroscopic values for the lowest electronic states in both 4B1 and 4A2

symmetry species showing much deeper minima than previously reported. The fit gives

an equilibrium distance of 175 pm with a dissociation energy of 11193 hc cm−1 for the

lowest electronic state in the 4B1 symmetry species, while the 4A2 has an equilibrium

distance of 171 pm with a dissociation energy of 11632 hc cm−1 for its lowest electronic

state. Also, we find a barrier in the lowest electronic potential energy functions of both

4B1 and 4A2 symmetry species. Previously, in [94], a barrier in both 4B1 and 4A2

symmetry species were reported, at shorter internuclear distances. We analysed the
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barrier with respect to permanent dipole moment changes. To our best estimation, the

barrier seems indeed real.

Again in CuO, we report on many excited states of both doublet and quartet symmetry

which are non repulsive and the electronic term values of these states. We compare our

results with previous reports. Generally, the values reported here are at lower energies.

We report on the lowest electronic states of CuN which are previously not available in

the literature. For the MCSCF calculation we optimised the parameters, under C2v, for

the 72 state averaged roots calculated (18× 3A1 ,18× 3B1, 18× 3B2, 18× 3A2). These

were followed by MRCI calculations on 18 roots from the 3A2 symmetry species. The

analytical fit on the ab initio MRCI data gives an equilibrium distance of 179 pm for

the lowest bound electronic state in the 3A2 symmetry. The dissociation energy De is

9904 hc cm−1 and ωe is 616 cm−1 . The values compare well with previous values from

CCSD(T) calculations.

A high barrier in the lowest 3A2 potential was found to be artificial.

Therfore, we see from our investigations we can say that,

E
(

(2D)N + (2Π)CuO
)

− E
(

(4S)N + (4Π)CuO
)

(5.5)

= 19200−8800 = 10400 cm−1 . This means that, the analytical potential energy surface

we use for the lowest singlet CuNO to use for dynamics, we use under the criterion that

this is accessible with the Spin-Orbit coupling in the system.

The lowest electronic states of both CuO and CuN are indeed rich and complicated with

several avoided crossings. We have reached convergence and found the spectroscopic

parameters from this study which can now be used in the analytical fit of the lowest

singlet electronic state of the CuNO system.



Chapter 6

Analytical Representation of a

Potential Energy Surface

6.1 Introduction

A dynamical study of molecular collision requires a detailed knowledge of the interaction

potential as an input. In dynamical calculations, the potential energy surface (PES)

should be known in some convenient analytical or numerically interpolated form, which

is capable of generating the potential and its derivatives accurately and efficiently at

any arbitrary geometry. Research into analytical PES for reactive systems began by

adopting some rather complicated functional form where the multitude of parameters

are chosen to obtain agreement with ab initio energy calculations at selected reference

configurations or with energies inferred from experimental data. A famous derived

one is the LEPS (Lenard-Eyring-Polanyi) potential surface for H+H2. However, the

construction of such analytical functional form has proved to be difficult as the number

of atoms or coordinates increases.

Significant advances have been made over many years in the accurate ab initio evaluation

of the energy of molecules. Various analytical functions and numerical interpolations

depending on a certain number of independent variables have been used for fitting the

analytical function to the energy points obtained ab initio thereby obtain the analytical

representation of the potential energy surfaces.

103
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Further information about the form of the potential energy surface may be obtained from

evaluating derivatives of the energy with respect to the nuclear coordinates; derivatives

up to second order may be obtained at reasonable computational cost at various levels

of ab initio theory. A major challenge to date is the development of realistic global

representations of the potential energy surfaces which can be reasonably well used for

both spectroscopic and dynamics studies. This problem has been studied in the scientific

literature, it continues to grow in importance as experiments provide increasingly more

sophisticated probes of molecules and reactions involving three or more atoms, and as ab

initio methods become increasingly capable of determining accurate energies for these

molecules and reactions.

6.2 Why global analytical PES?

One reason for developing analytical representations of the potential energy surfaces

from ab initio calculations is that these calculations are sufficiently time consuming that

the explicit on-the-fly calculation of energies and energy gradients at every point needed

in a dynamics study is rarely feasible. [80]. The potential surface in our consideration is

expected to account for bond breaking or forming in gas-phase reactions. Our goal is to

describe elastic and inelastic atom-diatom scattering dynamics. Polynomial expansion

methods which are useful for representing local regions of potentials like describing

vibrational motions close to equilibrium are not totally applicable in our case.

Useful analytical representations that have a global character are of the type of a Morse

potential for diatomic systems. A polyatomic analytical representation may be composed

of Morse potential-like pair potentials, but this may not be sufficient for the sake of the

accuracy of the spectroscopic data. Further development is needed to represent well

binding potentials globally.

Unfortunately, developing a global surface is not an easy task and requires both good ab

initio data, flexible as well as robust functional forms. Added to the problem is that we

would wish to keep the parameters to a minimum, and also to have a physically sound

rationalization of the parameters used.
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We have obtained enough data from our ab initio calculations to proceed to fit these

with an analytical function. Wright and Gray [81] have presented a list of criteria that

a successful representation of a potential surface must satisfy [80].

(1) It should accurately characterize the asymptotic reactant and product molecules (or

more generally any fragment of the full system)

(2) It should have the correct symmetry properties of the system.

(3) It should represent the true potential accurately in interaction regions for which

experimental or nonempirical theoretical data are available.

(4) It should behave in a physically reasonable manner in those parts of the interaction

region for which no experimental or theoretical data are available.

(5) It should smoothly connect the asymptotic and interaction region in a physically

reasonable way.

(6) The interpolating function and its derivatives should have as simple an algebraic

form as possible consistent with the desired goodness of fit.

(7) It should require as small a number of data points as possible to achieve an accurate

fit.

(8) It should converge to the true surface as more data become available.

(9) It should indicate where it is most meaningful to compute the data points.

(10) It should have a minimal amount of ad hoc or ”patched up” character.

These criteria should be met with in a reasonable accuracy if one has to do dynamics

calculations on the analytical potential. The accuracy of the PES improves with an

increased number of ab initio data points. A number of rather different methods have

been developed and are still in common use for representing surfaces including spline

fitting methods, methods in which semi-empirical potential surfaces are either fitted or

corrected in order to match data from ab initio calculations or experiment, empirical
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fits based on many-body expansions, and global surfaces that are defined using infor-

mation determined along a reaction path. A new global analytical representation of the

electronic potential energy surface might use one or more of these.

6.3 Analytical representation

Our strategy is to first derive analytical forms that give a correct representation of the

topography of the lowest adiabatic PES. In a second step, parameters might be adjusted

to ab initio data, to improve quantitatively the PES. Marquardt et al. have derived such

forms [85, 87] of the potentials which are a) global, allowing for a representation of a

potential energy hypersurface that is analytical in the complete configuration space,

including all possible reaction channels in a given energy range. b) flexible as PES

representations are obtained from an adjustment of parameters to data from electronic

structure calculations, and the accuracy of the representation is related to the accuracy

of the ab initio calculations in the first place. c) compact which means flexible enough,

but with few parameters d) robust which implies small variations of parameter values

should lead to small qualitative variations of a robust PES representation. Robust an-

alytical forms are also important to ensure a physically correct behavior in regions of

configuration space that are not well-sampled by data from electronic structure calcula-

tions.

In the same spirit, we aim at the derivation of a global analytical model potential for

a triatomic system, ABC. For the determination of model parameters, we consider an

adjustment procedure, fitting the model potential to a sufficiently large set of high level

ab initio energy points on the potential surface the quality of the ab initio calculations

being at least comparable to multi-reference configuration interaction (MRCI) methods,

for large displacements from equilibrium, in order to account for changes of the character

of the electronic wave function during a chemical reaction.

Throughout this chapter, we consider only the potential surface belonging to the lowest

electronic state of CuNO which is of singlet A′ symmetry species.

The total potential energy surface for the CuNO system (or any triatomic) can be given

as a sum:
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V =

3
∑

i=1

V2bi + V3b (6.1)

where V2b are the two-body terms. V3b, the three-body term,is a bending potential.

It will be a function of the bond angles, to a large extent, and will have a somewhat

weaker dependence on the bond lengths. Thus all terms will contribute to the stretching

potential of CuNO close to equilibrium. The present representation is built up of global

forms.

6.3.1 Two-body term

V2b = Ve(Y − 2(cos ω))Y + V0 + (VI − V0) exp−( r6
r )

6

(6.2)

where

Y = e−A(r−re) (6.3)

A = As

(

1 − bs arctan

(

(

rs
ri

)2

− 2

(

rs
ri

)

))

(6.4)

This is a modified Morse potential to describe the bond-stretching potential functions.

This allows for a more flexible description of the anharmonicity of the stretching poten-

tial. In Eq. (6.2) whenever 0◦ < ω < 90◦, there will be a well defined potential and the

parameter re can be interpreted as equilibrium bond length of the ’diatomic’ potential.

VI and As are asymptotic values of V , A respectively.

The exp−( r6
r )

6

factor ”switches” the last energy term from V0 at r ≈ re to VI for r → ∞.

If bs = 0, then the anharmonicity term A is constant and the potential function reduces

to conventional Morse potential (with VI = V0). Otherwise it is a function of r, which

may vanish or even become negative giving rise to additional local maxima.

6.3.2 Three-body term

The three body term is essentially a bending potential.In contrast to bond-stretching

potentials, there is no simple, compact analytical form that can be used to describe the
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anharmonicity of bending potentials. The three body term here can be seen as a product

of a function depending on θ and two damping terms y1 and y2

V3b = Vby1y2 (y1y2 − 2z) (6.5)

yi = e−ar(ri−rei) (6.6)

z = −z1z2z3 (6.7)

zi = bi − e−ai(cos θ−cos θe)(1+ci(cos θ−cos θe)) (6.8)

Here, r1 = rCu, r2 = rNO

We impose the following conditions on V3b. V3b will get a value −Vb in the global

minimum, which is at the equilibrium angle θe; and V3b → 0 when r1 and r2 goes to

infinity. z = 1 can be obtained when cos θ − cos θe = 0. We can change the variable

cos θ − cos θe = x , then

z(x = 0) = 1 ⇔ b3 =
−1

(b1 − 1)(b2 − 1)
+ 1 (6.9)

dz

dx
(x = 0) = 0 ⇔ a3 = (b1−1)a2+(b2−1)a1

((b1−1)(b2−1))2
(6.10)

6.3.3 Switching functions

One requirement made to global model potentials is that all dissociation channels need

to be described in a correct way within the same analytical representation for single

or multiple valued potential surfaces. This implies conditions both on the symmetry

aspects of the representations and adequate variation of parameter values for the different

dissociation channels.

In order to achieve this goal, we use the switching functions.

Sp(r) = e−(Rsw
R )

6

(6.11)



Analytical Representation of a Potential Energy Surface 109

where Rsw is an adjustable parameter. These functions are smoothly varying Sp(r) → 1

for r → ∞ and

Sp(r) ≥ 0 for Rsw ≫ re.

Any parameter p is then considered as a smoothly varying function between its value p0

attained in the bound ABC systems and its value pi attained in a dissociation channel.

For instance, a parameter Ve in the two-body potential term is related to the AB frag-

ment will be called V EAB − 0, when this term is used to construct the potential of the

ABC complex, and V EAB− i, when atom C is dissociated from the complex. Hence Ve

will be effectively given by

Ve (rAC, rBC) = V EAB−0 (1 − Sp(rAC)Sp(rBC))+V EAB−i (Sp(rAC)Sp(rBC)) (6.12)

The potentials in the V3b are not switched. Rsw may be interpreted as the limiting value

of the dissociating bond lengths for A-BC or AB-C or B-CA after which the analytical

representation describes the potential basically with just the two-body terms. The

functions introduced here have the advantage of being really logical switching functions.

We may use different Rsw parameters for different bonds.

6.4 Global potential fit

The analytical forms described above were adjusted to the ab initio data calculated as

described in Chapter 4 within a modified version of the Levenberg-Marquardt algorithm

that allows us to consider further analytical relations between adjustable parameters

during the fitting procedure by introduction of Lagrange multipliers. The fit procedure

was such that we obtain systematically improved accuracy in the global fit while reducing

the number of effectively adjusted parameters. We give below the results obtained from

a fit of the analytical potential over 530 ab intio data points from the MRCI calculation

(RVTZ basis, (18, 11) CAS, non-relativistic). We fit 19 parameters. Here, the V2b for

NO was allowed to vary, specifically the AS, RE and BS parameters.
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The representation from the present work describes the lowest adiabatic electronic state

rather accurately. Given below are the parameters used in the global analytic represen-

tation and the fitted values. A total of 19 fitted parameters are there. Some parameters

are fixed at reasonable values. Other parameters, such as those for the isolated diatomic

molecules were fitted to separate energy data points described in chapter 5. Here are

some definitions: The atoms here are defined in the indices ABC where A = Nitrogen,

B= Oxygen, and C= Copper The parameter names contain hence atom indices AB, BC,

AC. Here the definitions are given more clearly.

VEAB-i = Ve / hc cm−1 for the isolated NO
VEAB-0 = Ve / hc cm−1 for NO in CuNO

REAB-0 = re / Å for NO in CuNO
REAB-i = re / Å for the isolated NO

R6AB-0 = r6 / Å for NO in CuNO
R6AB-i = r6 / Å for the isolated NO
RSAB-0 = rS / Å for NO in CuNO

RSAB-i = rs / Å for the isolated NO
OMAB-0 = ω angle for NO in CuNO

Table 6.1: Definition of two body parameters. All these parameters have same coun-
terparts with BC, and AC.

In Table 6.2, the fit values of the two-body parameters are listed.

The three body potential has the following parameters:

The A3B, B3B,and C3B are dimensionless parameters used in Eq. (6.8) satisfying the

conditions Eq. (6.10). There parameters were either found by free adjustment or, where

appropriate, the value 0.0 was set. A flag in the table indicates parameters was fixed

(0) or floated (1) in the fit. The values for the three-body parameters are:

The analytical potential with the above fitted parameters for the lowest singlet A′ PES

will henceforth be called as CuNO-SAsp-01.

6.5 Discussion of the fit quality of CuNO-SAsp-01

In this section, we show typical cuts of the potential. This gives an idea of the quality

of the potential function and its general shape.
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parameter value flag parameter value flag parameter value flag
VEAB-0 52289.60 0 VEAC-0 111849.6 1 VEBC-0 184.2142 1
ASAB-0 6.995740 1 ASAC-0 2.114468 1 ASBC-0 3.864210 1
REAB-0 1.123340 1 REAC-0 0.2831354 1 REBC-0 2.000000 0
OMAB-0 0.000000 0 OMAC-0 0.000000 0 OMBC-0 90.00000 0
BSAB-0 0.5344114 1 BSAC-0 0.000000 0 BSBC-0 0.000000 0
RSAB-0 3.457926 0 RSAC-0 3.000000 0 RSBC-0 3.000000 0
V0AB-0 52806.00 0 V0AC-0 0.000000 0 V0BC-0 0.000000 0
VIAB-0 52864.00 0 VIAC-0 0.000000 0 VIBC-0 0.000000 0
R6AB-0 3.000000 0 R6AC-0 3.000000 0 R6BC-0 3.000000 0

VEAB-i 52289.60 0 VEAC-i 52857.76 0 VEBC-i 14151.49 0
ASAB-i 3.248656 0 ASAC-i 0.8733449 0 ASBC-i 4.150190 0
REAB-i 1.154746 0 REAC-i 1.807099 0 REBC-i 1.742564 0
OMAB-i 0.000000 0 OMAC-i 0.000000 0 OMBC-i 0.000000 0
BSAB-i 0.1188810 0 BSAC-i 2.147600 0 BSBC-i 0.2945370 0
RSAB-i 3.457926 0 RSAC-i 0.9649600E-01 0 RSBC-i 5.457254 0
V0AB-i 52806.00 0 V0AC-i 43013.32 0 V0BC-i 993.5195 0
VIAB-i 52864.00 0 VIAC-i 0.000000 0 VIBC-i -32.49560 0
R6AB-i 3.000000 0 R6AC-i 3.270614 0 R6BC-i 2.756670 0

RSWAB 3.000000 0 RSWAC 3.000000 0 RSWBC 3.000000 0

Table 6.2: Values of two body parameters from the fit

VB = Vb /hc cm−1

THETE = θe /deg
RPE = rCu /100 pm at equilibrium
RQE = rNO /100 pm at equilibrium

Table 6.3: Definition of three-body parameters

Here the potential is shown with the MRCI data along two different rays along different

θ angles of 130◦ and 0◦. The x-axis is the rCu distance up to the asymptote. The

potential reproduces the completely different dissociation behaviour at these angles. At

θCu = 130◦, there is a well and at the θCu = 0◦, this is a completely repulsive potential

in the ground electronic state.

Here the potential is shown with the MRCI data along two different rays along different

rCu distances of 250 pm and 450 pm. The x-axis is the θCu angle. The analytical

potential correctly reproduces the minimum structure from the MRCI data. And at the

asymptote, it does not matter where the Cu is; the potential has to essentially the same

energy value; here we define asymptotic energy as 0.
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parameter value flag
VB 196.0899 1

THETE 128.9022 1
A3B-1 4.402112 1
A3B-2 -1.518012 1
B3B-1 2.000132 1
B3B-2 1.999629 1
C3B-1 0.000000 0
C3B-2 1.567849 1
C3B-3 1.078323 1

D3B 0.1000000 0
ADPO 0.4729284 1

RPE 3.336835 1
RQE 1.150000 0

XH 0.2000000 0
GV0 530.960 1

Table 6.4: Values of three-body parameters from the fit

Figure 6.1: 1-D cuts of the analytical potential showing the variation with rCu dis-
tances with θCu = 130◦ and θCu = 0◦; rNO = 115 pm. The crosses indicate the energy

points calculated ab initio (non-relativistic MRCI, RVTZ basis and (18, 11) CAS).

A 2-D cut of the potential is shown below, in the plane of the molecule (say the yz plane

at fixed NO bond length.

The rNO distance is 115 pm. The contours has the Vmin = −2000hc cm−1 , Vmax =

7500hc cm−1 ,∆V = 500hc cm−1 . The root mean square is large (1774), but analytical

representation grasps the general behaviour of the energy points correctly, hence one is

satisfied. Global fits hardly do better.

Figure 6.4 shows a 2D cut of the SAsp-01 PES along the r(CuN) and r(NO) distances.

(Here, it is not the rCu coordinate that is being used) at a Cu-N-O angle of 120◦ (this is
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Figure 6.2: 1-D cuts of the analytical potential showing variation with θCu angles
with rCu = 250 pm and rCu = 450; rNO = 115 pm. The crosses indicate the energy

points calculated ab initio (non-relativistic MRCI, RVTZ basis and (18, 11) CAS).

N O

−1hc cm−2000

7500 −1hc cm

Figure 6.3: 2-D cut of the analytical potential showing variation with different rCu

distances and θCu angles with rNO = 115 pm

close to the equilibrium angle). The plot shows the equilibrium geometry of the CuNO

complex at small values of r(CuN) and r(NO), and the two dissociation channels CuNO

→ CuN + O (when r(NO) → ∞) and CuNO r(CuN) → Cu + NO (reference energy,

when r(CuN) → ∞). The estimation for the energy barrier is at ≈ 47750 cm−1 above

the Cu + NO dissociation channel (the value of the outer contour line shown in the

plot).
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Figure 6.4: 2-D cut of the analytical potential showing variation along r(CuN) and

r(NO) distances

6.6 Vibrational fundamentals from CuNO-SAsp-01

The analytical potential is used to obtain the vibrational fundamentals from a home

made variational programme. This programme uses Jacobi coordinates and a 3D DVR

of the Hamiltonian, which we address in the next chapter. The formula used in this

programme were derived from [107] and the programme was successfully tested before

on other well known triatomic molecular systems. The theoretical values of vibrational

fundamentals can then be compared to experiment and ones we also calculate from a

quadratic force field that was adjusted to a restricted data set around the equilibrium

from the best CCSD(T) results including relativistic effects. This adjustment was per-

formed similarly to the adjustment of the quadratic force field given in Table 4.10 From

the analysis of the vibrational eigenfunctions, we assign clearly ν1 to the NO stretching

mode, ν2 to the Cu-NO bending, and ν3 to the Cu-NO stretching mode. This assignment

is at variance with the [cite] where ν2 was attributed to the Cu-NO stretching mode and

ν3 to the bending mode

We see that the results for the vibrational fundamentals from the MRCI potential are

quite different to the experimental values. The values from the coupled cluster force
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Expa MRCI b CCSD(T) c

ν3 / cm−1 278.23 159 254
ν2 / cm−1 452.60 503 412
ν1 / cm−1 1587.37 1542 1592

Table 6.5: Vibrational fundamentals from the CuNO-SAsp-01 compared with exper-
imental values.

a[8] b CuNO-SAsp-01; c anharmonic quadratic forcefield.

field are definitely much closer to experiment. The better agreement can be related

to deeper potential well in the coupled cluster calculations including relativistic effects.

One should note that the experiments were conducted in an argon matrix. It is difficult

to judge about the relevance of the deviation from experiment in this case, since theory

applies to the isolated molecule in the gas phase. We think that the shift is still too far

from the potential fitted purely on the MRCI data.

Therefore an ideal PES should be the result of a merging of the coupled cluster data

around equilibrium and the MRCI data at other geometries including dissociation. This

should be done carefully, possibly including a proper scaling of the values, both energetic

and geometric. As of now, we are developing a new analytical potential, with merged

data, following the ideas presented elsewhere [83, 84, 85, 86]. Preliminary results show

a definite improvement in the vibrational fundamentals of the global analytical repre-

sentation.

As of now, the global analytical representation derived so far is good enough to do

preliminary scattering dynamics calculations explained in the following chapters. From

the analytical representation we could also find that the barrier to dissociation of NO

with Cu is ≈ 47750 hc cm−1 . The De of NO alone is 52348 hc cm−1 [82].



Chapter 7

Time-dependent wave packet

study of Cu + NO scattering

7.1 Time dependent wave packet approach

The dynamical behavior of the state of an isolated quantum-mechanical system is de-

scribed by the Schrödinger equation,

i~
∂

∂t
Ψ(t) = ĤΨ(t) (7.1)

The main advantage of time-dependent wave packet calculation is such that the solution

of the time-dependent Schrödinger equation is completely determined by specifying an

initial wave packet and propagating it in time and thus providing an intuitive picture

of the development of the dynamics. The integration over an infinitesimal time step dt

yields an expression relating the wave function at time t to that for an infinitesimally

later time t+dt:

Ψ(t+ dt) = Ψ(t) −
i

~
ĤdtΨ(t) =

(

1 −
i

~
Ĥdt

)

Ψ(t). (7.2)

The expression in parentheses is evidently an operator which propagates the wave

function in time by an infinitesimally small amount dt. If the Hamiltonian is time-

independent, then successive infinitesimal propagations can be compounded to form an

116
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operator that effects an arbitrary finite time difference

Û(t) = lim
N→∞

(

1 −
i

~
Ĥ
t

N

)N

= exp

(

−
iĤt

~

)

. (7.3)

The operator Û is commonly referred to as the time-evolution operator (sometimes the

term propagator is also used). When applied to an initial wave function, it traces out

the dynamical evolution of that state in time

Ψ(t) = Û(t− t0)Ψ(t0). (7.4)

Since Ĥ is hermitian, Û is unitary, i.e. Û †Û = Û Û † = 1. This is important because it

means time evolution conserves probability. Another property, which is easy to verify

by inspection, is that Û(−t) = Û †(t) = Û(t).

In principle, the time-evolution operator enables us to determine the exact wave function

at any point in time from a given set of initial conditions. However, the form expressed

in equation Eq. (7.3) is not immediately useful for numerical application. This can be

accomplished by representing the operator in an orthonormal basis. Since, in practice,

the number of components in the decomposition will be finite, the basis in question will

not be complete, but even an incomplete basis should yield acceptable results for some

class of “well-behaved” functions.

The eigenfunctions of Ĥ form a basis that is particularly easy to work with when calcu-

lating the propagator Let φn be an eigenfunction of the Hamiltonian with the eigenvalue

En. Then φn will also be an eigenfunction of Û , propagating as

φn(t) = Û(t)φn(0) = exp(−iEnt/~)φn(0) (7.5)

The eigenfunctions of Ĥ correspond to stationary states, changing only by an overall

phase under time evolution. The decomposition of the time dependent wave function

for any time t in terms of this basis , also called state vector, is thus trivially related to

the decomposition at t = 0. Finding the eigenfunctions of Ĥ for a general Hamiltonian

is, of course, much harder, but can be done numerically. For a basis other than that

of the eigenfunctions of Ĥ, treating the exponential in equation Eq. (7.3) directly as a
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series sum is generally impractical for numeric calculations, due to the computational

costs of applying Ĥn.

The successful development and application of various computational schemes in the

past two decades, coupled with the development of fast digital computers, has signifi-

cantly improved the numerical efficiency for practical applications of the time dependent

methods to chemical dynamics problems.

7.2 Numerical implementation

By representing the wave functions as sums of products of basis functions, and then di-

agonalising a Hamiltonian matrix which couples the basis functions together, solutions

can be found. The method of using orthogonal basis functions to represent a wave func-

tion is normally referred to as a finite basis representation (FBR). For strict variational

behaviour the integration of the potential and basis functions must be exact. If the

potential is very complicated analytic integration may not be possible and some kind

of quadrature is employed. Finite basis methods have had much success in calculating

energies in many different types of problems. However one limitation with the approach

is that only the ground state and about the lowest 5 % of the eigenvalues obtained are

well converged [117, 118].

By transforming the basis function so that the wave functions are now represented as

amplitudes at points, one can approach the problems slightly differently. This method is

known as the discrete variable representation method (DVR), and allows the truncation

of the wave function in regions where it will have no magnitude because the potential

is very high, and hence reduces the overall size of the problem. This therefore also

allows for a better representation of high energy wave functions [119, 120]. The Discrete

Variable Representation is a very general and is applied to one-dimensional problems or

direct product basis functions in multidimensional problems. To state it simply, DVR is

a localized (in coordinate space) but discrete representation. For any given finite basis

set

ψn(x)(n = 1, ..., N) one can define a unique DVR by diagonalizing the matrix



Time dependent wavepacket study of Cu + NO scattering 119

xmn = 〈φm| x̂ |φn〉 (7.6)

which generates N eigenvalues xn and and eigenfunctions

Xn =
∑

m

φmCmn (7.7)

such that x̂Xn = xnXn

Eq. (7.7) implies that in this N -dimensional vector space, the coordinate operator x̂ is

approximated by

x̂ =
N
∑

n=1

XnδX −Xn (7.8)

With this prescription for the operator x̂, Xn is also an eigenstate of any operator

function F (x̂)

F (x̂)Xn = F (xn)Xn (7.9)

Since the DVR basis set {Xn |n = 1, 2, . . . ,N} is related to the finite basis set {φn(x)|n =

1, 2, . . . , N} through a unitary or orthogonal transformation, both basis sets are equiva-

lent in this N-dimensional vector space. The DVR basis function are highly localized in

coordinate space, i.e., Xn(x) is highly peaked near x = xn Due to this particular local

property of the DVR basis, the matrix element of any local operator in the DVR basis

is approximately diagonal. This result applies to any local operator which is a function

of coordinates only, and should be understood in the sense that the coordinate operator

is approximated. As the size of the basis increases, the approximation becomes better

and better. Since most potential energy operators are local functions of coordinates,

they are diagonal in the DVR representation, and the integration over the coordinates

to construct the potential matrix can be eliminated.

One drawback of the DVR method is that it is not strictly variational since the inte-

gration leading to matrix elements may not be exact. The truncation stage must also
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be carefully performed since there may be need to introduce many basis functions, ie

DVR points, then truncate the problem to a manageable size. This can increase the in-

accuracy of the representation since some regions of the potential will be ignored in the

truncation. The corresponding energies can then be unreliable and wrongly converged.

7.3 The multiconfiguration time-dependent Hartree (MCTDH)

method

The Hiedelberg multiconfiguration time-dependent Hartree (MCTDH) is a computer

program capable of treating multi-dimensional, non-adiabatic systems in which the vi-

brational modes and surfaces are strongly coupled [108, 110]. In standard propaga-

tion methods, in which the wave packet and Hamiltonian are represented in a time-

independent product basis, the calculation rapidly becomes computationally impossible

as the number of degrees of freedom (DOF) increases. The key ingredient of the MCTDH

scheme is to use a multiconfigurational ansatz for the wave function, with each configu-

ration being expressed as a Hartree product of time-dependent basis functions for each

dimension, known as single single particle functions (SPF).

The MCTDH wave function ansatz to solve the time-dependent Schrödinger equation is

written as

Ψ(Q1, ..., Qf , t) =

n1
∑

j=1

...

nf
∑

jf =1

Aj1...jf
(t)

f
∏

k=1

φk
jk

(Qk, t) (7.10)

where Q1, ...Qf are typically the nuclear coordinates, f is the number of degrees of

freedom and the Aj1...jf
denote the MCTDH expansion coefficients; the φk

jk
are the

single particle functions, nk for k can be considered (j1...jk). For f degrees of freedom

there are n1, ..., nk SPF and these SPF are represented by N1, ...,Nf primitive basis

functions or DVR grid points χk
e .

Setting n1 = ... = nf = 1 one arrives at the time dependent Hartree wave function

(TDH). TDH is thus contained in MCTDH as a limiting case. As the numbers nk are

increased, the more accurate the propagation of the wave function becomes, and the

MCTDH wave function monotonically converges towards the numerically exact one as
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nk approaches Nk, where Nk is the number of primitive basis functions along coordinate

k. The computational labour, however, increases strongly with increasing values of nk.

The equations of motion for the expansion coefficients Aj and SPF φk
jk

have been derived

using the Dirac-Frankel variational principle. The resulting equations of motion are

coupled non-linear differential equations for the coefficients and the SPFs. The efficiency

of the MCTDH algorithm grows with increasing f. The use of the variational principle

ensures that the SPF evolve so as to optimally describe the true wave packet; i.e., the

time-dependent basis moves with the wave packet. This provides the efficiency of the

method by keeping the basis optimally small at each time step.

The populations of the natural orbitals, which are defined as the eigenvalues of the

density matrix operator in each degree of freedom , reflect the degree of convergence of

the wave function with respect to the size of the time-dependent basis set. In particular,

a small value of the lowest natural orbital population indicates that enough SPF have

been used for the single particle to achieve convergence. We mention that the accuracy

of a MCTDH calculation depends on both the size of the primitive and the SPF bases.

The populations of the limiting primitive basis functions, e.g. the limiting grid points is

used to check that enough primitive basis functions have been used for the calculation.

The MCTDH approach is now capable of providing fully converged integral cross-section

for atom-diatom reactions, state-to-state reaction probabilities for total angular momen-

tum J = 0 and higher and state-to-state integral cross-sections, as well as accurate cu-

mulative reaction probabilities and thermal rate constants. We apply this method here

to study the Cu+NO scattering.

7.4 Refitting the PES

To solve the equations of motion requires the evaluation of the 〈ΦJ | |H |ΦL〉 matrix

and the 〈H〉 mean-fields at each time step of the integration. These f and (f − 1)

dimensional integrals is circumvented if the Hamiltonian is written as a sum of products

of single-particle operators

Ĥ =

s
∑

r=1

Cr

f
∏

k=1

ĥ(k)
r (7.11)
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where ĥ
(k)
r operates only on the kth coordinate and Cr is an expansion coefficient.

Hence, both the kinetic and potential energy operators need to be expressed in the

product structure. The kinetic energy operator (KEO) usually has the required form

if appropriate coordinate are chosen, but this is not the case for the potential energy

operator in the general case,and the potential energy expression as obtained from our

analytical representation depend on all DOF.

The (POTFIT) program is available to fit the potential to the desired product form.

This method is based on the approximation theorem of Schmidt which defines an efficient

scheme to generate a product representation of a given multidimensional function [111].

When the PES may be given on a product grid

V app(q1, ..., qf ) =

m1
∑

j1=1

...

mf
∑

jf =1

Cj1,...,jf
V

(1)
j1

(q1)....V
(f)
jf

(qf ) (7.12)

As we use DVRs we need to know the potential only at the grid points. Let (qi)
(k)

denote the position of the ith grid point of the kth grid. Then we define

Vi1,...,if = V
(

q
(1)
i1
, ...., q

(f)
if

)

(7.13)

that is, Vi1,...,if denotes the value of the potential on the grid points. The approximate

potential on the grid is given by

V app
i1,...,if

=

m1
∑

j1=1

...

mf
∑

jf =1

Cj1...jf
V

(1)
i1j1

. . . V
(f)
if jf

(7.14)

where V
(k)
ikjk

= V
(k)
jk

(qik)(k)

and the single particle potentials (SPP) are assumed to be orthogonal on the grid. If

the expansion orders and the number of grid points are equal, the approximated and

the exact potential are identical. Not all regions of the PES are equally relevant for the

dynamics. It is possible to define a relevant zone for the POTFIT procedure where the

natural potentials are iteratively improved by a multidimensional iteration procedure.

The potential fit accuracy is finally checked by the calculation of the root mean square

error between V app and V .
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7.5 Convergence issues

Natural potentials
rd contr
rv 20
θ 30

Relevent Region
V ¡80000 cm−1

rd 1000 pm
rv 500 pm

RMS error on relevant grid points (meV) 2.03
RMS error on all grid points (meV) 4.36

Table 7.1: POTFIT parameters. ”contr” indicates that the contraction technique is
used.

In Table 7.2, the values of the converged POTFIT calculation are given. The RMS

error on relevant region of grid points of the potential which will be used for scattering

calculations, is good. We used sin DVR grids with 174 points for the collision coordi-

nate R, which extends from 5 pm to 1000 pm for primitive basis. For our diatomic r

coordinate, a Harmonic Oscillator grid with 24 functions centered around 1.155, which

is the equilibrium NO distance, was used. For the angles, the primitive were Legendre

DVR with 60 grid points. The number of SPF used for the R, r and θ DOF are 22, 9

and 22 respectively.

7.6 The Hamiltonian operator

An exact treatment of atom-diatom scattering requires three coordinates, one must

choose not only internal coordinates, to describe the shape of the molecule, but also

define a molecule-fixed axis system (that rotates with the molecule). Geometrically

defined internal coordinates have the advantage that each point in configuration space

is described by single valued set of coordinates. Of the 3N coordinates required to specify

the configuration of the N nuclei of a non linear N-atom molecule, 3N − 6 coordinates

describe its shape [109]. Because basis functions are usually chosen as functions of the

coordinates in terms of which the kinetic energy operator is written, choosing coordinates

influences the quality of the basis functions. It is advantageous to choose coordinates to

minimize coupling and therefore facilitate choosing good basis functions.
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Using the Jacobi coordinates (R, r, θ) in the body-fixed (rotating) frame, the nuclear

Hamiltonian operator for a triatomic molecule is expressed as:[107]

H(R, r, θ) = TR +Tr +Tθ +V (R, r, θ)+
J(J + 1) − 2K2

2µRR2
−

C+
J,K

2µRR2
ĵ+−

C−

J,K

2µRR2
ĵ− (7.15)

where

TR =
−1

2µR

∂2

∂R2
(7.16)

Tr =
−1

2µr

∂2

∂r2

Tθ =

(

1

2µRR2
+

1

2µrr2

)

ĵ2

ĵ2 =
−1

sin θ

∂

∂θ
sin θ

∂

∂θ
−

K2

sin θ

ĵ± = ±
∂

∂θ
−K cot θ

C±

J,K =
√

J(J + 1) −K(K ± 1)

µR is the reduced mass of Cu-NO ;µr is the reduced mass of NO; V is the electronic

potential energy, J the total angular momentum quantum number and K is the pro-

jection of the total angular momentum quantum number on to the body fixed z axis.

K is also called the helicity angular momentum quantum number. The total angular

momentum and its projection on the body fixed axis may be expressed in terms of the

three Euler angles, (α, β, γ), which define the orientation of the body-fixed axes (x, y, z)

with respect to the space-fixed (non-rotating) axes (X,Y,Z). J is a conserved quantity,

hence its representation in those coordinates is trivial when rigid rotor eigen functions

are used. Similarly, we obtain K knowing that |K| ≤ J . Note that ĵ± acts as a differ-

ential operator on θ but as a shift operator on K. Ignoring the last two terms in the

equation Eq. (7.15) of the triatomic system gives rise to the centrifugal sudden (CS)

approximation. For J > 0, care must be taken while using the CS approximation in

situations where coriolis coupling becomes important. In the calculations reported here,

we always use the exact Hamiltonian.
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7.7 Preparation of the Initial Wave packet

The initial wave packet is prepared as direct products. We use a Gaussian function

along coordinate R,

ψ(R) =
1

√
2πd

exp
−

“

R−R0

2d

”

2

exp(ip0(R−R0)) . (7.17)

with R0, p0 and d denoting its centre in coordinate space, centre in momentum space

and the width, respectively.

For angular coordinates, associated Legendre functions are our appropriate choice.

P̃m
l (cos θ) =

√

2l + 1

2

(l −m)!

(l +m)!
Pm

l (cos θ) (7.18)

with 0 ≤ m ≤ l. The parameter m denotes the magnetic quantum number and is treated

as a fixed parameter. Pm
l is the standard associated lengendre function and P̃m

l is the

normalized form of it.

For the diatomic vibrational coordinate r, we use eigenfunctions of the 1D Hamiltonian

with diatom potential as our initial SPFs.

At the end of the grid in the rCu , the wave packet is absorbed by a complex absorbing

potential (CAP). Also, to compute the reaction attributes, the matrix elements of the

flux operator (see below) are evaluated by matrix elements of a second CAP positioned

at the dividing surface.

R0 600 pm center of initial Gaussian wave packet along rd
p0 −9.0 ~

a0
initial momentum

d 1.32 pm Width parameter of Gaussian wave packet
massrd 20.3143 atomic mass unit reduced atom-diatom mass
massrv 7.4667 atomic mass unit reduced diatom mass

xi/xf (Sin DVR) 5 / 1000 pm Translational coordinate Grid
∆R 0.183 pm Grid spacing
Tprop 1200 fs propagation time
∆T 1.0 fs interval at which wave packet is written to file
ηR 3 × 10−4 CAP strength parameter
Rc 900 pm Starting point of CAP

Table 7.2: Numerical parameters of the MCTDH calculation if not otherwise stated.
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7.8 Flux analysis

The conservation relation corresponding to the time-dependent Schrödinger equation 7.1

can be written as a continuity relation

∂ρ

∂t
+ ∇ · J = 0 (7.19)

where the divergence operator is defined appropriately. Here the density is given by

ρ = |Ψ(t)|2 and the current density component k is defined by the equation

Jk = −
i

2~
[Ψ∗∂kΨ − Ψ∂kΨ∗] (7.20)

Jk = −
i

2
[Ψ∗∂kΨ − Ψ∂kΨ∗] (7.21)

in atomic units. Here ∂k is a short-cut notation for the derivative with respect to

coordinate k

For any stationary wave function, Ψ, ρ is independent of time, so ∇·J = 0. This means

that the flux of particles across any fixed hypersurface is constant. If the Hamiltonian

Ĥ can be expressed as the sum of a kinetic energy operator for the coordinate s and a

reduced Hamiltonian for the remaining N-1 degrees of freedom

Ĥ =
p̂2
s

2
ms + Ĥs (7.22)

where Ĥs is the reduced Hamiltonian, then we can evaluate the flux at a fixed surface

at s = s0 by integrating over the remaining N − 1 coordinates in 7.21

Φs0 = 〈ψ| |F̂ | |ψ〉 (7.23)

where the flux operator F̂ is defined

F̂ = −
i

~

[

Θ (s− s0)
p̂2
s

ms
−
p̂2
s

ms
Θ (s− s0)

]

(7.24)

= −
i

2ms~

[

∂

∂s
δ (s− s0) + δ (s− s0)

∂

∂s

]

(7.25)

where Θ is Heaviside function
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Θ(x) = 0, x < 0 (7.26)

Θ(x) = 0, x ≥ 0 (7.27)

In atomic units Eq. (7.25) reads

F̂ = −
i

2ms

[

∂

∂s
δ (s− s0) + δ (s− s0)

∂

∂s

]

(7.28)

Note that,

〈Ψ| |
∂

∂s
δ (s− s0) | |Ψ〉 = −〈Ψ∗

| |δ (s− s0)
∂

∂s
| |Ψ∗

〉 (7.29)

so that

Φs0 = 2Re

[

〈Ψ| |i
∂

∂s
δ (s− s0) | |Ψ〉

]

(7.30)

We can evaluate the reactive flux at a fixed surface in the asymptotic region of the

product.

∆P =

∫

∞

−∞

Φdt (7.31)

In MCTDH we can evaluate the flux through a particular channel by placing a complex

absorbing potential (CAP) on the channel of interest and then measuring the amount

of the wave packet that interacts with the CAP [115]. CAP are usually used in wave

packet dynamics to absorb parts of the wave packet that reach the end of the grid and

hence to prevent reflection of the wave packet. The introduction of a complex absorbing

potential near the end of the grid is equivalent to simply multiplying the wave function

by a decaying function of coordinate near the boundary at the end of each propagation

step. The CAPs used in MCTDH take the form

− iW (Q) = −iη(Q−Qc)
nΘ(Q−Qc) (7.32)

Θ again is the Heaviside function, a step function, allowing to switch the CAP Q > Qc;

Qc is the starting point for the CAP, η is the CAP strength and n an integer. For a

scattering calculation, a CAP can be placed on the ”scattering” channel to measure the
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amount of wave packet that goes in and the amount of scattered wave packet that goes

out of the channel. For reactions in which there is more than one exit channel, the flux

may be calculated for individual channels.

The successful application of the MCTDH algorithm requires a proper estimation of all

the numerical parameters to maintain the desired accuracy. A systematic investigation

for the number of SPFs for each mode and grid parameters have been tried to get

converged results. This is very much necessary for performing accurate calculations in

this heavy triatomic system.

7.9 Sample scattering at E =149 meV and J = 0

The initial Gaussian is placed at R = 6.0 Å and has a width of d = 0.25 a0. An

example for the initial momentum for the wave packet is p0 = −9.0 a0. Here we also

perform calculations with changing the initial momentum value and thereby different

total energies considered. The CAP used to absorb the wave function is placed way

beyond the analysis point starts for our scattering coordinate at R = 17.0a0 to prevent

reflection of the wave packet at the grid edges. The strengths and orders of the CAP

is 0.0003 and 3 respectively.The quality of convergence has been verified by checking

the maximum over time of populations of the least occupied natural orbitals which was

close to 10−6 for a typical calculation when wave packet was inside the dividing surface.

In Figure 7.1 we show the quantum flux Φ(t), or the amount of probability density,

through a dividing surface S placed at rCu = 800 pm.

Φ(t) =

∫

S

jrd
(t) · dS

where

jrd
(t) = −i

~

2µrd

(

ψ∗(t)
∂ψ(t)

∂rd
− ψ(t)

∂ψ∗(t)

∂rd

)

Then we show the incoming and outgoing flux along the Cu-NO dissociation channel

with a total propagation time of 1200 fs. The total energy of 0.149 meV of the system

is conserved. J = 0 is also conserved. The wave packet approaches from all direction
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towards NO in an initial state ℓ = 0. We calculate the reaction probability at time t

∆P (t) =

t
∫

−∞

Φ(t) dt

from the MCTDH flux.
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Figure 7.1: Flux at the dividing surface rCu =800 pm

The incoming wave packet moves through the dividing surface between 200 fs and 550 fs.

The outgoing flux occurs between 550 fs and 1200 fs and shows clearly that this is a

reactive scattering, at least during the first 12 ps.

Cu + NO → CuNO∗ (7.33)

In the absence of a collision partner, the intermediate species CuNO∗ will eventually

dissociate into Cu + NO so that ∆P (t → ∞) → 0. At t = 1.2 ps ∆P ≈ 0.007

To understand more the nature of the dynamics, we show here the snapshots of the

propagation at different times.

At time t = 0 fs, the wave packet which is centered around 600 pm in the R coordinate.

And since the initial ℓ = 0, the wave packet is completely delocalized over all θ angles.

We can also see the spread of the wave packet here along R at the initial time. With

the initial momentum in the negative direction, the wave packet propagates towards
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snapshots of the probability density evolution
x-axis is rd/100 pm (≈ rCu) y-axis is θCu/rad
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Figure 7.2: Snapshots of probability density evolution at four different times.see text
for details

the dividing surface from the outside. By 100 fs of propagation, the wave packet starts

to feel the potential and the completely delocalized nature of the wave packet along θ

begins to change. By 260 fs, the wave packet is entering the dividing surface, and is

beginning to concentrate along two θ angles which are roughly 126◦ and 60◦ radians.

By 310 fs the wave packet splits into two parts and move simultaneously towards these

two θ angles.

We can see strong interference effects along these two angles by 400 fs and now the wave

packet is almost completely inside the dividing surface. For long propagation times the

wave packet lingeringly starts to move out of the dividing surface around 600 fs. We

can also clearly observe that the wave packet is now less concentrated along θ angles

and slightly spreads over the other angles as it moves out of the dividing surface. The

slow moving out continues even at 830 fs. The slow propagation causes the tail of the

wave packet to begin to be absorbed by the CAP by around 1000 fs. We finish the

propagation at 1200 fs.
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The propagation clearly illustrates the inelastic nature of the scattering. Part of the

initial kinetic energy in the R coordinate has been now lost to the bending vibration

of the intermediately formed excited CuNO∗ system. We note that, in the long run,

CuNO∗ → Cu + NO with excited rotational states of NO. the long run energy transfer

at this energy is predominantly T −R. The NO ν = 1 channel is not open at this energy.

The strong T −V energy transfer is evidenced by the interference effects. Also from the

flux calculations, we can clearly see that there is net ”reaction product” meaning, there

is remaining population inside the dividing surface after the propagation.

7.10 Isotropic vs directional approach

The snapshots given above show that the wave packet approaches isotropically over all

θ angles. This is a purely quantum way of approach. A propagation where the initial

wave packet is along a particular θ angle and then starting the propagation along the R

coordinate along the given θ ray gives a more intuitive picture of the scattering. Such

a directional approach classically would require alignment of the NO molecules prior

to the scattering, the initial state is then a linear superposition of many NO angular

momentum states.

Now the wave packet will see the potential differently during the propagation. We show

the flux obtained keeping the other parameters constant as the isotropic approach for

comparison with such a directional approach. We chose an initial wave packet centred

around θ ≈ 130◦ for the propagation. The reason is that this θ is close to the minimum

in the potential. And also we saw that the wave packet definitely concentrate along

these angles while inside the dividing surface during our isotropic approach described

earlier.

The dynamics is now different, the ∆P = 0.0052 here, with about similar energies after

the same time of propagation. At the initial t = 0 fs the wave packet is centered around

θ but during propagation, the wave packet completely spreads among other angles also

including even linear geometries.
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Figure 7.3: Flux at the dividing surface rCu =800 pm with initial wave packet
”aligned” along θ ≈ 130◦

7.11 Dependence on Total Energy

The probabilities for generating metastable intermediate species CuNO∗ could be de-

pendent on the total initial energy (and width of the initial wave packet). Therefore

we are interested at the calculation of this ”reaction probability” with different total

energies in the dynamics calculations. This can give us an indication of the energy re-

quired to get maximum products in this limited time span. The ”reaction probability”

to form intermediate species CuNO∗ is defined by [eqn] where the final integration time

t is chosen such that the wave packet starts to become absorbed at the outer CAP.

Still at J = 0, the scattering dynamics along the isotropic approach with increasing

energy did not change ∆P value very much. Energies were varied by variation of the

initial momentum of the wave packet, the width of the wave packet being kept constant.

The Flux obtained at two different energies with the directional approach is shown here.

This clear difference in the ∆P values indicates that at higher energies we might obtain

less intermediate reaction products. A clearer picture can be obtained if we vary the

total energy of the scattering dynamics systematically.
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Figure 7.4: Flux at the dividing surface rCu =800 pm with initial wave packet along
θ ≈ 130◦ with different total energies

E /eV ∆P
0.1453 −0.002136
0.1692 −0.005202
0.2114 −0.007820
0.2585 −0.001154
0.3510 −0.001328
0.3973 −0.002462

Table 7.3: The dependence of ∆P for different total energies

The Table 7.3 gives the ∆P with various initial energies. There is a clear dependence on

the initial energies in particular and the dynamical behaviour of the system in general.

We find that we get more reaction products at comparatively low energies. This also

is in accordance with the physical picture we have that there is more probability for

reactive scattering when the ”reactants” are not moving too fast. We do see that there

is more ”products” at 211 meV and it again starts to increase around 397 meV. This is

probably due to the fact that ν = 1 of NO is ≈ 211 meV. And the 397 meV is close to

the first overtone of NO.

t /fs ∆P integration grid ∆P
800 −0.007850 20/20 −0.007850
795 −0.008002 19/20 −0.007443
790 −0.008153 18/20 −0.007064
780 −0.008437 17/20 −0.006683
775 −0.008577
770 −0.008723

Table 7.4: The variation of ∆P
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We also carefully assessed the certainty in the ∆P value from the calculation. Since the

∆P is obtained by the integration of the flux over all the time steps (1 fs), we could

check for fluctuations by changing the integration points in it and looking for possible

fluctuations in the value ∆P . We find that the ∆P values obtained here are smooth and

change only gradually with a small changes in the number of time steps considered for

integration. In Table 7.4, the values of ∆P at different total integration times are shown

from 770 fs to 800fs. The ∆P value slightly decreases along the increasing propagation

time as the wave packet is moving out. It may be that at very much longer propagation

time the ∆P value might reach zero as the intermediate CuNO∗ is long lived. We also

show the ∆P values obtained by different integrations including all grid points (20/20),

removing every 20th point (19/20) along propagation, removing every 20th and 19th

points (18/20) ans so on. This also gives us an idea of the certainty of the ∆P value.

The ∆P value decreases as more points are removed from the grid and they contribute

the flux.

7.12 Dependence on J

Finally, we test also the dynamical behaviour of the system with the change in the

total angular momentum J . This corresponds to a change in the impact factor of the

scattering. As a start of this we can test with J = 1. Here we use the KLEG DVR

instead of LEG for the θ. We also use the isotropic approach explained above here (i.e

ℓ = 0 initially).
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Figure 7.5: Flux at the dividing surface rCu =800 pm with with different J = 0 and
J = 1 values
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In Figure 7.5, the calculation with J = 1 shows inelastic scattering. But less intermediate

reaction products are formed with J = 1. We can tentatively say that with increasing

value of J , there will be less probability for formation of intermediate products in the

scattering calculation.

One of the most fundamental and important tasks in chemical reaction dynamics is

the accurate evaluation of thermal rate constants. As is known, the exact thermal rate

constant for an elementary bimolecular reaction (AB+C → ABC) can be rigorously cal-

culated by Boltzmann averaging the reactive flux over the initial states and the collision

energy. One rigorous way to determine the rate constant is to solve the complete state-

to-state reactive scattering Schrödinger equation to obtain the S-matrix as a function of

total energy E and total angular momentum J, from which all the state-to-state scatter-

ing cross sections can be obtained. Boltzmann averaging these cross sections over initial

quantum states, and summing over all final quantum state produces the rate constant.

These preliminary calculations are a way towards this goal.

7.13 Conclusion from Cu + NO scattering dynamics

In summary, we have reported a full-dimensional wave packet propagation scheme as

implemented in the MCTDH method to simulate Cu + NO collisions. In this work,

that would take place on singlet A′ ground state. For this, we used the global PES

developed in this work.

The Hamiltonian operator consists of an exact form of the kinetic energy operator in

Jacobi coordinates. It could be seen that the MCTDH approach is very efficient and

powerful to calculate the state to state scattering calculations.

We have optimised the parameters for proper refitting of the analytical potential energy

surface in the POTFIT and convergence criteria of the MCTDH propagation of the tri-

atomic with the heavy element copper. The full-dimensional the quantum calculation

for this system is time-consuming. This is difficult as a result of huge density of vibra-

tional states which has now been fully achieved. The quality of convergence was checked

by looking at the natural populations of the limiting SPF to with in ≤ 10( − 6) for all

DOF. The number of SPF used for the propagation and the number of grid points in
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the primitive basis of all degrees of freedom was increased systematically to provide an

optimal convergence of MCTDH.

The results from the wave packet propagation calculations show inelastic/reactive scat-

tering with CuNO at J = 0 and J = 1. There is formation of an intermediate excited

metastable species CuNO∗ which lives for about 0.5−1 ps. The probability of formation

of this species, ∆P is obtained by integrating the flux through a dividing surface at all

the time steps.

We find that there is an important T − R or T − V transfer in the system during

the dynamics which is evidenced by the interference patterns in the snapshots of the

probability density evolution. These patterns indicate the formation of excited CuNO∗

bending states during the collision which under rotationally excited NO scattering prod-

ucts after the CuNO∗ intermediate has had time to dissociate.

Again, we investigate the dependence of dynamics on the approach of initial wave packet

through an isotropic (initial ℓ = 0) and a directional way by placing a gaussian wave

packet along rd coordinate centered around 130◦ keeping J = 0. Depending on the

approach of wave packet, the scattering dynamics is found to be very different. We

also show the clear dependence of ∆P with different total energies in the directional

approach. Higher energy scattering showed less ”products”, at least in the range of

energies studied here. In comparison, a calculation with isotropic approach with a

change in total energy did not show much different ∆P . However, we mention here

that, we did not perform calculations with the same wide range of energies as in the

directional approach.Preliminary results for the dependence of dynamics with different

J value, which corresponds to a change in the impact factor is shown. Here the reaction

probability decreases for J = 1 for the same total energy and unchanged remaining

parameters.

We now have the ability to perform converged full dimensional quantum dynamical

scattering calculations at even higher J values which will give us the detailed information

about the fundamental kinetics including the rate constant of the atom-diatom scattering

of the Cu + NO system.



Chapter 8

Conclusions

In this thesis, we have investigated the interaction of NO with the transition metal Cu.

We have successfully optimized settings to calculate ab initio the ground state at varied

positions of the nuclei. We developed an analytical global representation of the potential

energy surface for this system and used that surface to perform successfully converged

quantum dynamical scattering calculation of Cu + NO

8.1 CuNO

Both coupled cluster and multi-reference configuration interaction (MRCI) methods have

been used - the latter with singly and doubly excited configurations, the former to

up to perturbative (CCSD(T)) and full inclusion of triple excitations (CCSDT). All

methods were used as implemented in the MOLPRO program suite [48] (see, in particular

[27, 28, 29], for the internally contracted singles and doubles MRCI (MR-SDCI), [52],

for the CCSD-T and RCCSD-T methods and [53, 79], for the CCSDT method).

The MRCI method preceded by an MCSCF calculation of configuration is the method

of choice to determine a qualitativly global potential energy surface. The MRCI results

allow to identify the multi-configurational, multi-reference character of the electronic

ground state wave function even in regions close to the equilibrium structure. This

character is due to both the dense level structure of the transition metal atom and

the open shell character of the separated fragments NO and Cu. Focusing on linear

structures at the first place provides a handle to actually compare energies obtained

137
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using C2v symmetry to those obtained in Cs symmetry. It has been shown that 12 roots

are necessary in the MCSCF calculation to get a clean convergence and comparable

states of Cs or C2v symmetry.

The active space in the MCSCF calculations should contain all 3d electrons of Cu to accu-

rately describe the system. The largest active space used here for the MRCI calculations

is a (22, 13) CAS which is close to the full valence space of the system. With a smaller

(18, 11) CAS it is possible to obtain MRCI energy values that are semi-quantitatively

correct. These energy points carry a quite large method dependent, systematic error.

Nevertheless, they are highly valuable for the development of a global, physically sound

PES.

It is also shown that the MCSCF calculation alone gives asymptotically inverted roots

and that in order to describe the ground state properly we have to use the computation-

ally expensive MRCI calculations over 6 states per symmetry simultaneously. The MRCI

calculations invariably lead us to obtain the PES for the 12 lowest states in CuNO, the

6 lowest states of each spatial symmetry.

With these settings, we definitely show that the ground state belongs to the 1A′ irre-

ducible representation, with a minimum at a bent end-on-structure in the nuclear config-

uration Cu-N-O, in agreement with some of the previous work on this system [7, 12, 15],

and in disagreement with a more recent work using DFT [16].

The dissociation energy from the 1A′ ground state equilibrium of CuNO into Cu an NO

is estimated to be approximatively 2150 hc cm−1 , from the MRCI calculations. Since

the MCSCF reference states are inverted at the asymptote, the Davidson correction

could not be reasonably included,but attampts are made.

A major result of this thesis is single reference coupled cluster calculations that include

to up to triple excitations yield more accurate results for the ground state in those

regions of the nuclear position space that are close to the minimum of the potential

well despite the fact that the wave function has an important multiference character.

In fact, the present CCSD(T) and CCSDT calculations are shown to recover much of

the correlation energy that would otherwise be missing in a single reference approach

limited to single and double excitations.
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Dissociation energy: Non-relativistic coupled cluster calculations involving all 22 valence

electrons yield a dissociation energy of (4200±400) hc cm−1 , where uncertainties include

possible errors related to the multi-reference character of the wave function. When

relativistic effects are included with the Douglas-Kroll-Hess hamiltonian, the dissociation

energy increases to about (5000 ± 400) hc cm−1 .

The lowest triplet state belongs to the A′′ irreducible representation. The CCSD(T) cal-

culations confirm that this state has a metastable structure about 1200 to 2000 hc cm−1 above

but displaced with respect to the singlet A′ state, roughly in agreement with findings

in [12], while the MRCI calculations yield repulsive states. The latter lack important

correlation from higher than double excitations, which are clearly important for the

binding of the NO and Cu fragments. We should note, however, that the uncertainty

of the triplet energies obtained from coupled cluster calculations is significantly larger

than for the singlet state, given the difficulties related to the open shell character of the

reference wave function, in addition to the stated multi-reference character of the wave

function.

We speculate that, if a quasi-bound CuON structure exists in the 3A′′ state, the isomer-

ization between the two metastable structures postulated in [12] is very likely “facile”.

Clearly, the MRCI calculations yield fully repulsive triplet states.

8.2 Diatomics

We have obtained new, complete potential energy functions of the ground electronic

states of CuO and CuN systems. In CuO, we find that we reqire very big active spaces

for proper description of the potential. The lowest electronic state in the CuO is the

2B1 state, with a dissociation energy obtained from a fit of an anharmonic potential at

about 19920 hc cm−1 .

We also report the barrier to dissociation in the lowest 2A2 electronic state of which has

not been observed before. By the careful analysis of the permanent dipole moments of

the electronic states, we find that the barrier is from a change in the major confugra-

tions from the asymptote to the equilibrium geometries. At the asymptote, the lowest
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state is essentially neutral, but close to the equilibrium, the states with ionic contribu-

tions approach lower in energy and thus the configurations is finally inverted to become

predominantly of ionic nature in the state.

Comparison of the term values for the lowest electronic states of CuO and CuN with

those previously reported in literature shows agreement is quite good.

8.3 Analytical representations

Global potential energy hypersurfaces allow to understand the connected set of indi-

vidually calculated ab initio potential points. The representation of potential surfaces

through analytical functions are very helpful to describe the nuclear motion in poly-

atomic molecules. For polyatomic molecules, the derivation of compact global analyti-

cal representations of ab initio potential surfaces is a difficult task. We develop a novel

analytical form of a potential in the form of a generalized Morse potential as sum of

two-body and three-body terms. This representation enables us to gain a meaningful

interpretation of the potential hypersurface. We can make a physically correct inter-

polation, and also the extrapolation of ab initio data points to asymptotic regions of

configuration space.

Here we have derived a novel analytical representation of the ground adiabatic electronic

surface of the CuNO system.

The representation, which is a sum of two body and three body terms is global and the

potential behaves very well to capture the minima and all the way to the dissociation of

the MRCI data.

The PES has only 19 adjustable parameters which also have a physical meaning. The

potential has now provided a set of values at all geometries of the electronic ground state

of the CuNO system which now enables us to do scattering dynamics of the system.

The representation with the determined set of parameter values is a highly valuable

starting point to consider regions of potential where ab initio data might be difficult

to obtain and indeed is an excellent way recognise and to to sort of some very poorly

converged ab inito data even from high level calculations like MRCI.
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However, it is also shown that to find accurate vibrational fundamentals comparing with

experiments it might be necessary to merge, CCSD(T) and MRCI data and fit it with

a new potential form starting from the current form.

The representations of the potentials obtained so far is trustworthy and describes globally

the lowest electronic state of CuNO and its dissociation products. Parameter values have

been determined, by fitting the model potential to a large set of ab initio energy points

obtained from the MRCI calculations, so far.

8.4 Quantum Dynamics

The Hiedelberg multiconfigurational time dependent Hartree (MCTDH) program is ap-

plied to study the atom-diatom scattering of the Cu + NO collison. The molecule has

three internal degrees of freedom to be considered. It has been successfully applied

for propagating the wave packets, and flux calculations were performed to compute the

reaction probabilities

The performance and reliability of the MCTDH results is examined for varied choices of

the basis set representation in the MCTDH. We refit the analytical potential with the

POTFIT algorithm to describe it in a product form which can be used efficiently in the

MCTDH. Strict care was taken to converge all parameters for the dynamics by checking

the natural populations in the SPF used for the caculation.

We find indeed that the scattering in CuNO is highly inelastic. Intermediate, excited

meta stable reaction products CuNO∗ live for about 0.5 to 1 ps. The translational col-

lison energy is very quickly redistributed into CuNO∗ bending vibrations (T-V transfer

into the intermediate species), which eventually leads to rotationally hot NO products

once the meta stable state has dissociated.

We also study the effect of the isotropic versus a directional approach in the dynamics of

CuNO. Here we find that with a directional approach the scttaring gives more reaction

products at lower total energies of scattering. The investigation of the scattering dy-

namics with a nonzero J value allows in the long run to calculate total scattering cross

sections of the triatomic system. Our preliminary results on non zero J indicate that at

higher J values there will be less intermediate reaction products.
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The present study shows that an investigation of the quantam dynamics of a fairly

complicated 3D system is feasible. The quantum calculations are in fact of good quality.

8.5 Perspective

A new merging of the MRCI and coupled cluster data to obtain a better potential energy

surface is currently being performed and will be available soon. This new representation

can reproduce the vibrational fundamentals in close agreement with experimental data

and has a deeper minimum.

The new form of the potential will then be used to repeat the scattering calculations

with MCTDH. We would begin by repeating the same calculations described here and

see the change in the dynamics of the system. On the event of successful convergences,

we will repeat the MCTDH for several J values, which is a way to calculate the rate

constant of the Cu-NO scattering. Also, we need to calculate, with MCTDH, scattering

matrix elements. We have dipole moments available from the MRCI data. We could

calculate the spectra with a new dipole moment surface.

Again considering the potential reaction channels,

(2S)Cu + (2X)NO → (3P)O + (3X)CuN (8.1)

or

(2S)Cu + (2X)NO → (4S)N + (4X)CuO (8.2)

or

(2S)Cu + (2X)NO → (1P)O + (1X)CuN (8.3)

or

(2S)Cu + (2X)NO → (2D)N + (2X)CuO (8.4)

From the current work we some understanding of which channels would be feasible at

different energy ranges. From the Te energy of Σ− CuO at 8360 cm−1 . However

2D N is 19224 cm−1 above the 4S N. Therfore, the channel with (2S)Cu + 2XNO →

(4S)N + (4X)CuO will be the lowest channel. In the future, we could investigate the
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interaction of Cu with a NO dimer. This is a logical next step towards understanding,

NO reduction on Cu.
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[107] M. Mladenović, J. Chem. Phys, 112, 1070 (2000).
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