Développement de nouvelles méthodes de criblage in silico en chémogénomique

par Jamel-Eddine Meslamani

Thèse de doctorat en Chimie informatique et théorique

Sous la direction de Didier Rognan.

Soutenue le 13-09-2012

à Strasbourg , dans le cadre de École doctorale Sciences chimiques (Strasbourg) , en partenariat avec Laboratoire d'innovation thérapeutique (Strasbourg) (équipe de recherche) .

Le président du jury était Luc Morin-Allory.

Le jury était composé de Alexandre Varnek, Edgar Jacoby.

Les rapporteurs étaient Xavier Morelli.


  • Résumé

    La chémoinformatique et la bioinformatique sont des disciplines devenues indispensables à la découverte de médicaments. De nos jours, les industries pharmaceutiques consacrent près de 10% de leur budget de recherche et développement, à la recherche de médicaments assisté par ordinateur (Kapetanovic 2008). Cette émergence peut s’expliquer à la fois par le développement des architectures de calculs mais aussi par le faible coup qu’engendrent des analyses in silico par rapport à des tests in-vitro.Les essais biologiques qui ont été menés depuis des décennies afin d’identifier des médicaments potentiels, commencent à former une source très importante de données et plusieurs bases de données commencent à les répertorier. La disponibilité de ce type de données a favorisé le développement d’un nouvel axe de recherche appelé la "chémogénomique" et qui s’intéresse à l’étude et à l’identification des associations possibles entre plusieurs molécules et plusieurs cibles. Ainsi, la chémogénomique permet de déterminer le profil biologique d’une molécule et nous renseigne sur sa capacité à devenir une touche intéressante mais aussi à identifier ses possibles effets indésirables. Des méthodes de chémoinformatique permettent d’utiliser ces sources de données à des fins d’apprentissage et établir des modèles prédictifs qui permettront par la suite de faire des prédictions pour connaitre l’activité d’une molécule.Cette thèse a porté sur le développement et l'utilisation de méthodes de prédictions d’association protéine-ligand. La prédiction d’une association est importante en vue d’un criblage virtuel et peut s’effectuer à l’aide de plusieurs méthodes. Au sein du laboratoire, on s’intéresse plus particulièrement au profilage de bases de données de molécules (chimiothèques) contre une série de cibles afin d’établir leur profil biologique. J’ai donc essayé au cours de ma thèse de mettre au point des modèles prédictifs d’association protéine-ligand pour un grand nombre de cibles, valider des méthodes de criblage virtuel récentes à des fins de profilage mais aussi établir un protocole de profilage automatisé, qui décide du choix de la méthode de criblage la plus adaptée en s’appuyant sur les propriétés physico-chimiques du ligand à profiler et de l’éventuelle cible.

  • Titre traduit

    Devoloppement of new in-silico screening methods in chemogenomics


  • Résumé

    Chemoinformatics and bioinformatics methods are now necessary in every drug discovery program. Pharmaceutical industries dedicate more than 10% of their research and development investment in computer aided drug design (Kapetanovic 2008). The emergence of these tools can be explained by the increasing availability of high performance calculating machines and also by the low cost of in silico analysis compared to in vitro tests.Biological tests that were performed over last decades are now a valuable source of information and a lot of databases are trying to list them. This huge amount of information led to the birth of a new research field called “chemogenomics”. The latter is focusing on the identification of all possible associations between all possible molecules and all possible targets. Thus, using chemogenomics approaches, one can obtain a biological profile of a molecule and even anticipate possible side effects.This thesis was focused on the development of approaches that aim to predict the binding of molecules to targets. In our lab, we focus on profiling molecular databases in order to get their full biological profile. Thus, my main work was related to this context and I tried to develop predictive models to assess the binding of ligands to proteins, to validate some virtual screening methods for profiling purpose, and finally, I developed an automatic hybrid profiling workflow that selects the best fitted virtual screening approach to use according the ligand/target context.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.