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Résumé

Cette thèse est consacrée à la mécanique et à la mécanique statistique de bio-filaments/-

polymères et de leur modèle le plus répandu le Worm-Like Chain. Nous calculons en détail

quelques propriétés du modèle WLC nous en illustrons les faiblesses et présentons des modèles

plus élaborés. Tout au long de ce travail, les filaments sont souvent confinés, par exemple au

voisinage d’un plan focal d’observation, entre deux plans rapprochés ou sur des chemins étroits

définis par des obstacles, cela aide à révéler leurs propriétés mécaniques.

Les biofilaments considérés sont des structures auto assemblées d’unités nanométriques

comme le dimère de tubuline dans les microtubules (MTs), la G-actine dans les filaments et les

gels d’actine ou de petites entités (comme la vimentine) associées dans les filaments intermédi-

aires (IFs). Cette assemblage est quelquefois hiérarchisé au sens que le protofilament conserve

en partie son identité dans le microtubule associé, le cas de l’ADN double brin comprenant deux

polyméres covalents (les simples brins) associés dans la double hélice étant extrême. Bien que

ces filaments aient des structures compliquées et soient souvent intrigants du point de vue de la

chimie et de la physique des polymères, le vrai défit reste le lien avec le rôle subtil qu’ils jouent

dans la cellule.

Les biopolyméres les plus connus, l’ADN et l’ARN portent de l’information génétique et

adoptent des structures bien définies dans les conditions physiologiques. L’ADN consiste en

une séquence de paires de bases ou nucléotides empilées de manière hélicoïdale et connec-

tées entre elles par des squelettes covalents. Les biopolymères du cytosquelette l’actine les

microtubules et les filaments intermédiaires sont impliqués dans la forme et la motilité de la

cellule. Ils assurent également la stabilité mécanique et constituent les voies de circulation des

échanges intracellulaires. La structure de base de l’actine est une double hélice, sa polyméri-

sation/dépolymérisation intervient dans la motilité cellulaire. Les microtubules sont des fibres

creuses composées de dimères de tubuline assemblés. En fonction du nombre de protofilaments

(typiquement de 13 à 15) ; les microtubules adoptent des réseaux cristallins d’hélicité différente.
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En dépit de fonctions biologiques et d’architectures très différentes, tous ces polyméres ont

été décrits en première approximation comme des fils élastiques infiniment fins, homogènes le

long de leur contour ce qui suppose à tout le moins un moyennage. La description mécanique

ne fait alors intervenir qu’un petit nombre de "constantes des matériaux" comme le module de

courbure et de torsion. Dans le cas le plus simple on ne considère que le module de courbure.

Ceci est la base de l’Hamiltonien du modèle WLC. À petite échelle, la molécule est essentielle-

ment rigide alors qu’aux (très) grandes échelles, elle se met en pelote sous l’action du bruit

thermique. Pour caractériser la flexibilité on introduit souvent la longueur de persistance qui

caractérise le déclin de la corrélation angulaire le long du filament, où l’on admet une décrois-

sance exponentielle de la corrélation. Pour l’ADN double brin, par exemple, un filament de

plusieurs dizaines de microns paraît complètement flexible. Bien que la longueur de persistance

soit définie simplement sa détermination directe par analyse d’image reste délicate. Il est large-

ment accepté que l’ADN double brin peut être décrit efficacement en tant que WLC, avec aussi

un module de torsion, aux tensions et torsions raisonnables, pour la statique comme pour la

dynamique. Cela n’est cependant pas trivial car l’ADN "double brin" présente de petites boucles

de dénaturation où sa structure est localement fondue.

Généralement cela conduit simplement à la longueur de persistance couramment admise

comme moyenne. Récemment il a été avancé que ces boucles dénaturées seraient impliquées

dans les coudes observés dans l’ADN double brin fixé au mica par des cations multivalents.

Nous devons garder à l’esprit que tous ces filaments possèdent une structure interne au-delà de

WLC qui peut se manifester de façon inattendue.

Parmi les biopolymères de la cellule, les MTs sont les plus rigides : ce sont les "poutres

du vivant". Leur longueur de persistance est de l’ordre de quelques millimètres. À l’échelle

de la cellule, quelques microns, ceci est une valeur très élevée. Les MT sont donc essentielle-

ment droits dans la cellule. La mesure précise de leur longueur de persistance, sensée être une

constante, a fait l’objet de beaucoup d’études. Alors que déterminée à partir des fluctuations

thermiques d’un filament [1] elle est effectivement une constante, une rigidité dépendant de

la longueur a été mesurée sur des MTs collés par une extrémité [2, 3]. Cette dépendance ne

s’explique pas dans le cadre du WLC et implique à tout le moins des degrés de liberté interne.

En plus de ces propriétés élastiques inattendues, des MTs de forme super-hélicoïdale ont été

rapportés [4] qui présentent certaines analogies avec la forme des flagelles. Un modèle récent

est basé sur la bi stabilité du dimère de tubuline [5] comme degré de liberté interne. Entre

autres ce modèle prédit que les MTs sont polymorphes et qu’ils présentent des changements de



5

forme. Au début de cette thèse une observation directe du changement de forme qui viendrait

étayer la théorie faisait défaut.

Dans le Chapitre 2, nous étudions la relaxation d’une chaîne semi-flexible (WLC) confinée,

cette relaxation est anisotrope. Pour distinguer entre les quantités longitudinales et transverses

nous considérons des frictions par unité de longueur différentes dans la théorie analytique. Au

moyen d’arguments d’échelle et de calculs de réponse linéaire, nous établissons une succession

de régimes dynamiques caractérisés par une série d’exposants. Ces régimes sont corroborés par

des simulations de type Langevin à 2d. Il avait été compris précédemment que la propagation de

la tension le long du filament joue un rôle important dans la dynamique aux temps courts pour

un filament inextensible. Pour une chaîne fortement confinée dans un tube, le régime "libre"

observé aux temps courts s’arrête quand les fluctuations transverses sont confinées pour donner

place à un régime intermédiaire caractéristique de la reptation : le filament est enchevêtré avec

le potentiel de confinement. Le régimes libre et enchevêtré sont obtenus analytiquement ainsi

que leur fonction de crossover, les exposants sont aussi obtenus par des arguments d’échelle.

L’analyse du mouvement était à l’origine motivée par des simulations de filaments WLC con-

finés dans des réseaux d’obstacles assez réguliers. Les résultats de la simulation sont interprétés

par la théorie avec l’amplitude des fluctuations transverses mesurées à saturation comme seul

ingrédient. En l’absence de paramètre ajustable, l’accord est aussi bon que l’on est en droit

d’espérer. Nous étudions aussi la relaxation du filament WLC greffé, libre de tourner autour

du point d’ancrage, en absence et présence d’obstacle. Nous nous concentrons essentiellement

sur la décorrélation de l’orientation globale du filament et d’une portion terminale de longueur

variable. Cette dernière étude est directement motivée par l’étude expérimentale d’un ADN

"épinglé" sous une vésicule par des couples biotine/streptavidine présentée ci-dessous.

Dans le Chapitre 3, nous effectuons l’analyse d’images d’ADN. L’expérience a été réalisée

à l’ICS, dans le groupe de Carlos Marques. L’idée est de mimer in vitro un évènement d’adhésion

cellulaire entre une vésicule synthétique et un substrat au moyens de liaisons spécifiques bio-

tine/streptavidine. Le substrat porte des ADN greffés qui sont balayés par la vésicule en cours

d’étalement, étirés sous la vésicule et bloqués latéralement par les paires biotine/streptavidine

formées. Une analyse d’image détaillée nous permet d’accéder à la répartition de masse le

long du contour apparent de l’ADN et, en principe à sa tension locale. L’interprétation des

résultats montre une accumulation locale de matière en certains points du contour apparent

compatible avec l’existence de portion d’ADN qui n’ont pas eu le temps de relaxer durant le

balayage par le front de la vésicule. Nous attribuons cela à l’existence d’un temps de relaxation
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topologique plus long que le temps de Zimm. Des ADN avec des conformations de départ

différentes se débobinent plus ou moins facilement ce qui se traduit par des frictions internes

différentes et des tensions différentes toutes choses égales par ailleurs. L’expérience qui n’était

pas destinée à cet usage invite à imaginer des dispositifs autorisant une étude systématique des

temps topologiques.

Dans le Chapitre 4, nous nous intéressons aux filaments du cytosquelette, plus spécifique-

ment les propriétés statiques et dynamiques des MTs sont étudiées par analyse d’image. Nous

imageons des MT fluorescents en lame mince où les filaments sont quasi aplatis. D’abord nous

établissons la statistique de la super-hélicité en estimant le pas de l’hélice (sa période à 2d)

et son rayon. Par une analyse d’image quantitative les fluctuations thermiques des MTs sont

caractérisées par la longueur de persistance effective qui est en bon accord avec les résultats

connus. Parce que nous procédons avec un seul filament nous avons accès à des oscillations de

la longueur de persistance effective précédemment très atténuées par une moyenne portant sur

des MTs de réseau cristallin différent. Nous présentons divers type de changement de forme

de MTs et montrons que ces mouvements sont hautement coopératifs et fortement corrélés

le long du filament dans son entier. Bien que ces résultats soient largement compatibles avec

la théorie du MT polymorphe développée précédemment nous évitons ici de les sur-interpréter

et préférons les considérer pour eux-mêmes afin qu’ils soient également confrontés à d’autres

théories (non encore disponibles).

Dans le Chapitre 5, nous considérons des filaments hélicoïdaux a priori, décrits par un

modèle de WLC augmenté que nous appelons Helical WLC et qui comprend un module de

torsion et de courbure ainsi qu’une torsion et une courbure préférées. À 3d l’état fondamental

de ce modèle est une hélice qui satisfait la torsion et la courbure préférées partout. Lorsque ce

modèle est confiné à 2d, il autorise une diversité de formes allant de sinueuses à circulaires.

De façon similaire des formes sinueuses, spirales ou circulaires sont souvent observées dans

la nature. Pour les flagelles, on trouve des formes circulaires et la "coexistence" de formes sin-

ueuses et enroulées le long du flagelle [6]. Nous désignons les formes particulières réalisées par le

HWLC par le mot "squeelix". Une propriété remarquable des squeelix est l’alternance de régions

de courbure presque uniforme de sens opposés, séparées par d’étroites régions qui concentrent

la torsion les "twist-kink". Par analogie avec la physique des solitons nous considérons les twist

kinks comme des quasi-particules et discutons la forme du filament et ses fluctuations en ter-

mes d’injection, de diffusion et d’interactions de twist-kinks. Le paramètre de contrôle γ, une

combinaison sans dimension des quatre paramètres intrinsèques du modèle, gouverne l’énergie
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d’injection : pour γ > 1, les twist-kinks sont thermiquement activés; dans le ces contraire, le

système accepte une densité finie de twist-kinks limitée par leur interaction. Nous montrons

par simulation Monte Carlo en utilisant la méthode de la densité d’état (Wang-Landau), que le

filament confiné présente des transitions entre des états discrets, caractérisés par leur densité de

twist-kinks, dont certains favorisent la cyclisation tandis que d’autres sont hyper-flexibles. Le

modèle de squeelix s’est révélé utile dans l’étude des MTs quasi-2d présentée dans le chapitre

4. L’idée générale de ce chapitre et de commencer à chercher une signature de la super-hélicité

qui puisse clairement émerger des fluctuations thermiques.
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Chapter 1

Introduction

Polymers are large molecules with a mass of at least several kiloDalton built from one or few

chemically well defined small (typically of the order of 102 Dalton) repeat units [7]. Rele-

vant characteristics of polymers are their molecular weight/weight-distribution, shape (linear or

branched), and chemical sequence in case of polymers comprising several monomers, so-called

copolymers. In traditional polymers, monomers are covalently bound and a given polymer

keeps its integrity over time, unless chemical bonds are broken. If all polymers in a system

are identical, the system is called monodisperse, and monodipersity can only be approached in

conventional synthesis. Recently, a lot of attention was paid to non-covalent polymers, in which

the elementary bricks are reversibly assembled by Hydrogen bonds or ligand-receptor pairs, for

example. This is the topic of supramolecular chemistry [8, 9]. Assembled polymers are usually

polydisperse, and polymer identity is usually lost over time. They have the ability to self-repair

errors occurring during synthesis.

Nature actually uses both ways of polymerization and depolymerization with an amazing

efficiency. Biopolymers, like proteins, are covalent polymers produced identical to each other

in both sequence and length through a template based synthesis. Examples of proteins appear-

ing in this thesis are tubulins, G-actin, and single stranded DNA produced by monodisperse

molecules. Biofilaments are assembled from small units, usually proteins, without many errors

or impurities which is quite remarkable as given the numerous species present in vivo. Nature

uses the reversibility of biofilaments to polymerize/depolymerize structures as needed. Even the

well-known double stranded helical DNA presents denaturation loops under physiological con-

ditions and the local denaturation is essential to its function, during transcription for example.
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Self-assembly, in a sense, has also its weaknesses, for example abnormal sequences in DNA can

cause a decease linked to local mis-folding into a triple helix. It is sometimes helpful to consider

biofilaments themselves as composed of intermediate assembled subunits [10,11]. This is clear

for microtubules composed of a variable 13-15 number of protofilaments, which can also exist

in an isolated state. On the other side, biofilaments like actin or intermediate filaments can

assemble in thicker bundles and also form gels. Polymerization/depolymerization kinetics of

assembled biofilaments specially actin and microtubules plays an important role in vivo and is

the focus of intense work. In this thesis, we will not address these important questions at all

and rather consider filaments stabilized again depolymerization in vitro by added chemicals like

taxol (for microtubules) or phalloidine (for actin). This is the case in the last chapter where

conformations of microtubules are analyzed from experimental data. There are numerous indi-

cations that some of conclusions reached for stabilized filaments also hold true in vivo.

DNA and RNA as well-known biopolymers have a well-defined structure under physiological

conditions. DNA consists of a sequence of base pairs or nucleotides that are stacked in a helical

manner. These are connected to one another with two sugar-phosphate backbones. Another

representative biopolymers are cytoskeleton filaments, the actin-, intermediate-filament, and

microtubules. They are involved to determine the shape and motility of cells and also provide

mechanical stability and tracks for intracellular transport. The basic structure of actin-filament

is a left-handed helix with 6 nm in diameter and helical repeat of period 36 nm [10, 12]. The

microtubules have hollow cylindrical structure formed by several protofilaments assembled from

tubulin dimers. Depending on the number of associated protofilaments (typically ranging from

13 to 15), the microtubules can adopt lattice types with different helicities (See Fig. 1.3).

These filaments also involves in cell motility by spontaneous polymerization/depolymerization

dynamics arising at one end of MTs (both ends for actin).

The different structures has different mechanical properties, which is often characterized by

the bending and torsional modulus,

B = lpkBT (bending)

C = ltkBT (torsional),

where lp and lt are called persistence length to bending and twist, respectively, and kB is the

Boltzmann constant and T is the temperature. DNA is mechanically stable by forming double-

helix structure, the bending modulus is B/kBT = 50 nm [13], but the torsional modulus ranges
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Figure 1.1: (a) Schematic illustration of the organization of cytoskeleton filaments within a
cell [18]. (b) Actin- and intermediate-filament are stained blue and red, respectively, and MTs
in green [19].

as C/kBT = 80 ∼ 110 nm by different approaches [14–16]. On the other hand, the cytoskeleton

filaments are dynamically unstable in their structure, therefore the modulus is measured from

chemically stabilized filaments. Under physiological conditions, B/kBT has been experimentally

measured for intermediate filaments (1 ∼ 2µm) [17], F-actin (17µm) and microtubules (5.2

mm) [1].

Understanding of the mechanics and dynamics of biofilaments has been in focus for last

few decades under various conceptual considerations [20–25]. Confinement is one of essential

and natural designs to study those properties. Also, it provides better insight into biological

process, for example, DNA packaging in viruses [26], DNA segregation in bacteria [27], and

protein exiting ribosome through a narrow cylindrical pore [28]. In the case of cytoskeleton

filaments, concerning their typical contour lengths of order of few tenth of microns compared

to the typical cell size of few microns, they are not only confined in a soft geometrical space

but also effectively entangled with each other by forming a network [29, 30] (See Fig. 1.1 for

schematic description). In this environment, the filaments often exhibit a peculiar shape of

highly curved [31–33], circled shape [34–38], and self-assembled bundles [39–42] (not exactly
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due to the confinement though), which certainly could be a good hint for understanding the

bulk properties of a single filament. Based on the theoretical studies, many efforts of in vitro

experiments to mimic the confinement relevant biological process has been intensively made so

far.

In experiments, several types of geometrical confinements are modelled as tubelike [43–45],

2D plane [46], nanoslit [47], and a nano-and biaxial-channel [48,49]. Polymer melts or solutions

also generate an effective confinement to a wiggled tube which is created by surrounding poly-

mers [21, 50–52]. In particular, 2D confinement is conceptually appealing, but experimentally

difficult to realize. Practical examples of polymers confined in 2D are polymers adsorbed to

surfaces [46], and polymers constrained under the bilayer of a membrane [53]. In these systems,

the polymers are not completely confined but they are considered as quasi-two-dimensional.

Confinement is often an experimental necessity, in microscopy all segments need to be nearly in

focal plane to be seen and traced. For instance, the DNA molecules in bulk form random coils.

When brought into the 2D surface, the coiled DNA is unfolded over the surface. Technically

it becomes convenient to monitor the motion of whole segments within the allowed optical

resolution.

Theoretical modelling for biofilaments often considers that microscopic interactions aris-

ing from a subcomponent of structure are averaged or smoothed away. From the mechanical

point of view, therefore, all biofilaments have been tentatively described as a homogeneous

slender elastic rod. The description then involves some material constants like B and C. In the

simplest case, bending modulus is solely considered. This is the basis of the Worm-like chain

(WLC) model (Krathy and Porod [54], 1949) Hamiltonian. At short length scale, the chain

is essentially stiff while at large distances thermal fluctuations eventually cause it to coil. An

often introduced parameter to characterize differences is the persistence length lp = B/kBT .

Over the distance lp, the orientation de-correlates along the curvilinear distance over filament,

where an exponential decay of the correlation is anticipated for a local flexibility mechanism

provided that there is no an extra correlation between sections far apart along the filaments.

Under physiological conditions, lp has been experimentally measured for intermediate filaments

(1 ∼ 2µm) [17], F-actin (17µm) and microtubules (5.2 mm) [1].

The bending rigidity is an essential ingredient for determining the conformations of biofila-

ments. Depending on the ratio between contour length L and lp, the chain conformation can be

categorized into three regimes: rod-like (L ≪ lp), semiflexible (L ∼ lp), and flexible (L ≫ lp)

as illustrated in Fig. 1.2. The average size of chain is calculated by the mean square end-to-end
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Figure 1.2: Schematic representations and fluorescence images of the three main cytoskeleton
components. (a) MTs (b) Actin- (c) Intermediate-filament, three filaments are different in their
stiffness lp and the diameter ø. [50]

distance

〈R2〉 = 2l2p
[

L/lp + e−L/lp − 1
]

, (1.1)

which is also used to determine lp. In the limit of L/lp ≫ 1, the flexible chain becomes

random-walk conformation 〈R2〉 ≈ 2lpL with effective bond length b = 2lp (Kuhn length). In

the opposite limit of L/lp ≪ 1, the chain behaves like a rod 〈R2〉 ≈ L2.

A very long flexible polymer like DNA coil can have a number of possible internal structures.

In the region where the segments are highly concentrated, the complex topological states like

knots or catenanes (in the presence of enzyme regulation) are naturally emerging [55]. These

states can profoundly impact the dynamics of polymer [56,57], the magnitude of the effect de-

pends strongly on the complexity of the knots [58]. Such complex topological states are indeed

observed in the course of DNA replication and recombination [59–61]. This could also be a

good example for manipulation of the physical models like ribbon apart from their biological

functions. There has been theoretical hypothesis [62–66] to predict the internal structure of

DNA. However, such structure is hardly distinguished in the experiment. In spite of the impor-

tance of internal structure of DNA molecules, it has never been directly put to a test due to

the experimental difficulties.
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On the other hand, the cytoskeleton filaments as a representative stiff polymer have a

smooth contour and stretched shape. Therefore, the thermal motion can be easily traced in

both in vivo [33] and in vitro [1, 4] experiment. Inspired by several experimental observa-

tions [4, 67–70], it has been suggested that the cytoskeleton filaments are adjusted into a 3D

helical structure in relatively large length scales. Yet, the characterization of helical state (ra-

dius and pitch) has not been documented. For a helical structure, the twisting mode becomes

appreciable as much as bending. This feature calls for an adaptation/augmentation of the

classical WLC model, which should give rise to qualitatively different features in mechanics and

dynamics of cytoskeleton filaments.

In many experiments, the cytoskeleton filaments display distinctive thermal motion [1,4,71],

which is characterized quantitatively by the lp-measurement [1–3,17]. The order of magnitude

of measured lp agrees between experiments for all filaments, but for the MTs and intermediate

filaments, the length-dependent stiffness is observed [2, 3, 17]. This is unprecedented feature

because it does not fit with standard WLC model where lp is given by a constant. Provisional

understanding of the length dependency of lp is attempted based on their highly complicated

structure. In terms of structural organization and mechanical properties, it was assumed that

the occurrence of axial slipping or shearing between dimers within protofilaments result in the

length-dependent stiffness [2,17]. Recently, there was a numerical study arguing that the length

dependency of lp may be a general feature for biofilaments [72]. Therefore, it is still in debate

whether lp is varying with length or not.

Besides the anomalous mechanics, the cytoskeleton filaments keep changing their shapes,

which is called polymorphism. This might be in analogy to the bacterial flagella filament, which

has a well-known helical structure [74] as shown in Fig. 1.4, plus undergoing conformational

transformations by changing the environmental conditions [75, 76]. This feature also might be

attributed to the sophisticated structures, but it has not been elucidated. In this sense, it defi-

nitely seems necessary to grasp on the inherent structure and mechanisms in a comprehensive

manner.

This thesis is devoted to the mechanics and dynamics of bio-filaments and -polymers in

the framework of WLC model. By working out several confined properties of the WLC, we

will also illustrate some shortcomings and present more advanced models. Throughout this

work, filaments are often considered in confined geometries, e.g. vicinity of a focal observation

plane, thin slabs, and paths defined by obstacles, all of which help revealing their dynamics and

mechanical properties.
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Figure 1.3: (a) Schematic description on self-assembly of MTs. α- and β- tubulin dimers
assemble into straight protofilament in alternative manner. The PFs start to interact laterally
forming a sheet with characteristic intrinsic inward curvature, and the sheet closes into a tube
forming a microtubules. (b) Depending on the number of PFs, MTs has different helical surface
lattices, (c) 14- and 16-PFs MTs are left- and right-handed lattice, respectively. (d) Isosurface
rendering of the electron density of a 15-PFs MTs are shown to have right-handed helical
lattice [73].
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In Chapter 2, we focus on the relaxation dynamics of a confined stiff filament modelled

by the WLC. The construction of the dynamics of the WLC is anisotropic. To keep track of

transverse and longitudinal quantities, we consider different frictions per unit length in both

directions, at least in analytics. By means of the scaling analysis and explicit calculation in

linear response theory, we suggest that the motion is characterized by different exponents cor-

responding to each dynamic regime. The results are corroborated by 2-d Langevin simulations.

It was recognized earlier that tension propagation plays a role in the early dynamics due to

the total contour length constraint [77]. For a chain strongly confined in a tube, the early

free regime ends when the lateral fluctuations experience confinement, which gives rise to an

intermediate dynamic regime illustrative for reptational motion: the filament is entangled with

the confining potential. The free regime and the entangled regime are calculated analytically

with their crossover function, the kinetic exponents are also predicted by a scaling analysis.

The analysis of the motion was primarily motivated by the numerical study of a WLC in an

array of obstacles. The findings for the longitudinal short time dynamics are fitted against the

theory with the measured transverse fluctuation at saturation as the only input. The agreement

between the measured and predicted prefactors is as good as it can reasonably be. In addition,

the relaxation of a grafted semiflexible polymer is studied both in absence and presence of the

obstacles. The main focus is on the orientational relaxation of the whole chain and of some

end-section by measuring auto-correlation functions. The latter study is directly motivated by

the DNA pinned under a vesicle experiment described next.

In Chapter 3, we analyze the images of DNA molecules obtained from fluorescence

microscopy. The experiment was carried out by Carlos Marques group at ICS [53]. This ex-

periment is motivated to mimic a cell adhesion event in vitro between a vesicle and a substrate

on which the DNA molecules are end-grafted. When a vesicle spreads over the substrate, a

grafted DNA molecule is stretched under vesicle and confined by biotin-straptividin chemical

bonds under the vesicle. Careful image analysis allows us to access the internal structure of the

DNA molecules. Applying the standard WLC model, we reveal an implication of internal friction

of the DNA, which varies from chain to chain. As one possible source of internal dissipation,

self-entanglement effects along the DNA contour are discussed. During unraveling of a given

coil, friction depends on the internal state ("topology"). We present a scaling argument, based

on the so-called gate model, to estimate the relaxation time for a self-entangled chain and

find it (much) longer than the Zimm relaxation time. This results in the occurrence of spots

concentrated in DNA under the vesicles attributed to sections not relaxed under the current
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Figure 1.4: Salmonella bacterial flagella (a) Swimming bacteria utilizes their helical flagella for
propulsion. (b) Polymorphic model of the filament. The model is based on the one by Calladine
(1978). The top panel shows morphology of the filaments and the bottom panel shows the
subunit arrangements within a short segment. The filaments are named from left to right: L-type
straight, normal, curly and R-type straight. The two subunit colours represent the two distinct
states of flagellin. The supercoil in normal is left-handed and in curly is right-handed [74].

spreading velocity. The setup, not designed for this purpose, invites to try and measure the

topological relaxation time in dedicated experiments.

In Chapter 4, we turn to the cytoskeletal filaments, in particular, the dynamical and me-

chanical properties of microtubules investigated through the image analysis. The images are

taken from the fluorescent MTs thermally fluctuating in the confined slab geometry, where the

MTs are almost flattened by the confinement. First, we establish statistics of the MTs helic-

ity by estimating helical pitch (measured as wavelength in 2-d) and radius. By implementing

quantitative image analysis, the thermal fluctuations of MTs are characterized by measuring the

effective persistence length, which is in good agreement with the previous experiments [2, 3].

As we proceed with one and the same filament while previous experiments averaged over many

filaments with likely different lattice helicity, we reveal the predicted fine structure of the per-

sistence length vs. length curve which is otherwise to some extend washed out. We will present

several types of conformational changes in MTs shape, and show that the motion is highly

cooperative and strongly correlated over the whole MTs contour. Although our findings do not
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conflict with the theoretical model developed earlier, we would like our data to be considered

per se and confronted with other possible theories (yet to come).

Chapter 5 will consider a priori helical filament described by the augmented WLC model

which we call Helical WLC (HWLC) comprising a twist and bending modulus. In three dimen-

sion, the ground state of the model is indeed helical satisfying the preferred twist and curvature

everywhere. When confined in two dimensions, the model exhibits a variety of shapes from

wavy to circular. Similar shapes such as looped waves, spirals, or circles are often found in

nature, for flagella, circular and coexisting of wavy and coiled shape are found [6]. The peculiar

shapes obtained from our model are coined the name "squeelix". A remarkable feature of the

squeelix is the occurrence of regions of flipped almost uniform curvature separated by "narrow"

regions where the twist is concentrated: the twist kinks. In analogy to soliton physics, we

introduce the twist kinks as quasi-particles and discuss the filament shape and its fluctuations

in terms of twist kink injection, twist kink interaction and twist kink diffusion. The control

parameter γ, a dimensionless combination of the four intrinsic model parameters, two elastic

ones, two geometrical ones (B, C and intrinsic bending and twist curvature ω1, ω3), governs

the injection energy: if γ > 0 , twist kinks can only be thermally activated in the reversed case

the system accepts a finite twist kink density limited by their mutual interaction. By means

of Monte-Carlo simulation using the density of states method, we show that the confined fila-

ments can thermally switch between discrete twist-induced conformational states, with some of

them exhibiting enhanced circularization probability while others display hyper-flexibility. The

general idea of this chapter is to start setting standards that provide fingerprints for filament

super-helicity, which may otherwise remain elusive.



Chapter 2

Dynamics of a confined semiflexible

polymer in narrow pores 1

In this chapter, we study the motion of a single semiflexible filament confined in narrow pores

with a diameter less than its persistence length. This gives an opportunity to review dynamics

and mechanical properties of a semiflexible chain. By means of scaling arguments and two-

dimensional Langevin simulations, we show that the stiff chain kinetics follows the reptation

picture, albeit with kinetic exponents (for the central monomer) different from those for flexible

chain reptation. For most stages of the dynamics, asymptotic power laws from scaling is

complemented by prefactors obtained analytically. These are calculated for an infinite chain

confined by a harmonic potential: the transverse and longitudinal dynamics of the chain are

explicitly investigated in the linear response regime.

2.1 A brief review on reptation dynamics of a flexible

chain

The dynamics of dense solution of long linear polymers is successfully described by the celebrated

reptation picture first proposed for a chain in an array of fixed obstacles [21,78,79]. A segment

of a long flexible polymer in a melt or dense solution experiences confinement to an effective tube

due to topological interactions. The tube diameter a, typically a few nanometers, is larger than

1This chapter presents results published in J. Chem. Phys. 103 044908 (2010) and Eur. Phys. J. E 32 119
(2010), respectively.
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Figure 2.1: Mean square displacement (MSD) of a central monomer g1(t) =
〈(Rn(t) − Rn(0))2〉 for the reptational motion of a flexible chain is plotted logarithmically
as a function of time [78]. The MSD shows four different dynamic regimes (See the text for a
brief explanation).

the monomer size b, typically 1/10 of a nanometer, but much smaller than the polymer coil size

of order hundred nanometers. The reptational motion of flexible chains is often characterized by

the mean square displacement (MSD) of the central monomer g1(t) (termed φn(t) in Ref. [78]),

which shows four different kinetic exponents corresponding to different dynamic regimes as

shown in Fig. 2.1. These exponents are confirmed by several numerical studies [80–82]. At

short times the monomers are governed by free Rouse dynamics g1(t) ∝ t1/2. After the so-called

entanglement time τe, the monomers are confined by surrounding chains. The segmental Rouse

motion takes place along the Random-Walk (RW)-type tube, projection to the geometrical

space thus leads to g1(t) ∝ t1/4. At Rouse time τR, the internal degrees of freedom are relaxed

but the chain still experiences tube confinement. The central monomer shows Fickian diffusion

along the RW-type tube, one hence finds g1(t) ∝ t1/2. After the reptation time τd, the chain has

left the initial tube and Fickian diffusion is observed g1(t) ∝ t1. Taking into account tube length
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fluctuations [78, 79], the reptation time for flexible chains of length S is τd ∼ S3(1 − a/
√
Sb)

this can be translated in an effective (depending on S) exponent larger than 3. A more detailed

description of the reptation dynamics can be found in Ref [78].

2.2 Application of reptation picture to a stiff chain

Recently, numerical studies by several authors show that the reptation picture applies to stiff

chains in very entangled solution [83–87]. The chain rigidity is described by the persistence

length lp, which is the decay length of the tangent vector correlations. Morse and other authors

reported that in highly entangled solution, the middle monomer’s mean square fluctuation de-

velops a “plateau” as an indication of reptational motion along the tube defined by surrounding

other chains [84]. Reptation dynamics is also observed numerically for semiflexible polymers

diffusing through porous media [88].

In this chapter, we study the motion of a single semiflexible non extensible chain diffusing

through porous media. We present results from computer simulations and propose a scaling

analysis extending previous results on free filaments [89] to the case of confined filaments. For

a free flexible chain, the motion of the central monomer is sub-diffusive until it is correlated

along the whole chain and Fickian diffusion sets in. On the other hand, due to the anisotropic

nature of fluctuations, the free dynamics of a semiflexible chain is much richer. It has been

shown numerically and by scaling arguments [89] that transverse and longitudinal displacements

do initially grow with different powers of time. The anisotropy in the friction per unit length

(similar to the one for a rigid rod [78]) has less impact. We will nonetheless distinguish be-

tween transverse ζ⊥ and longitudinal ζ‖ friction per unit length in the formulas for technical

reasons and some of results apply in three-dimension where ζ⊥ ≃ 2ζ‖ (in free space). In our

two-dimensional(2-d) Brownian Dynamics simulation ζ⊥ and ζ‖ are taken to be identical [90]. If

we have in mind chains on a solid substrate with no-slip boundary condition for hydrodynamics,

this is reasonable [91].
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2.3 Scaling theory

We use the continuous Worm-like Chain (WLC) model which successfully describes a number

of synthetic polymers as well as DNA [92]. It is ruled by the bending Hamiltonian H =
1
2
kBT lp

∫ S
0

(
∂2

r(s)
∂s2

)2
ds where the persistence length lp is linked to the bending modulus lpkBT

and s is the arclength parameter ranging from 0 to the chain contour length S. For the stiff

chain fragments or strongly confined weakly fluctuating chains we considered here, the Monge

representation is generally used where only transverse fluctuations around the straight shape

are taken into account.

H0/kBT =
1

2
lp

∫ S

0

(

d2
r⊥
ds2

)2

ds. (2.1)

The simplified Hamiltonian (Eq. 2.1) allows to access the transverse fluctuations of a free chain

accurately. Balancing the frictional force with the bending force −∂H0

∂r⊥
and random forcef⊥

leads to the Langevin equation for transverse fluctuations:

ζ⊥
∂r⊥
∂t

= −lpkBT
∂4r⊥
∂s4

+ f⊥ (2.2)

In this work, the thermal energy is taken as unit kBT = 1.

2.3.1 Equilibrium fluctuations

We present a scaling analysis for a semiflexible chain confined by a harmonic potential. For

a free chain equilibrium fluctuations are dominated by the smallest wave vector of order 1/S.

As a result, fluctuations per unit chain length are given as 〈δr2
⊥〉/S = S2/lp and 〈δr2

‖〉/S =

S3/l2p [93]. The very same quantities can be obtained for chains in a slit of width h. The

correlation length l1 in a slit has been first derived by Odijk [24] as l1 = (h2lp)1/3. The length

l1 can be thought of as the typical distance along the chain between contacts with the slit

walls, where the chain is deflected by the slit boundaries. The scaling argument hence states

that the bending energy of an arc of length l1 spanning the slit laterally is comparable to the

thermal energy. As a consequence, l1 also gives the confinement energy F = S/l1. The longest

wavelength is now ∼ l1 rather than ∼ S hence 〈δr2
⊥〉 = l31/lp ∼ h2 and 〈δr2

‖〉/S = l31/l
2
p. The

longest wavelength l1 along the contour has a longitudinal extension l1(1−h2/l21) = l1(1−l1/lp)
and the longitudinal chain extension is thus L = S(1 − l1/lp). These results suppose strong

confinement h < lp to ensure weak fluctuations. We may apply these results to estimate the
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correction to the disentanglement time τd due to end-to-end length fluctuations. The time τd

for a chain to diffuse out of its tube can be measured as the decay time of the chain end-to-

end vector correlation. The shortest tube length Lshort within typical thermal fluctuations is

Lshort ≈ L−
√

〈δr2
‖〉. Accordingly, we estimate τd = L2

shortSζ‖ to be

τd = ζ‖S
3



1 − l
3/2
1

S1/2lp



 . (2.3)

Here we approximate the average longitudinal chain extension as L ≈ S neglecting small

correction l1/lp. Writing τd ∼ Sνd, we obtain the effective (chain length dependent) exponent

νd from the logarithmic derivative, νd = d log τd/d logS.

νd = 3 + const.
h

(lpS)1/2
(2.4)

In the limit that lp → b, h → a, the exponent recovers the estimate for a flexible chain given

in Section 2.1 [78, 79].

2.3.2 Transverse dynamics

Transverse dynamics of a free chain is described easily starting from Eq. 2.2 [89, 94, 95]. The

longest relaxation time for a stiff chain of length S can be read as τS = ζ⊥S
4/lp from Eq. 2.2

. Conversely after a time t a section of size l(t) = (tlp/ζ⊥)1/4 relaxes. Inserting the relaxed

length into the transverse static fluctuation, we get 〈δr2
⊥(t)〉 = l3(t)/lp = (t/(ζ⊥l

3
p))3/4l2p. For

a free filament, we may write down the general form 〈δr2
⊥(t)〉 = (t/(ζ⊥l

3
p))3/4l2pF(l(t)/S) with

an unknown scaling function F(x) and F(0) = 1. The short time behaviour ∼ t3/4 should

crossover to Fickian diffusion for large times, hence F(x) ∼ x for large x.

Let us turn to the chain confined in a tube of radius a ∼ h. Free dynamics is preserved and

〈δr2
⊥(t)〉 ∝ t3/4 for short times l(t) < l1 when the central monomer freely explores the tube

section. The transverse fluctuation reaches the tube diameter at the entanglement time

τe = ζ⊥l
4
1/lp, (2.5)

and the topological constraints become relevant. For times (much) larger than τe, the transverse

fluctuation of the central monomer saturates at the tube width 〈δr2
⊥(t)〉 ∼ h2. This suggests
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that the amplitude of transverse fluctuation until saturation is governed by the following scaling

relation with a new scaling function F⊥(t/τe),

〈δr2
⊥(t)〉 = h2F⊥(t/τe) with τe = ζ⊥l

3
p(h/lp)

8/3 (2.6)

F⊥(x) ∼ x3/4 (x → 0), F⊥(x) ∼ 1 (x → ∞).

Fickian diffusion is expected after the disentanglement time τd.

2.3.3 Longitudinal dynamics

Due to the coupling between longitudinal and transverse fluctuations, describing the longitu-

dinal fluctuations is more delicate. Using the naive argument as for the transverse fluctuation

leads to identify 〈δr2
‖(t)〉 with the equilibrium fluctuation of S/l(t) independent sections of

size l(t), hence 〈δr2
‖(t)〉 = (S/l(t))(l(t)4/l2p) = S〈δr2

⊥(t)〉/lp. This result independent of ζ‖

is in fact incorrect. The reason is that tension propagation does not allow for this motion as

pointed out by Ref. [89]. Following Ref. [89], we use linear response and relate the longitudinal

fluctuation 〈δr2
‖(t)〉 to the average displacement 〈δr‖(t)〉 under a weak external longitudinal

force f‖, 〈δr‖(t)〉 = f‖〈δr2
‖(t)〉. Assuming the previous estimate of the longitudinal fluctuation,

the frictional force under the resulting motion would be ffrict = ζ‖S(S/lp)〈δr2
⊥(t)〉f‖/t and it

should balance the external force. The authors of Ref. [89] conclude that only a chain section of

length l2(t) = lp

(

t
l3pζ4

‖ζ−3

⊥

)1/8

can be equilibrated after time t. Hence, the chain segment l2(t)

is set into motion with velocity v ∼ f‖/(ζ‖l2(t)) and drifts a distance 〈δr‖(t)〉 = f‖t/(ζ‖l2(t)).

Applying the fluctuation dissipation theorem again leads to the final result of the longitudinal

fluctuation of a free chain: 〈δr2
‖(t)〉 = l2p

(

t

l3pζ
4/7

‖ ζ
3/7

⊥

)7/8

.

When a chain is confined in a tube, the transverse fluctuation saturates after time τe. On

the other hand, the tension propagates along the filament in the time τσ. Depending on the

ratio between τe and τσ, different kinetic regimes should be considered. In case of τσ < τe

that the longitudinal tension is equilibrated before the transverse fluctuation saturates, both

longitudinal and transverse fluctuation grow with ∼ t3/4. This regime is satisfied for a short

stiff or ill-confined filament and less relevant to our work.

Another regime is τe < τσ, where the transverse fluctuation is equilibrated before longi-

tudinal tension propagates over a whole filament. For smaller times the chain behaves like a
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free chain and the previous result applies as 〈δr2
‖(t)〉 ∼ t7/8. At larger times there is an inter-

mediate regime τe < t < τr, where the (longitudinal) internal modes relax before the chain,

now correlated over its whole length, diffuses along the one-dimensional tube. (The expres-

sion for the internal relaxation time τr is derived later in Eq. 2.8). The latter diffusion regime

should obey 〈δr2
‖(t)〉 = t/(ζ‖S) for t > τr. In the intermediate regime of internal longitudinal

relaxation, lateral fluctuations are relaxed. The dynamics must hence be independent of the

transverse friction ζ⊥. In particular, the dynamical correlation length l3(t) should be indepen-

dent of the transverse friction ζ⊥. The crossover scaling from l2(t) to l3(t) has the following

form: l3,2(t) = l2(t)G(t/τe) with G(x) = 1 for small arguments. For large arguments, the

transverse friction has to drop out from the asymptotics. Taking into account the expression of

l2(t), this imposes G(x) ∼ x3/8 for large arguments. The explicit asymptotics l3(t) is deduced

as l3(t) = lp
√

t
ζ‖l3

1

. Applying linear response and fluctuation-dissipation theorem, we obtain the

longitudinal MSD in this regime:

〈δr2
‖〉 = h2

√

t

ζ‖l
3
1

. (2.7)

This intermediate longitudinal regime smoothly crosses over to Fickian diffusion along the tube

at the internal relaxation time τr:

τr = ζ‖l
3
1

(

S

lp

)2

= ζ‖S
2h2/lp. (2.8)

In the crossover region t ∼ τr, the chain ends are only marginally correlated and 〈δL2〉 ∼ 2〈δr2
‖〉

on the other hand L should almost show equilibrium fluctuations described earlier ∼ Sl31/l
2
p.

Eq. 2.7 indeed satisfies 〈δr2
‖〉 ∼ Sl31/l

2
p for t ∼ τr.

Formally the expressions obtained for τe and τr do not ensure that the necessary condition

τr > τe is satisfied. The physical reason is clear: we do not expect the
√
t regime for a rod (in a

smooth, say cylindrical, confinement) neither for a free chain. More precisely, the width of the
√
t regime can be characterized by τr/τe =

ζ‖
ζ⊥

S2

l2p

(
l2p

〈r2

⊥〉

)1/3

which should be larger than unity

(at the scaling level). In the simulation, the
√
t regime will often be found to extend over more

than one decade in time with an amplitude close to the predicted one (more precise predictions

beyond scaling will be given below). This regime is not seen for the stiffest or ill-confined chains.

At the disentanglement time τd discussed earlier (Eq. 2.3), the diffusion becomes d-dimensional.
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t < τe τe < t < τr τr < t < τd t > τd

ν⊥ 3/4 0 0 1
ν‖ 7/8 1/2 1 1

Table 2.1: Kinetic exponents for the mean square displacement 〈δr2
⊥,‖〉 ∝ tν⊥,ν‖

Longitudinal chain fluctuations are summarized as follows.

〈δr2
‖(t)〉 =







l2p( t

l3pζ
4/7

‖ ζ
3/7

⊥
)7/8F‖,1(t/τe) (t < τr)

F‖,1(x) ∼ 1 (x → 0), F‖,1(x) ∼ x−3/8 (x → ∞)

h2
√

t
ζ‖l3

1

F‖,2(lp
√

t
ζ‖l3

1

/S) (τr < t < τd)

F‖,2(x) ∼ 1 (x → 0), F‖,2(x) ∼ x (x → ∞).

The kinetic exponents in various regimes are summarized in Table 2.1.

The motion of the central monomer in the direction perpendicular to the initial end-to-end

vector measured in simulations also reflects tube undulations explored by the central monomer

during its longitudinal motion. Assuming that tube wiggles reflect transverse equilibrium chain

fluctuations (as is shown by the simulation results), the associated perpendicular fluctuations

grow with time as 〈δr2
⊥〉 ∼ 〈δr2

‖〉3/2/lp, which exceeds h2 at large enough times. In the regime

of internal relaxation (τe < t < τr), 〈δr2
⊥〉 = h2{1 + (h/lp)

(

tζ−1
‖ l−3

1

)3/4} where the second

term, due to longitudinal diffusion along undulations, eventually dominates for somewhat larger

chains (S > l2p/l1). In the reptation regime, 〈δr2
‖〉 ∼ t/(ζ||S) leads to

〈δr2
⊥〉 ∼ l2p

t3/2

(ζ||Sl2p)3/2
. (2.9)

After the internal (longitudinal) relaxation time τr, we hence expect an upturn ∼ t3/2 coming

out the plateau of the transverse fluctuations.

Some results obtained for infinite chains confined by a harmonic potential [96] will be used

later for a semi-quantitative fitting of the data. We present the scaling results with the numerical

prefactors below. The detailed calculation will be given in Section 2.5. As in the simulation,
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we put here ζ⊥ = ζ‖ = ζ .

〈r2
⊥(t)〉 = 2

Γ[1/4]

3π

(

t

ζl3p

)3/4

l2p (t < τe)

〈δr2
‖(t)〉 =

1

27/8Γ[15/8]

(

t

ζl3p

)7/8

l2p (t < τe)

〈δr2
‖(t)〉 = l2p

(

〈r2
⊥〉

2πl2p

)1/2
√
√
√
√

t

ζl3p
(τe < t < τr)

τr

τe
=

(

2
Γ[1/4]

3π

)4/3
S2

4l2p

(

l2p
〈r2

⊥〉

)1/3

(2.10)

2.4 Simulation

2.4.1 Simulation descriptions

Confinement with obstacles

We modelled a semiflexible chain immersed in 2-d matrix containing obstacles as shown in

Fig. 2.2. In practice, obstacles are repulsive to each monomer so that traveling across the

obstacles is not allowed. Series of point obstacles in 2-d can substantially reduce the chain

fluctuation. Furthermore, chain connectivity does not allow to circumvent obstacles. We

introduce obstacles of various surface densities c = 1/h2 with h being the typical distance

between them. Two types of obstacle arrangements are considered: regular obstacles on a

square lattice and quasi regular distributions where the positions of obstacles are perturbed (by

a random displacement smaller than the lattice spacing) away from the lattice sites. The latter

we term (weakly) disordered below. For the disordered obstacle densities we consider here, the

aim is to suppress square lattice artifacts, like the occurrence of straight easy-diffusion paths.

At any time, close obstacles define a tube for a given chain, we may assume the tube diameter

to be approximately h. As the lateral diffusion is restricted, the motion of chains takes mainly

place along the longitudinal direction.
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Figure 2.2: Configuration chain S = 32b, lp = 70b of diffusive motion with obstacles in dis-
ordered/regular distribution. The trajectories are captured at every 200 t0 in disordered matrix
(a) c = 1/(5b)2, and at every 1000 t0 in regular matrix (b) c = 1/(5b)2 and (c) c = 1/(3b)2.
The numbers indicate snapshots in chronological order.

Langevin simulation

For a confined chain described above, we performed Langevin simulations. The Brownian force

gives rise to a microscopic time scale associated with the diffusive motion of one monomer

t0 = b2/D, which is used as the unit time. Langevin equation for each monomer is integrated

with step size δt = 2.5 × 10−4t0. In order to describe the movement of a monomer, we

integrated the following Langevin equation:

ζ
dri

dt
= F

bend
i + F

link
i − ∇ULJ

i + fi, (2.11)

Here we assume that the friction coefficient ζ is uniform for the simulations, and it is
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related to the diffusion constant D via ζ = kBT/D. Each chain consists of N -monomers and

the position of i-th monomer is described by ri. The corresponding local tangent vector is

ui = ri+1−ri. The bending force F
bend
i is derived from the bending energy of discrete form for

a WLC model, F
bend
i = −∂φbend

∂ri
, φbend = lpkBT

b

∑N−1
i=1 (1 − ui · ui+1/b

2) [97,98]. The link force

F
link
i provides the connectivity to the chain. For all monomers connected, we add the standard

finitely-extensible-nonlinear-elastic (FENE) potential between neighboring monomers [99].

UF ENE(r) =







−0.5kbln[1 − (r2/r2
0)], r ≤ r0

∞, r ≥ r0

, (2.12)

where we choose r0 = 1.5b and the molecular spring constant to be kb = 12, 74, 150 kBT/b
2

for lp = 10b, 70b, 140b, respectively, in order to keep the bond length to be unity. The total

Lennard-Jones potential ULJ
i acting on i-th monomer is the sum of all interaction potentials

ULJ
i,j from all other monomers and obstacles, which is given by

ULJ
ij =







4ǫ[(σ/rij)
12 − (σ/rij)

6 + 1/4], rij ≤ 21/6σ

0, rij ≥ 21/6σ
, (2.13)

where σ is related to the monomeric volume size and set to be unity. The energy strength ǫ is

chosen to be 0.025 for both nearest monomer interactions and monomer-obstacle interactions

so that the excluded volume is large enough to prevent crossing obstacles and at the same time

keep the volume of obstacle as small as possible. The interplay of all interactions determines the

bond length to be 1.01b with negligible fluctuation (less than 2%). The bond length fluctuation

rules the very short time kinetics (t < t0) and is characterized by Rouse-like MSD with t1/2

growth. In the remainder, we always discard this early regime. The Brownian force fi is assumed

to be Gaussian with zero mean and auto-correlation given by 〈fi(t)fi′(t′)〉 = 4Dδ(t− t′)δ(i− i′).

We considered stiff chains consisting of N = 8, 16, 32, 64 monomers for various values of

lp = 10b, 70b, 140b. Chain length S = Nb varies from 0.05lp to 6lp.

2.4.2 Simulation Results

Diffusion constant

In a 2-d porous media, the lateral chain fluctuations are restricted and central monomers follow

the tube defined by surrounding obstacles (See Fig. 2.2). At regular matrix, the orientational
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(a) (b)

Figure 2.3: Center of mass trajectories of a chain N = 32, lp = 70b in a disordered matrix. (a)
c = 1/(3b)2 (b) c = 1/(40b)2. The scale bar has a length 10b.

degree of freedom is suppressed at high obstacle density but diffusion in longitudinal direction is

not restricted. At disordered matrix, the tube ends choose renewal directions resulting in a tube

shape similar to the relaxed conformation in the obstacle-free space. Fig. 2.3 demonstrates the

trajectories of the center of mass motion (N = 32, lp = 70b) on disordered matrices. At low

obstacle density (h = 40b), the center of mass trajectories are like random-walks (see Fig. 2.4).

Upon further confinement, the chain has an inclination of moving straight along the longitudinal

direction. The center of mass mainly travels along the longitudinal direction of the chain (see

Fig. 2.3(a)) and seldom switches the direction of motion. The very stiff filaments (S ≪ lp)

kinetics resemble the kinetics of needle-like molecules discussed by [100–102].

The diffusion constant DN in d-dimensional space is defined through

2dDN = limt→∞

[

〈(δR(t))2〉
t

]

. (2.14)

The long time dynamic behavior recovers Fickian diffusion, which assumes that the diffusion

constant is DN = kBT/Nζ with ζ being the frictional coefficient of a monomer. Figure 2.4

shows the obstacle density dependence of 〈(δR(t))2〉/DNt at both regular and disordered ob-

stacle distribution. At low obstacle density (cS2 < 1), chains are not confined, the values of

〈(δR(t))2〉/DN t collapse to the value 4 of free chain diffusion in 2-d. The difference in diffusion

trajectories on regular or disordered matrix is more pronounced at high obstacle density. When

the obstacle distribution is regular, the motion in longitudinal direction is not hindered even at
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Figure 2.4: (a) Diffusion constant of a chain (lp = 70b (filled), lp = 140b (empty)) at regular
distribution of obstacles (b) with disordered obstacle distribution. The numbers in the legend are
values of chain lengths and lp. Two solid lines in each panel show the level of diffusion constant
of a free chain in 2-d (higher) and 1-d (lower), respectively and the dashed line indicates the
obstacle concentration where chains start to be confined.

high obstacle density. As the motion is effectively confined to a tube, the translational mean

square displacement per unit time becomes half of the free chain value, 〈(δR(t))2〉/DN t ∼ 2,

at large obstacle density, indicating that the diffusion is mainly one-dimensional. When the

chain moves through disordered obstacles, limt→∞(δR(t))2/DN t is further reduced beyond 2

suggesting that the diffusion constant (expected for asymptotically long times) is lowered by

bending energy barriers associated with changes of direction.

Relaxation time τd

While diffusing through the 2-d matrix, the rotational correlation of the end-to-end vector of the

chain decays. We define the unit vector along the end-to-end vector direction P(t) = rN (t)−r1(t)
|rN (t)−r1(t)|

at time t. Then the relaxation of auto-correlation function 〈P(t) · P(0)〉 decays exponentially

with characteristic time τd.

The chain length dependence of the relaxation time τd is shown in Fig. 2.5 for various values

of h at both regular and disordered matrix. The theoretical estimates for the reptation time
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Figure 2.5: Orientational relaxation time τd vs. N for a chain diffusing in (a) a regular matrix
and (b) a disordered matrix. The numbers in the legend indicate the average obstacle spacing
h for each symbol. The chain persistence lengths are lp = 70b for closed symbols and lp = 140b
for open symbols. The values in y-axis are multiplied by h.

(shown in Section 2.3.1) agree with our simulation results on disordered matrix. For h = 3b,

relaxation time shows τd ∼ N3, as predicted in the limit of h ≪ lp
√
N . At moderate density,

we find the relaxation time τd scales approximately τd ∼ N3.7. For short segments S ∼ h

(h = 40b), the exponent becomes smaller than 3.7, as expected from Eq. 2.4.

At regular matrix with high obstacle density (S ∼ lp ≫ h = 3b), τd increases with N faster

than ∼ N3.7. The chain is almost completely squeezed and end-reorientation through obstacles

requires large bending.

In our study, translation characterized by the chain self-diffusion time and reorientation

characterized by τd do generally not grow with the same power of chain length. This is in

contrast with experimental results for reptation in the melt [103] where a consistency condition

requires the test chain and the matrix chains (providing the obstacles) to behave alike.

Kinetic exponent

In order to investigate the influence of confinement on bending fluctuations in each dynami-

cal regime, we evaluated the MSD of center of mass 〈(δRCM(t))2〉 and the MSD of central

monomers g1(t). The MSD of center of mass 〈(δRCM(t))2〉 shows ∼ t behaviour for all kinetic
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regimes except for a weak plateau region around τe (in log/log representation), which is not

characteristic enough to describe the reptation kinetics. What is expected and observed from

the data (not shown) is that below τe both longitudinal and transverse motions of the center

of mass are diffusive while above τe only the longitudinal motion is diffusive (the transverse

fluctuation saturates). Hence the slope of the MSD of center of mass just decreases by a factor

2 around t ∼ τe. The MSD of central monomers g1(t) = 〈(rN/2(t) − rN/2(0))2〉 typically show

three kinetic exponents as expected from scaling theory. In order to verify the proposed scaling

exponents, we further decompose the mean square displacement of the center monomer into

two components. At given time t, the displacement rN/2(t) − rN/2(0) is projected to the local

chain tangent e
|| and its normal vector e

⊥ at t = 0.

g1(t) = gt
1(t) + gl

1(t) (2.15)

gt
1(t) = 〈|rN/2,⊥(t) − rN/2,⊥(0)|2〉
gl

1(t) = 〈|rN/2,||(t) − rN/2,||(0)|2〉.

In Fig. 2.6, the intermediate ∼ t0.5 regime is clearly seen, where transverse fluctuation

is expected to be saturated. For short times (t < τe) where g1(t) ∼ t3/4, g1(t) is mainly

dominated by growth of the transverse fluctuations. After the entanglement time t > τe, the

longitudinal MSD grows while the transverse MSD saturates, the growth of g1(t) ∼ t0.5 mostly

reflects longitudinal fluctuation. The reptation regime is followed by ∼ t1, where both transverse

and longitudinal fluctuations grow as t1. The intermediate regime showing g1(t) ∼ t0.5 is the

signature of confined dynamics.

Figure 2.6(b) and (c) demonstrate such longitudinal/transverse MSD of a filament N =

64, lp = 70b embedded in matrices with disordered obstacles. In the absence of obstacles, the

short time behavior of gt
1(t) and gl

1(t) show transverse and longitudinal dynamic growth ∼ t3/4

and ∼ t7/8, respectively, as expected from free filament kinetics. Both gt
1(t) and gl

1(t) become

diffusive in long time limit. In the presence of obstacles, the early free kinetics is interrupted by

confinement at time τe ∼ h8/3l1/3
p when the chain starts experiencing obstacles. The transverse

fluctuation gt
1(t) saturates at a “plateau” level, imposed by the tube width. The plateau value

in gt
1(t) corresponds to the size of average monomeric fluctuation within the tube ∼ h2. As the

chain enters the reptation regime, the longitudinal relaxation at intermediate times (τe < t < τr)

is depicted by g||
1 (t) that grows like ∼ t0.5 as predicted from Eq. 2.7. When obstacles are rare,

∼ t7/8 regime of free filament-like fluctuation is seen at short times. In the limit of large obstacle
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Figure 2.6: Time dependent growth of g1 lp = 70b, N = 64. The obstacle are distributed
with weak disorder with average spacing h, which is decreasing from top to bottom, h =
∞, 40, 20, 10, 7, 5, 3b (a) top panel is g1(t) (b) longitudinal MSD of central monomers with an
inset showing gl/t7/8. (c) transverse MSD of central monomers and the inset is gt/t3/4.

density such as h = 3b, the intermediate regime already starts at short times and is followed by

t1 regime. No free longitudinal regime can be seen in this case. After relaxation of the internal

degrees of freedom, the longitudinal MSD grows with time ∼ t1 in the reptation regime while

transverse MSD shows a sharp upturn ∼ t3/2 (Eq. 2.9). For the intermediate obstacle density

we expect to see ∼ t0.5 between t7/8 and t1 regimes. (Nevertheless, in our simulation with short

chains lp = 70b, N = 64, it was difficult to see ∼ t0.5 regime after t7/8 at intermediate obstacle

density.)

Our theory predicts the prefactors (Eq. 2.10) of time dependent transverse/longitudinal

MSD. The transverse fluctuation under strong confinement is predicted to be independent of
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Figure 2.7: The central monomer MSD g1(t) for a chain of length N = 64 with lp = 10b
(middle in blue) is compared with lp = 70b (bottom in red) on a regular matrix with h = 5b.
The top curve (in black) is for lp = 10b in unconfined matrix with h = 40b.

lp. Nevertheless the data in Fig. 2.7 show an increase of the plateau value for weaker confinement

where lp = 2h, S ≫ h. Below, we use the measured value of transverse fluctuation 〈r2
⊥〉 as an

input for evaluating Eq. 2.10.

- Amplitude of t7/8 in the early longitudinal MSD gl
1.

The plateau value 0.065 measured from the inset of Fig. 2.6(b) is compatible with the

prefactor 0.04, of t7/8 calculated from Eq. 2.10 with lp = 70b, ζ = 1.

- Amplitude of t3/4 in the early transverse MSD gt
1.

The plateau value 0.27 measured from the inset of Fig. 2.6(c) is in accordance with the

prefactor 0.27 of t3/4 calculated from Eq. 2.10, with lp = 70b, ζ = 1.

- Extension of the intermediate regime and amplitude of t1/2 in gl
1.

Fig. 2.7 shows the influence of stiffness on the length of the intermediate kinetic regime

∼ t0.5. For N = 64, chains with lp = 10b, 70b are compared. The cross over time τr

where t1 diffusion sets in is smaller for stiffer chain (lp = 70b), which agrees with Eq. 2.8.

The plateau value for a chain with stiffness lp is expected to be ∝
√

〈r2
⊥〉/lp. The plateau
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value 0.2 measured from the inset of Fig. 2.7(b) is close to the prefactor 0.16 of t1/2

calculated from Eq. 2.10 with lp = 10b, 〈r2
⊥〉 = 1.7b2, ζ = 1. The measured ratio 3.85 of

the plateau values between two chains with lp = 10b and lp = 70b is in good agreement

with the value 4.12 predicted from Eq. 2.10. The ratio between τr and τe is calculated

from Eq. 2.10 as ∼ 25 and measured from the ∼ t1/2 regime to be about ∼ 20 when

lp = 10b. When lp = 70b, both predicted value and measured values of τr/τe are about

2−3, which is markedly smaller. We can hardly observe the t1/2 regime for shorter chains

(N = 32, lp = 70b, h = 5b). Figure 2.8 demonstrates the range of parameters where

the intermediate t0.5 can exist when a chain with given persistence length lp = 10b varies

its length (S/lp > 1) as N = 16, 32, 64 under "tube widths" h = 5b and 40b. When

h = 5b, the intermediate regime t0.5 appears for longer chain lengths N = 32, 64 but not

for N = 16 and when h = 40b the chain is never confined enough to show t1/2 regime.

In Fig. 2.9, we illustrate the influence of disorder in the obstacle distribution. The transverse

fluctuation gt
1 in the reptation regime is larger for disordered matrix when obstacle spacing

is larger than h = 3b as disorder in obstacle arrangement allows larger fluctuation for less

confined chains. At the tightest confinement h = 3b where h/lp ≪ 1, however, gt
1 is smaller

at the disordered matrix. In the case lp ≫ h, a chain is constrained by many gates within

one persistence length. Due to the chain stiffness the effective tube diameter is controlled by
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Figure 2.9: Transverse/longitudinal component of g1(t) for lp = 70b, N = 32 in (a) a disordered
matrix and (b) a regular matrix. The average obstacle spacing h is decreasing from top to
bottom, h = ∞, 40, 20, 10, 7, 5, 3b. The transverse fluctuation in the reptation regime is larger
in the disordered matrix for h > 3b.

the tightest obstacles. In this limit the fluctuation is now smaller with disorder. The gt
1 ∼ t1

regime sets in earlier in the regular matrix when average obstacle spacing is h > 3b. We do

not observe any ∼ t1/2 regime from longitudinal component of gl
1(t) as expected for very short

chains S/lp ≪ 1. At all obstacle densities, longitudinal fluctuations collapse on top of each

other at early times, indicating that the dynamics is controlled by the chain frictional coefficient

only. At long times, the larger obstacle density plays a role on the chain diffusion as also

discussed earlier in Section 2.4.2 and 2.4.2.

Below, we summarize the obstacle density dependence of semiflexible chain kinetics captured

by MSDs of monomers.

• Low obstacle concentration (S < h)

The influence of obstacles is negligible, and the free chain kinetics is recovered. The

transverse fluctuation grows with ∼ t3/4 and the longitudinal fluctuation with ∼ t7/8.

• Moderate obstacle concentration (h/lp ≤ 1, S > h)

The transverse kinetic exponent varies ∼ t3/4, t0, and t3/2 before the Fickian diffusion

∼ t1. The longitudinal fluctuation shows t7/8 at earlier times before the confinement

affects the chain motion. At entanglement time, chain enters reptation regime where
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MSD grows with t1/2 followed by ∼ t1. The exponent 0.5 is only seen for longer chains

(S ≥ lp)

• Large obstacle concentration (h/lp ≪ 1, h = 3b) The longitudinal fluctuation at very

short time is already confined and kinetics is depicted by exponent 0.5 followed by 1. The

exponent 0.5 is not seen for very short chains (S ≪ lp). In dense regular matrix, the

Fickian diffusion sets in earlier.

2.5 Drift and diffusion of a semiflexible chain confined by

a harmonic potential

2.5.1 Equilibrium statistics of the confined filament

Let us consider a Worm Like Chain of total length S and persistence length lp laterally confined

by a Harmonic potential of stiffness κh per unit length Vconf =
∫ S/2

−S/2
1
2
κhr

2
⊥(s)ds, where the

curvilinear coordinate along the chain is ranging from −S/2 to S/2. In practice we consider

chains of length S → ∞ with (quasi) continuous spectrum. Let us introduce the Fourier

transform fq =
∫ S/2

−S/2 ds f(s) exp(−iqs), f(s) = 1
S

∑

q fq exp(iqs). In the limit of continuous

spectrum the sum over q turns into an integral 1
S

∑

q → ∫+∞
−∞

dq
2π

. We represent the total

Hamiltonian accounting for bending energy and confinement in Fourier space as:

H =
1

S

∑

q

(lpq
4 + λq2 + κh)r2

⊥,q/2 − λS, (2.16)

where we introduced the force λ ultimately taken to be zero to ease the calculation of aver-

ages. Here and below we use thermal units with kBT = 1. The free energy of the quadratic

Hamiltonian Eq. 2.16 can be expressed as a sum over Fourier modes:

F =
α

2

∑

q

log(lpq
4 + λq2 + κh) − λS + const, (2.17)
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with α the number of transverse directions. Below, we will use the continuous limit and omit

the inessential constant:

F = S
α

2

∫
dq

2π
log(lpq

4 + λq2 + κh) − λS. (2.18)

Obviously the average transverse displacement vanishes 〈r⊥〉 = 0. The transverse fluctuation

averaged along the chain 1
S

∫ S/2
−S/2 ds〈r2

⊥〉 is obtained by taking the derivative of the free energy

per unit length with respect to κh/2 at λ = 0:

〈r2
⊥〉 =

∫ α

κh + lpq4

dq

2π
, (2.19)

where we do not mention the unessential average along the chain anymore. Calculating the

integral we get:

〈r2
⊥〉 =

α

2
√

2

l31
lp
. (2.20)

The fluctuation 〈r2
⊥〉 is governed by the static correlation length l1 = lp(κhl

3
p)−1/4 in the

confining potential. Thus the harmonic potential with stiffness κh is related to the effective

channel width h by h = 〈r2
⊥〉1/2 ∼ l1/8

p κ
3/8
h . The length l1 is the typical contour length between

two deflected points due to confinement [25]. In the following, in view of later generalization,

we will use the correlation length l1 rather than the stiffness κh explicitly related to the harmonic

potential. Integrating Eq. 2.20 back with respect to κh/2, we obtain the confinement energy

F = S α√
2l1

. We may also take the limit κh → 0 of a free chain. The fluctuation is then

governed by the chain length S, the integral in Eq. 2.19 is diverging like ∼ 1/(lpq
3
min) with

qmin ∼ 1/S in accordance with the scaling 〈r2
⊥〉 ∼ S3/lp [90, 93, 94].

The first derivative of the free energy with respect to λ gives the average chain extension

〈L〉 and the second derivative its fluctuation 〈δL2〉:

〈L〉 = −∂F

∂λ
= S − S

α

2

∫
dq

2π

q2

lpq4 + λq2 + κh
(2.21)

〈δL2〉 = S
α

2

∫
dq

2π

q4

(lpq4 + λq2 + κh)2
(2.22)
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By setting λ = 0, we obtain

〈L〉 = S

(

1 − α

4
√

2

l1
lp

)

(2.23)

〈δL2〉 =
α

16
√

2

Sl31
l2p
. (2.24)

We apply the above expressions for the average extension and its fluctuation for a free chain

by setting κh = 0 in the integrals. The integrals are now formally divergent and dominated by

qmin ∼ 1/S in agreement with the scaling 〈δL2〉 ∼ S4

l2p
[90, 93, 94].

2.5.2 Transverse dynamics

We consider a very long almost straight filament with a transverse force distribution f⊥(s, t)

applied at positive times. The transverse response function R⊥(s, t) measures the response

(average displacement here) after a time t to the excitation (transverse force, f⊥) a distance

s away. The average displacement is given by the weighted sum of the force at previous times

and different position as follows

〈r⊥〉 =
∫ ∞

−∞
ds′

∫ t

0
dt′R⊥(s− s′, t− t′)f⊥(s′, t′). (2.25)

Often we will specialize to the case of a force applied in the middle of the filament (s = 0).

In the harmonic confinement potential, the dynamical equation for the average displacement

under an external force distribution f⊥(s, t) is given by

ζ⊥
∂〈r⊥〉
∂t

= −lp
∂4〈r⊥〉
∂s4

− κh〈r⊥〉 + f⊥, (2.26)

where ζ⊥ is transverse frictional coefficient per unit length2. After Fourier-Laplace transforma-

tion, we obtain,

pζ⊥〈r⊥,q〉 = (−lpq4 − κh)〈r⊥,q〉 + f⊥,q, (2.27)

2When hydrodynamic interactions are taken into account, the frictional coefficients per unit length, ζ‖

and ζ⊥, are similar to those for a rod and carry logarithmic corrections in free space, ζ‖ = 2πηs/ log(S/b),
ζ⊥ ≈ 4πηs/ log(S/b) with ηs being solvent viscosity and b the chain thickness. In our case of fluctuating
filaments, the upper cut-off length S is replaced by the longitudinal/transverse dynamic correlation length
respectively. For confined filaments the details of hydrodynamic boundary conditions matter.
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Figure 2.10: The position dependence part g(s̃4) in response function R⊥(s, t). The region of
negative values suggest that the corresponding chain section moves opposite direction against
applied force at s̃ = 0.

where p is the Laplace variable conjugated to time. The response function is written as

R⊥(q, p) = 〈r⊥,q〉/f⊥,q after Fourier-Laplace transformation, which can be read from Eq. 2.27:

R⊥(q, p) =
1

pζ⊥ + lpq4 + κh

. (2.28)

Using the fluctuation-dissipation theorem, the response function gives also access to the trans-

verse fluctuation of the center monomer. The fluctuation-dissipation theorem is given as being

written here for the transverse fluctuation:

〈r⊥(s, t)r⊥(0, 0)〉 =
∫ ∞

t
R⊥(s, t′)dt′. (2.29)

A similar equation holds for longitudinal fluctuations where transverse quantities are replaced by

longitudinal quantities (with also a different response function). The proper response function

for the central monomer R⊥(s = 0, p) is obtained from Eq. 2.28 through the inverse Fourier

transform: R⊥(s = 0, p) =
∫∞

−∞ R⊥(q, p) dq
2π

. Performing this integral, the drift of the center

monomer reads:

〈rc
⊥(0, t)〉 = f〈r2

⊥〉γ(3
4
, tκh/ζ⊥)

Γ(3
4
)

, (2.30)

where 〈r2
⊥〉 stands for the equilibrium fluctuation (Eq. 2.20) in the direction of the force (hence

α = 1 should be taken in Eq. 2.20) and Γ(β), γ(β, x) are the complete and incomplete Gamma
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functions of index β. The small argument expansion γ(β, x) ∼ xβ/β restores the free transverse

drift fΓ(1/4)
3π

(tζ−1
⊥ l−3

p )3/4l2p. This power law asymptotics was previously given in Ref. [94]. At large

times the average transverse displacement saturates, the ratio of the complete to incomplete

Gamma function goes to unity, and the static fluctuation-dissipation theorem is recovered.

Dynamical fluctuations are also given by the fluctuation-dissipation theorem: 〈(δrc
⊥)2〉 =

2α
p
R⊥(s = 0, p) = 2α〈rc

⊥〉/f and dominate over drift at small enough time/force. Below, we

now describe how the shape of the filament develops in time. To that end, we need R⊥(s, t)

which gives the average transverse velocity through 〈dr⊥
dt

〉 = R⊥(s, t)f . Using R⊥(q, t) =
1

ζ⊥
exp (−κht/ζ⊥) exp (−lpq4t/ζ⊥), we express R⊥(s, t) by means of hypergeometrical series.

R⊥(s, t) =
1

ζ⊥

(

ζ⊥
lpt

)1/4

exp(−κht/ζ⊥)g(s̃4) (2.31)

with : s̃ =
s

λt
, λt ≡ 4

(

ζ⊥
lpt

)−1/4

,

where s̃ is the curvilinear coordinate reduced by the actual correlation length λt at time t. The

scaling function g(x) giving the shape of the velocity profile along the filament can be expressed

as:

g(x) =
1

π

(

Γ[
5

4
]F[{}, {1

2
,
3

4
}, x] − 2

√
xΓ[

3

4
]F[{}, {5

4
,
3

2
}, x]

)

,

with hypergeometrical series depending on one set of indices only (the set {ai} is empty),

F[{ai}, {bj}, x] =
∞∑

n=0

Πi,j
Γ[ai + n]Γ[bj]

Γ[ai]Γ[bj + n]

xn

n!
.

The function g(s̃4) is plotted as a function of s̃ in Fig. 2.10. It oscillates and changes sign first

at about s̃ = 0.86. The region of negative values suggests that the corresponding chain section

moves opposite direction against applied force at s = 0. The length scale of oscillations is given

by the transverse dynamic correlation length λt in Eq. 2.31. These oscillations are reminiscent

of the static correlations obtained by Choi et al. [104], which can be also derived from the

dynamic response function Eq. 2.28 with p = 0.

For a finite filament, the correlation length eventually reaches the filament length. At

larger time, the shape becomes sensitive to the boundary condition applied at the end of

filament. In principle, the linear response function can also be applied to a free filament

(κh = 0), where the response by a constant transverse force f will be eventually large. In
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this case, it is important to discuss the limitation of the linear response. Recently, Obermayer

and Hallatschek [105] argued that the first non-linearity arises from the coupling of longitudinal

and transverse response. The qualitative argument is the following: due to filament length

conservation, a large lateral deformation can only develop upon dragging in length from the

side, hence creating a longitudinal motion. The associated drag force generates a tension

distribution along the filament. This tension σ acts against developing curvature along the

filament via the standard restoring force σ∆2r⊥, which is non-linear in r⊥ and f . Repeating

the scaling arguments of Ref. [105] in our notations leads to the crossover time tn.l.

tn.l. ∼
ζ

11/7
⊥ ζ

−4/7
‖ l3p

(flp)16/7
. (2.32)

After time tn.l., the response is not linear. At early times, the linear response applies as the

fluctuation dominates over drift at weak force regime f〈r⊥〉 < 1, this criterion defines the

characteristic time tf

tf ∼ ζ⊥l
3
p

(flp)8/3
. (2.33)

Formally, there is a time window tf < t < tn.l. to see a clean drift which is linear in force

at strong force regime flp ≫ 1. Considering 1 kBT = 4.1 pN·nm, f = kBT/lp ∼ 0.1 pN

corresponds to the stretching transition. At weak force regime flp < 1, on the other hand,

the linear regime is washed out by fluctuations, and the nonlinear response sets in before tf .

We come back to the propagation of tension described in Section 2.3.3. Recently, nonlinear

dynamics is described in response to sudden changes in externally applied forces [106], where

the tension dynamics within the various asymptotic limits is investigated for particular scenarios.

2.5.3 Longitudinal dynamics

We introduce the longitudinal coordinate r‖(s). At equilibrium (in the absence of force) the

variation of 〈r‖〉(s) is almost proportional and very close to that of s in the weak fluctuation

regime of interest [107]. At the expanse of a slight renormalization of s, we may hence replace

〈r‖〉 by s and define the relevant deviation δr‖ = r‖ − s with zero average at equilibrium.

In the following, we will omit small inessential corrections arising from the renormalization

of s. As mentioned in Ref. [89], due to filament incompressibility, longitudinal fluctuations
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Figure 2.11: Scaling function Fharm obtained by numerical back transform of Eq. 2.39 together
with the matched asymptotics, Eq. 2.42.

are limited by the propagation of the tension σ. Filament incompressibility expressed to the

lowest order by
〈

dr‖,s

ds

〉

≈ 1 − 1/2
〈(

dr⊥,s

ds

)2
〉

induces coupling between the longitudinal and

transverse displacements iq〈δr‖,q〉 = −q2 1
S

〈r⊥,qr⊥,−q〉/2. There is the linear relation between

the deformation
〈

dδr‖
ds

〉

and the tension σ related to the incompressibility constraint, explicitly:

〈

dδr‖
ds

〉

= Jσ, (2.34)

where the compliance J happens to have dimension of length (kBT = 1). We anticipate this

relation to be local in space (J does not depend on q) but not in time, thus J may depend on

the Laplace variable p. An explicit derivation is given in Appendix 5.6 as

J =
l31
l2p

1

2
√

2{1 + (1 + p̃)1/4}{1 + (1 + p̃)1/2}
with p̃ = pτe, (2.35)

where τe is the entanglement time introduced earlier as τe = ζ⊥/2κh = ζ⊥l
4
1/2lp.

All we need is to calculate the longitudinal response function which also gives access to the

fluctuations. Under the external force fq, the response 〈δr‖,q〉 satisfies the dynamical equation:

ζ‖
d〈δr‖,q〉

dt
=

dσq

ds
+ fq, (2.36)
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with ζ‖ being longitudinal frictional coefficient per unit length.

Next we are going to use the compliance J to express the longitudinal response function.

Inserting iq〈δr‖,q〉 = Jσq in the longitudinal dynamical equation Eq. 2.36 yields the response

function R‖(q, p) = 〈δr‖,q〉/fq as a function of J :

R‖(q, p) =
1

pζ‖ + q2/J
. (2.37)

As for the transverse motion described in the Section 2.5.2, the longitudinal motion of the

central monomer is described by the integral of the response function over reciprocal space,

〈δrc
‖〉 = f

p

∫ dq
2π
R‖(q, p). Doing the integral we obtain:

〈δrc
‖〉(p) =

f

2

J1/2l3/2
p

p3/2(ζ‖l3p)1/2
. (2.38)

The crossover between the free regime and longitudinal relaxation regime occurs around the

time τe. It is convenient to use the reduced time t/τe conjugated to p̃ and rephrase the Laplace

transform (f(p̃) = f(p)/τe):

〈δrc
‖〉(p̃) =

f√
2

l31
lp

(

τe

ζ‖l
3
1

)1/2

Fharm(p̃) (2.39)

Fharm(p̃) =
1

25/4

1
√

1 + (1 + p̃)1/4
√

1 + (1 + p̃)1/2

1

p̃3/2
.

For large times t ≫ τe (p ≪ 1), we obtain a
√
t asymptotics:

〈δrc
‖〉(t) =

f

27/4
√
π

l31
lp

√

t

ζ‖l31
. (2.40)

This regime corresponds to relaxed transverse fluctuations and is hence independent of ζ⊥. A

similar t1/2 regime is reported in Ref. [94] which misses the earlier t7/8 regime arising from the

tension propagation. In the theory of rheology [85–87], this regime is manifested in a ω1/2

dependency of the shear moduli. It arises from the compliance J going to a constant value.
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For small times t ≪ τe (p̃ ≫ 1), free dynamics is recovered:

〈δrc
‖〉(t) =

f

211/8Γ(15
8

)
l2p




t

ζ
3/7
⊥ ζ

4/7
‖ l3p





7/8

. (2.41)

It is convenient to also represent the scaling function Fharm as a function of reduced time

t̃ = t/τe. The inverse Laplace transform of Fharm(p̃) obtained numerically from the Stehfest

algorithm is plotted in Fig. 2.11 together with the matched asymptotics:

Fharm(t̃) =







t̃7/8

(

− 2

√
t̃

Γ(19

8 )
− 8

4√
t̃

Γ(17

8 )
+ 16

Γ(15

8 )

)

32 4
√

2
,
(

t̃ < 0.4
)

32t̃−3

64 4
√

2
√

πt̃
,

(

t̃ > 0.4
)

(2.42)

We can apply the fluctuation dissipation theorem to calculate the longitudinal fluctuation of the

"middle monomer" 〈(δrc
‖)

2〉 = 2
p

∫ dq
2π
R‖(q, p), as we did for the transverse fluctuations. We

obtain: 〈(δrc
‖)

2〉 = 2
f
〈δrc

‖〉. More details on longitudinal dynamics can be found in Ref. [96]

2.6 Conclusion

In this chapter, we studied the reptational kinetics of a stiff semiflexible chain by means of scaling

analysis and computer simulations. We mainly consider rather stiff chains of length shorter than

(or comparable to) the persistence length whose free conformations are almost straight. In the

presence of obstacles, the tube in which the chain is living is only weakly curved. As the obstacle

density increases, the free dynamics changes to reptational dynamics. Like for flexible chains

in a polymer melt, the tube picture can be applied in order to characterize the chain motion.

The free anisotropic dynamics is recovered at early times t < τe. After the entanglement

time τe, transverse modes are equilibrated but the chain is not yet correlated over its whole

length, longitudinal modes have to relax. In this intermediate relaxation regime, the longitudinal

fluctuations grow as ∼
√
t. Finally chain ends are correlated after time τr ∼ S2. The chain

then diffuses globally along the tube and tube renewal takes place. The end-to-end orientation

relaxes upon tube renewal with characteristic time τd ∼ S3. Note that the intermediate
√
t

regime is absent for short/ill-confined chains, for which the longitudinal tension is equilibrated

before transverse fluctuation saturates.
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Our results are supported by Langevin simulations. To illustrate the anisotropic chain

dynamics, we study the mean square displacement of the central monomer and its transverse

and longitudinal components. This allows to clearly see the exponents for transverse and

longitudinal fluctuations of a free chain reported previously [89]. In the presence of obstacles,

an intermediate slow regime opens between the free chain regime and the diffusive regime. It

has the ∼ t1/2 signature of the internal relaxation as predicted from our scaling arguments.

Upon developing our theory, we study the linear response of a semiflexible chain to an

external force, in which different transverse and longitudinal frictions per unit chain length

are used. This helps to make the physics more transparent at many places: for example, the

transverse friction drops out after the entanglement time τe. To avoid the inessential complexity

due to the various boundary conditions, we formally considered an infinite filament. Our results

are general at short times when the application point of the force does not correlate to the

boundary. Using the calculated response functions, the fluctuation of the central monomer

is explicitly obtained. The expected "plateau" values estimated by power law asymptotics in

the explicit calculations are in good agreement with those from the simulations. Also, results

apply to three dimensional space where the friction is anisotropic. Finally even on a substrate

transverse and longitudinal friction with the substrate could be different if the filament has

proper structure.

In this chapter, we did not exhaust the problem of WLC in obstacles and additional effects

could arise from tube curvature for example. Reorientation mechanisms of a chain could be

another additional effect on reptational dynamics in obtacles. In Appendix 5.6, we briefly

present simulation results on the reorientation dynamics of a grafted semiflexible chain in both

the absence and presence of obstacles. The system studied here also has some relevance to

dense solution of semiflexible chains and some of our results have their counterpart in rheology

as mentioned above. Again some hydrodynamic effects should be expected at short times and

activation barriers against reptation should slow down long time dynamics.
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Chapter 3

Scraping and stapling of end-grafted

DNA chains by a bio-adhesive spreading

vesicle 1

This study is particularly motivated by the recent experiment [53], in which stained end-grafted

DNA molecules about 20µm long are scraped away and stretched out by the spreading front of a

bio-adhesive vesicle. Tethered biotin ligands bind the vesicle bilayer to a streptavidin substrate,

stapling the DNAs into frozen confinement paths. We performed quantitative image analysis

of the stapled DNA which gives access, within optical resolution, to the local stretching values

of individual DNA molecules swept by the spreading front. This significantly provides evidence

of self-entanglements by revealing the chain internal friction and topological complexity.

3.1 Experimental background

When a bio-adhesive phospholipid vesicle is brought into contact with a surface coated with

end-grafted λ-phage DNAs, the spreading front of the adhesive patch [108] propagates out-

wards from a nucleation center, acting as a scraper that strongly stretches the DNA chains.

Moreover, the multiple bonds created during vesicle spreading effectively staple the stretched

chains in the gap between the membrane and the substrate, confining the DNA chains in a

tunnel-like channel as depicted in Fig. 3.2. The chain configuration starts thus at its fixed

1This chapter presents results published in Phys. Rev. Lett. 105, 088101 (2010)
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Figure 3.1: The top left image shows schematically the confinement geometry of the DNAs
analyzed. A phospholipid giant unilamellar vesicle is attached to a substrate by short poly-
mer anchors. The spreading of this attachment region scraps the end-grafted DNA molecule,
stretching and stapling it between the membrane and the substrate as the adhesion front ad-
vances. The bottom right image combines in a janus display i) a typical optical fluorescence
image where the stretched DNAs are seen as bright lines and the coiled DNA regions as bright
light spots; ii) a typical RICM image where the adhesion patch appears as a darker disk. The
bottom left and top right drawings further show typical features of the confined geometry.

end-grafted point at the streptavidin substrate. This surface-attached protein layer of receptors

strongly binds the tethered biotin ligands carried by some of the bilayer phospholipids. From

its grafted end, the chain meanders through the forest of short polymer tethers that connect

the phospholipid membrane above the chain to the protein bed below it, eventually exiting the

adhesive gap to adopt a coil-like configuration in the corner between the almost vertical vesicle

wall and the horizontal protein surface.

A more detailed description on experimental methods and materials can be found in

Ref. [53]. Briefly, the vesicles are prepared by electroformation, from a mixture of two lipids

(Avanti Polar Lipids): 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-distearoyl-sn-

glycero-3-phosphoethanolamine-N-(biotinyl(polyethylene glycol)2000) (DSPE-PEG2000-biotin)

in different ratios. The biotinilated lipids allow the vesicles to strongly bind to a glass substrate
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covered with streptavidin, which also anchor biotinilated λ-phage DNAs, with average end-

grafting density of 1/(5µm2), well below the surface overlapping concentration.

The conformations of the individual grafted DNA molecules were observed by fluorescence

microscopy, the λ-DNAs being stained with YOYO-1 (Molecular Probes), as shown in Fig. 3.1

and Fig. 3.2(a). The localization and extension of the adhesive patch were determined by Re-

flection Interference Contrast Microscopy (RICM), see Fig. 3.1. A typical DNA image consists

of a bright head part located outside the adhesive patch region and of a tail located inside.

The whole conformation can also be located under the adhered membrane without a bright

head. We distinguish between headed and non-headed conformations and name them tadpoles

and tapeworms, respectively, see Fig. 3.3. Conformational relaxation is never observed through-

out the experimental time, and DNA configurations remain as produced by the spreading and

stapling process.

3.2 Image analysis

Figure 3.2 illustrates the conformational analysis performed from each DNA fluorescence image.

The pixel size corresponds to 0.18 µm, thus fully stretched λ -phage DNA with contour length

S = 19.8 µm would span 110 pixels2. Since one phospholipid occupies a cross-sectional area

of 0.75 nm2, a fraction n of biotinilated phospholipids corresponds to a ligand surface density

σ = 1.33 n nm−2. We have analyzed over 200 images of DNA obtained for various values

of ligand fractions n = 1/25, 1/50, 1/500 and 1/5000 corresponding respectively to σ =

5.33 × 10−2, 2.66 × 10−2, 2.66 × 10−3 and 2.66 × 10−4 nm−2. After extracting a single

DNA image from the fluorescence images, we first subtract the grey level of the background

to obtain 3-dimensional representations of the intensity as shown in Fig. 3.2(b). After rotation

each DNA image provides the intensity distribution I(x, z) as displayed in Fig. 3.2(c). The

cross-sectional distribution, i.e the distribution in the direction orthogonal to z, is measured

to be Gaussian. For most tailed configurations the width of the Gaussian distribution w(z) is

almost constant along the z-direction, as shown in the inset of Fig. 3.2(d) and the height of

the distribution Imax(z) is hence proportional to the cross-sectional intensity. The height of the

intensity profile Imax(z) along the z-direction is shown in Fig. 3.2(d) together with a typical

Gaussian cross-section.
2We excluded configurations when the total intensity was considerably different from the most probable value

(∼ 15%), thus avoiding error sources related to unusual DNA segments such as broken ones.
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Figure 3.2: (a) A typical DNA fluorescence image and (b) a 3-d intensity representation of
a single DNA cropped from the image. (c) The cross-sectional areas are fitted by Gaussian
distribution and the peak of each Gaussian distribution is marked by dark blue star. (d) Inten-
sity profiles of a single DNA image along the longitudinal direction (left) and cross-sectional
distribution (right).
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Assuming an homogeneous random distribution of fluorophores along the DNA backbone,

one expects the intensity of each pixel I(x, z) to be proportional to the DNA length it stores.

After normalization with the total intensity It =
∑

x,z I(x, z) of monodisperse DNAs, the

reduced intensity i(x, z) = I(x, z)/It can be interpreted as the fraction of the DNA segments

located in the pixel. The normalized cross-sectional intensity can be defined as

m(z) =

[
∑

x

i(x, z)

]

× (DNA contour length in pixels) − 1, (3.1)

which is measured at a distance z away from the grafting position giving the relative excess

length of DNA along z. The total contour length of DNA is about 110 pixels. For fully stretched

DNA, it is a value of m = 0.

The insets in Fig. 3.3(b) exhibit conformations and typical profiles of the relative excess

length m(z) for tadpoles and tapeworms at ligand fractions n = 1/50 corresponding to an

obstacle density σ = 2.66 × 10−2 nm−2. As expected for tadpoles, the m values are sharply

peaked at the edge of the membrane due to the fluctuating coil. The confined part of a

tadpole, the tail, has small m(z) values and is hence stretched. Significantly, tapeworms are

less stretched than tadpoles and exhibit a much larger dispersion in stretching values. The

mean plateau height m̄ for each DNA is defined for each intensity profile. For various values of

ligand fractions n, we obtained mean values 〈m〉 by averaging plateau heights m̄ of up to 10

chains. Figure 3.3(b) shows dependence of 〈m〉 on the binders density n for both tapeworms

and tadpoles, providing a quantitative measure for the differences in stretching between both

configurations. We also measured mean-square average values 〈δm2〉 = 〈(m(z) − m̄)2〉 by

averaging first over the chain extension and then over different chains. Standard deviations

〈δm2〉1/2 range for the tadpoles from 0.4 at the highest ligand densities to 0.7 for the lowest,

while the corresponding tapeworm values are roughly twice as large in the corresponding range

[0.7 − 1.3]. We now confront results from our local conformational analysis with theoretical

predictions for confined semi-flexible worm-like chains.

3.3 Model and theories

The scraping and stapling process stretches the DNA and freezes in its tunnel primitive path.

The tunnel has two-dimensional (z, x) shape confining the chain. In the vertical direction y,
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Figure 3.3: (a) Illustration of the conformations of a tapeworm (a DNA chain fully confined
below the membrane) and a tadpole (a DNA chain having only a fraction of its length, the tail,
confined below the membrane, while the rest of the chain, the head, is in a coiled configuration
outside the adhesive patch.) (b) Typical profiles of the relative excess length m(z) of tapeworms
and tadpoles are shown in the left and right insets, respectively, at ligand fraction n = 1/50.
The average values m̄ of the plateau heights are there indicated by arrows, and z is rescaled by
the membrane radius rc. The curves in the figure show 〈m〉 (an average of m̄ values of up to
ten chains) as a function of the ligand fraction n for i) tapeworms (dashed line) and ii) tadpoles
(dot dashed line). The continuous line shows theoretical predictions for semi-flexible chains in a
confinement tunnel (See Eq. 3.3 and text thereafter). Clearly, confinement effects alone cannot
explain the data, which demonstrates the existence of a longer sub-optical primitive path for
the confining tunnel.
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the tunnel size is determined by the distance h between the membrane and the substrate,

with roughly h ≃ 10 nm as estimated from RICM. In the direction x parallel to the plane the

tunnel size d is defined by the distance between multiple bonds connecting the membrane to

the substrate d ≃ σ−1/2 = 0.9 n−1/2 nm. One has d ≃ 5 nm for the densest binding with

n=1/25 and d ≃ 60 nm for the loosest with n=1/5000.

At the end of the spreading process, the chain can relax within its tunnel where it is

still expected to display confined thermal fluctuations. Given the sub-optical nature of the

tunnel dimensions h and d, such thermally induced fluctuations, easily seen in the coil head

of the tadpoles, cannot be observed neither for the tapeworms nor for the tail sections of

the tadpoles. Also, escape from the primitive path tunnels was never observed, consistent

with typical distances d between binders smaller than the DNA persistence length ℓp ≃ 70

nm, 0.07 < d/ℓp < 0.90. Note that the shape of the tunnel primitive path can only be

experimentally determined up to the optical resolution, hence significant undulations can still

be present even within a frozen, optically straight path. Confined thermal fluctuations and

sub-optical waviness of the primitive path provide thus two possible sources for accounting for

the DNA length storage, which is measured by the m > 0 values of the relative excess length.

Small local entanglements resilient to unwinding during scraping provide a third possible storage

source for the relative excess length that we will extensively discuss in this chapter.

3.3.1 Worm like chain confined by a harmonic potential

Here, we consider a confined semi-flexible chain of length S with persistence length lp by the

harmonic potential to vertical and lateral direction. The dimensions are (h, d) ≪ ℓp for each

direction, where the chain is stretched by force f . As studied in Chap. 2, the Hamiltonian is

written in Fourier space as

H =
S

2

∑

q

(

kBTℓpq
4 + fq2 + κh,x

)

xqx−q +
S

2

∑

q

(

kBTℓpq
4 + fq2 + κh,y

)

yqy−q, (3.2)

where the chain is described by the parametric representation x(z), y(z) along the longitudinal

direction of DNA and its Fourier transforms xq, yq. For each direction, we introduced the dif-

ferent amplitude of harmonic potential as κh,x, κh,y. The mean square amplitudes are saturated

in each dimension as 〈x2〉 = d2 and 〈y2〉 = h2 at zero force. Using Eq. 2.21 with fixed two
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amplitudes, the average of the relative excess length is calculated as

1 − 〈L〉
S

=
1

4





[

ℓp

d

] 4

3

+ f̃





− 1

2

+
1

4





[

ℓp

h

] 4

3

+ f̃





− 1

2

, (3.3)

where 〈L〉 is the average projected length of the chain measured along the tunnel and f̃ =

fℓp/(kBT ) is the value of the force in its natural units kBT/ℓp = 0.06 pN for lp = 70 nm.

Relating Eq. 3.3 with the analysis, the relative excess length is estimated as 1 − 〈L〉/S =

〈m〉/(1 + 〈m〉). At zero force, one gets 0.1 < 〈m〉 < 0.5 for 2 × 10−4 < n < 4 × 10−2. Clearly,

the excess length stored in the thermal fluctuations cannot account for excess length values up

to 〈m〉 = 4 as observed from the experiments as seen in Fig. 3.3. This implies that the actual

confining tunnel follows a longer wiggled sub-optical primitive path.

The shape of the primitive path is determined by the pinning process occurring at the ad-

hesive front, it thus reflects the conformation of the DNA chains at the junction between the

tunnel under obstacles formation and the free coil head. The spreading process applies a force

to the coiled head by a combination of hydrodynamic stresses and direct membrane-DNA inter-

actions, which induces the average stretching state captured by the stapling mechanism. In this

case, therefore, the relevant force extension relationship does not depend on the confinement.

An interpolation formula that accounts both for the strong stretching regime described by the

limit of zero confinement in Eq 3.3 and for the weak stretching limit where the extension is

determined by the linear response of the fluctuating coil can be written as [92]:

f̃ =
〈z〉
S

+
1

4 (1 − 〈z〉/S)2 +
1

4
, (3.4)

where 〈z〉 is the average projected length.

Using Eq. 3.4 with 〈m〉 = S/〈z〉 − 1, force values are obtained in the range 0.85 < f̃ < 15

for the tadpole conformations and 0.35 < f̃ < 1.3 for the tapeworms. Note that forces of

order f̃ ≃ 1 or f ≃ kBT/ℓp = 0.06 pN are expected from the entropic repulsion between a

wall and a polymer, larger forces must be related to different effects like the hydrodynamic

stresses generated by the strong shear region in the immediate vicinity of the advancing front.

Estimates based on the observed maximum velocity v = 10 µm s−1 [53] and a gap height h

of order of 10 nm lead to a shear rate γ̇ = vh ∼ 103 s−1 which can easily account for the

highest observed stretching values. However, observed spreading processes are smooth, the
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Figure 3.4: Schematic description on self-entanglement effect and its gate model. (a) A long
Gaussian chain of length S and lp is expected to have average number of monomers N = S/lp.
(b) The relaxation of unwinding the self-entanglement is depicted in the gate theory, where a
gate corresponds to a knot (See the text for details).

velocity measured from the spreading front decreases linearly from the initial nucleation site to

the final maximum adhesion patch radius. The measured differences of stretching behaviour

between the tapeworms and the tadpoles can thus only be accounted for by additional friction

sources, we argue in the following that they are caused by internal friction forces related to

self-entanglements.

3.3.2 Self-entanglement of the DNA

As an additional frictional source, we consider a self-entanglement of the DNA, which means

a configuration of the chain that acts like a gate [109, 110] through which the unwinding coil

needs to be threaded for relaxation. By studying the relaxation process, especially, we try to

account for the different internal structure of a DNA. In the absence of self-entanglements,

the scraping mechanisms can only induce a modification of the chain configuration from a coil

to an open and extended shape, provided that the largest relaxation time for chain is smaller

than the characteristic time of vesicle spreading. The longest relaxation time simply scales as

τ ∼ R2/µ ∼ R2ζ , where the mobility is given by µ = kBT/ζ with friction coefficient ζ . For the
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chain without self-entanglements, the longest relaxation time is described by Zimm dynamics.

The Zimm relaxation time is then obtained as τZ ∼ N3/2 with R ∼ N1/2 and ζ ∼ N1/2. From

the experiment, we can convert this into real time in order to compare with vesicle spreading

velocity. For a coil of radius R ∼ 1 µm and water viscosity η = 10−3 Pa·s, and associated

friction ζ is given by the Stokes friction ζ ∼ ηR. The longest Zimm relaxation time is estimated

as τZ ∼ R2ζ/(kBT ) = ηR3/(kBT ) = 0.2 s which is smaller than the vesicle spreading time

τS ∼ 10 s observed from the experiment.

In the presence of p self-entanglements, on the other hand, the chain relaxation time can be

simply estimated from p and ζ1, where ζ1 is the local friction from a gate due to local contacts

and is arguably higher than hydrodynamic friction. For the experimental conditions described

here, the DNA chain can be pictured as a Gaussian chain with N = S/ℓp ∼ 300 monomers

of size ℓp as shown in Fig. 3.4. Considering thus Gaussian statistics, the averaged number

of self-entanglements p, involving monomers distant along the chain, is expected to be given

by p =
√

S/ℓp and the number of monomers M in a polymer strand between two gates by

M = N/p =
√

S/ℓp. The friction from one gate ζg is therefore ζg =
√
Mζ1 and the total friction

estimated by this model reads ζ = pζg = (S/lp)3/4ζ1. As a consequence, the relaxation time τE

that takes the chain to relax self-entanglements is estimated as τE ∼ R2ζ ∼ N2N3/4 = N11/4,

which is larger at least by three orders of magnitude where the power of N is only compared3.

than the Zimm time estimated above as τZ ∼ N3/2.

3.4 Conclusion

The fundamental differences in our experiments between tadpole and tapeworm configurations,

observed under the same vesicle, can be fully understood by invoking such long self-entanglement

relaxations. Upon scraping, a chain with no self-entanglements in the polymer section that un-

dergoes unwinding can be pushed to the border of the adhesive patch in a smooth manner, lead-

ing to a tadpole configuration. If the spreading membrane comes across one self-entanglement

during the scraping process, it will locally stretch the chain but eventually will roll over it letting

behind the excess of chain contour length that was not able to unwind. This corresponds to

the tapeworms configurations that are confined below the adhesion patch and display large

3Considering the power of N alone as N3/2 and N11/4, the later is longer by three orders of magnitude.
Since the topological constraint is less important than that in the melt, the prefactor of N11/4 must be small.
Still τE must be longer than τZ.
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stretching fluctuations. Note that heterogeneities in the spatial distribution of the binders

cannot account for the observed stretching variations. The existence of self-entanglements in

polymer chains has been theoretically conjectured for more than two decades within the frame-

work of Renormalization Group theory computing statistics of contacts between two Gaussian

chains [64] and of mutual entanglements4 [63]. In spite of the importance of self-entanglements

for understanding polymer chain dynamics, these theories have never been put to test, because

of the intrinsic difficulty of demonstrating the presence of such chain configurations [111]. We

have shown here that the scraping and stapling of an end-grafted DNA chain by the spread-

ing front of a bio-adhesive vesicle provide an unique experimental geometry sensitive to long

relaxation processes as those expected from self-entanglements.

4The exponent Z is defined from τE ∼ NZ . While our simple argument suggests Z = 11/4 the more
sophisticated calculations lead to Z ≈ 3. There is a finite probability P0 for two half-chains not to intersect at
all P0 ∝ N−5/16 (to second order in ǫ = 4 − d where d = 3) [64]
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Chapter 4

Observation of cooperative

conformational change of microtubules

In this chapter, we investigate the dynamics and mechanical properties of MTs by observation

of image data obtained from experiment. The image contains the fluorescently labelled MTs

fluctuating in a thin geometry (between two glass slides), in which they display a distinctive

thermal motion and shapes certainly different from those of a simple WLC model. One of notable

observations is the presence of a coherent sinusoid wavy shape of MTs under confinement.

Acknowledging the importance of wavy shape, we first investigate the properties of this higher

order structure and find an interesting relation between the helical radius and its wavelength.

In addition to characterizing static feature of this helical superstructure, we present several

types of conformational changes in MTs shape. We show that the conformational transitions,

which can be easily detected in fluorescence microscopy, are highly correlated over the whole

MT contour length. By using a quantitative MT contour fitting analysis, the transitions are

directly measured as in-plane curvature evolution over time. The very high cross-correlation

coefficients of distant segments curvatures reveal the evidence for very high cooperativity of

the observed conformational transitions. Such a high degree of cooperativity is consistent

with the recently formulated hypothesis of mechanical multistability of the MTs tubulin dimer’s

structure, in which at least two discrete curvature states are most likely observed under the

experimental conditions investigated here. Finally, by observing the partially attached MTs, we

measure the controversial persistence length for a clamped MTs. In particular, we show that

the position-dependent lateral fluctuations along the MT lead to apparent length-dependence
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of the persistence length.

4.1 Introduction

Polymorphic transitions are found everywhere in nature from the simplest bacterial biofila-

ments to most complex organisms. The term polymorphism refers here to the ability of the

constituent units (monomers) to switch between two or more conformational states. Through

inter-unit mechanical coupling the behaviour of a lattice of polymorphic units can become highly

cooperatively organized in rather complex manners. In the bacterial flagellum, environmental

perturbations can trigger sudden cooperative polymorphic transitions between helical states with

different pitches and handedness [112]. Another remarkable instance of polymorphic transition

is the tail sheath contraction of a T4 bacteriophage [113]. An active ATP-driven polymorphic

transition is also found in nature, for instance during the rotary transformation of the helical

sheath in Spiroplasma [114]. Polymorphic filament motifs can also be found in the cytoskeleton

in eukaryotic cells: actin-rings undergoing a light-induced conformational transition and super-

coiling [115] were observed, as well as taxol-stabilized microtubules forming unusual superhelical

structures [4]. Tubulin conformational multistability appeared as an indispensable ingredient for

an explanation attempt of the helical shapes [116].

In this chapter, we present new observations on fluorescently labelled taxol-stabilized MTs

placed in a thin chamber. Tracing the MT’s contours, we find that they displays wavy shapes of

micron size of wavelength and radius. Typical geometrical characteristics are of helical filaments

confined in 2D. Comparison between the experimental data and the theory of confined helices,

so-called squeelices, allow us to go back to the three dimensional native bending and torsional

properties of the helical MT. Most notable finding is that the MTs undergo highly cooperative

conformational transitions in a discrete and spontaneous way, which is manifested by time-traced

mean curvature of non-overlapping regions.

We observe two kind of conformational transitions: correlated curvature reorientations (we

call as curvature flipping) and curvature magnitude transitions corresponding to transformations

from curved to straight shapes (and vice versa). These conformational transitions show a high

degree of cooperativity corroborated by correlation coefficient between adjacent arcs showing

switching. Permanent switching of the tubulin dimers between straight-curved state and co-

operative interactions along the protofilaments axis were hypothesized as a basic ingredient of
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the theoretical model proposed in [116]. This polymorphic MT model predicts a degeneracy

of the superhelical ground state and thus a permanently but coherently MT reshaping with

an evolving reference ground-state configuration, due to thermal fluctuations. We provide also

new measures of the persistence length versus the MT’s length which displays a non-monotonic,

oscillatory behavior around a nearly linearly growing average in qualitative agreement with the

theory of polymorphic tube model [116].

Our observations provide evidence that MTs are not simple semi-flexible chains or Euler

beams, but highly complex supramolecular structures whose basic elements can switch and

interact, giving rise to very complex large scale transformations. If these properties of MTs

persist in vivo (without taxol agent), the most inherent and distinct consequence of the under-

lying mechanism lies in the possibility of signal transmission along the contour via a long-range

conformational switch.

4.2 Experiment and MTs contour fitting routine

4.2.1 Sample preparation

Tubulin was purified, taxol stabilized, mixed with a small amount (1%) of rhodamine labelled

tubulin and polymerized as described in Ref. [2]. A small quantity of the microtubule solution

(0.2 − 0.5 µl) was placed between two precleaned cover slides and immediately observed on

a Nikon Te-2000E inverted microscope equipped with an 60X water immersed objective and a

Hamamatsu Em-CCD camera.

The images we acquired are sequences of frames at video rate 33 frames per second with

the time interval for each frame 1/33 sec. Pixel size is 0.266µm, and the typical MTs in the

images has contour length ranging from few microns to several tenth of microns. The MTs

are confined between two cover glasses with the thickness of layer less than 1µm, which is

comparable to previously reported value of helical radius of MTs 1 ∼ 2µm [4], where the MTs

are slightly squeezed (depending on the variable height of the chamber size) in quasi-2d slab.

Under the experimental conditions used and without special treatment of the glass surfaces,

the microtubules occasionally tend to adsorb in the partial regions close to their ends while

the largest portion of their contour remains free from attachment. This useful coincidence was

employed to study also partially grafted MTs and allowed us to discriminate between trivial

rotary motions of the filament and true conformational rearrangements.
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Figure 4.1: (a) Top view of inverse intensity landscape, where the image size is given by pixels
and the color indicates the depth. (b) The fitted contour (shown in red) is superimposed onto
corresponding image.

4.2.2 Filament tracing

As the MTs are in a quasi-2d geometry, we have digitalized and analyzed their projected 2d

contours. The vertical displacement from focal plane of some MTs displays strong variations

which is seen as non-uniform intensity along the contour, but the majority of MTs investigated

was flat enough to be analyzed with a simple 2d contour algorithm.

For the contour fitting, we basically use two different methods to handle the image data

and to extract the MTs contour. The first is a custom ImageJ plugin called JFilament [117].

These software are useful tools for editing the image data and extracting the MT contours

automatically or semiautomatically. In particular, JFilament is used to make an initial guess to

the MTs contour. For more refined contour fitting, we have developed our own custom fitting

algorithm based on the Monte-Carlo method. In this algorithm, we simulated a stiff polymer

fluctuating on the energy landscape which is phenomenologically created from the image as

shown in Fig. 4.1(a). The total energy of confined chain consists of bending, link, and external

potential (obtained from image), Etotal = Ebend + Elink + Eext. The chain has N monomers

typically chosen as a spacing of 0.5 − 1 pixel. Each monomer is connected by a FENE potential

along the contour (See Chap. 2.4.1 for the formulas). The energy landscape is constructed by
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the interpolated intensity at each inter-pixel location, in which the continuous energy map is

made by interpolation as

Eext =
I1

d1

+ I2

d2

+ I3

d3

+ I4

d4

1
d1

+ 1
d2

+ 1
d3

+ 1
d4

, (4.1)

where di is a distance from i-th vertex having intensity Ii. The simulated chain is subjected to

the energy landscape, and fluctuating along the energy minimum path. The final configuration

is time-averaged for several hundreds of chain configurations. Figure 4.1(b) shows an extracted

contour superimposed onto the corresponding image. Time sequenced contours are obtained

by the same procedure as above for each frame by using the previous frame contour as an initial

guess for the next frame. In this algorithm, the chain length is fixed for all frames, so that it

can cover the areas of weak intensity resulted from a temporary motion out of focal plane. By

tuning the stiffness of chain, the fitting become robust and uninterrupted even in the regions

where the intensity is locally irregularly dispersed by the other MTs.

4.3 Characterization of the MTs superhelical shapes

In our experiments, thermal fluctuations of taxol-stabilized MTs were recorded by video mi-

croscopy. In a typical experiment, a portion of MTs is fully adsorbed to the glass surface (and

thus not fluctuating) likely due to the multivalent ion (Mg2+ is part of the buffer solution) me-

diated MT-glass surface interaction. However another portion of MTs (typically about 50-60%

of them) exhibits both a surface fixed and a freely fluctuating part. We have also witnessed the

process of desorption from the surface and vice versa adsorption. When MTs are fully adsorbed

often irregular and random shapes are observed, possibly because they got quenched during the

rapid adsorption process in non-equilibrium configurations.

Apart from this portion of random surface quenched states, we found that a free and some-

times adsorbed MTs exhibit a distinct wavy shape under the confinement. This seems to reflect

a 3-dimensional superhelical structure. Such a large scale helical structure of MTs was already

suggested by Venier et al. [4], but never fully characterized in literature. A number of MTs com-

prising distinct wavy shapes enables us to collect statistics and investigate the detailed features

of the shapes. For 148 wavy shaped MTs, we have measured their apparent projected pitch

and the radius of the superstructure. Figure 4.2 shows the MTs shapes and statistics of helical

pitch P and radius R. In Fig. 4.2(a), we present the histogram of pitch, where we provide the
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Figure 4.2: Helicity of MTs (a) The histgram of the pitch is plotted with the Gaussian fit of
mean pitch:13.27µm and STD:4.36µm. The images in inset show typical wavy shape of a
squeezed MTs, the scale bar is 10µm for all images. The measured pitches for each MTs are
denoted as the same symbol with those on the histogram. (b) The relation between pitch and
radius is obtained from the individual MTs, data fit is done with the formula of a squeezed helix
(See text for details). (c) Scanning of 3d stacks of the image, showing the right-handedness of
the MTs. The height difference between each stack is 0.5µm.

Gaussian fitting with the mean wavelength of about 13µm and the standard deviation 4.36µm.

This value is close to the wavelength 15µm of superhelical structure observed by Venier et

al. [4]. Typical wavy shapes of squeezed MTs with various wavelengths are shown in inset of

Fig. 4.2(a). For better view of the structure of the MTs of small wavelength, the images are

scaled to the same size, but the scale bar still indicates the same length for all images. As shown

in Fig. 4.2(b), typical amplitude R of the MTs varies with their wavelength. This dependency,

although qualitatively different, was also observed for the bacterial flagella filament [112], and

interpreted in terms of cooperative conformational transitions between between helical states

with different R, P , and handedness. However, the failure to reproduce the MTs P −R relation
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with this classical Calladine polymorphic flagellin model fit [112,118] indicates that the relation

for MTs is qualitatively different.

To reproduce the observed correlation P − R, which is approximately parabolic in nature,

we assumed a simple geometric model of a single (quasi 2-d squeezed) helical state with a

constant lattice curvature ω1 but a possibly variable pitch P . From simple geometry, by as-

suming that the shape is approximately made of a sequence of circular arcs, we can derive a

relatively simple connection between the radius and pitch. Then geometrical analysis produces

the relation R = 1
ω1

(1 −
√

1 − (ω1P
4

)2), which is used for data fitting in Fig. 4.2(b) (in red)

with the best fitted radius of curvature ω−1
1 ≈ 21µm.

Another structural feature of the helix is its handedness. Although the handedness of the

superstructure is believed to have something to do with a lattice type [116], it has not been

documented yet. Due to the limitation of our 2d fluorescence optical method, and the large

and rapid fluctuations of the MT shapes, it was not possible to give a definite statement on the

handedness of the underlying structures. To approach the handedness problem which is intrinsi-

cally three dimensional, we have performed 3-d scans of the samples by moving of the automatic

microscope stage of partially confined MTs. The recorded z-stacks were still too noisy to allow

fully automatic 3d reconstruction. However a visual scan through the z-stack Fig. 4.2(c) indi-

cated a right-handed structure. With only a limited number of samples that could be reliably

treated in this manner, we can only cautiously state that the helices were right-handed but at

this point cannot exclude the possibility of the existence of the other handedness as well.

4.4 Polymorphic dynamics of MTs

Our observation of helical MT states appears to support the hypothesis that MTs are a complex,

possibly polymorhpic filaments. We then ask that such a polymorphic structure can switch its

shape spontaneously as we know this from the bacterial flagella [112, 119]. Many observations

are associated with some type of "frozen-in" curvature which is much larger than the fluctua-

tions around the reported one in the literature [1, 120]. The origin of this frozen-in curvature

becomes more clear in the observations from the previous chapter 4.3, where the MTs are in

fact superhelically curved sturctures.

Our observations provide first evidence that the helical intrinsic curvature of MTs is not

frozen but rather can undergo conformational transitions leading to large scale reshaping. An



60 Polymorphic dynamics of MTs

Figure 4.3: Two distinctive shape of MTs at different time (a) t = 6.5 s (a) t = 13 s. (c)
Tangent angle φ(s) plotted along arc-length s for MTs of (a) and (b), and arrow indicates the
inflection point. The color code for each segment is same for three panels.

example for this behavior can be seen in Fig. 4.3, where we trace a single MT contour in time

and the fitted contour is superimposed onto the corresponding image. For this MTs, the seg-

ments showing most significant motion are marked in different colors. Two segments in red and

light blue of several microns flip their curvature in opposite direction to each other between time

t = 6.5 s and t = 13 s. For a quantitative analysis, we measured the tangent angle φ(s) along

arc-length position s. Figure 4.3(c) shows tangent angle profiles for the same MTs at different

time stage. At t = 6.5 s, the angle φ(s) varies linearly with s for three segments in different

color, which means that those segments have constant curvature given by local curvature φ′(s).

At later time t = 13 s, the segments in red and light blue remain in circular arcs, but the

phase has inverted in their respective manner. For the section in dark blue, both the portion

and curvature is decreased without phase flipping, which is likely because the conformational

transition is slightly prevented by its proximity to the attachment region (dotted circle in while).

In order to quantify the cooperativity of transitions, we introduce mean curvature κ(∆s) =

(φ(s+ ∆s) − φ(s)) /∆s over a certain range of arc-section ∆s and trace κ in time for non-

overlapping regions of MTs. Based on the theoretical background on an usual WLC model,

we do not expect any spacial correlation between curvatures over a distance of the persistence

length. However, the MTs do display a clear time-correlation between segment curvatures many

microns apart, which indicates the involvement of true conformational transition of the lattice.
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Figure 4.4: Highly cooperative MTs curvature reorientations: plot of κ and κdet over non-
overlapping arc-sections α and β. In both panels of (a) and (b): (Top) fitted contours of
those sections are superimposed onto the image, (Middle) κ plotted with time for both sections
α and β, and the arrow indicates the cross point of the curvature, (bottom) time-detrended
curvature of those two sections. Scale bar is 5µm. Correlation coefficient between two adjacent
arc-sections are obtained as (a) rα,β = 0.9936 and (b) rα,β = 0.9786.

Figure 4.4 shows some examples of highly cooperative MTs curvature reorientations. These

phase flipping are seen as strongly correlated motion along the contour. Each arc-section is

chosen from the tangent angle profiles as described above. For both MTs of Fig. 4.4, a clear

crossover in mean curvature is found as indicated by arrows. As shown in the middle graph

of Fig. 4.4(a), the first crossover at κ = 0 indicates the MTs in straight shape at t = 5 s,

subsequently fluctuating for few seconds, and flipped over after second crossover at about

t ≈ 9 s. This indicates that two sections do not evolve independently but in a very cooperative

manner, which is confirmed by time-detrended1 mean curvature κdet (shown in the bottom

1Detrend removes a linear trend from a data set by subtracting the straight line which is best linear fit for
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of Fig. 4.4). From the detrended mean curvature, the motion of two sections indices α and

β of MT in Fig. 4.4(a) appears as highly synchronized displaying the correlation coefficient2

rα,β = 0.9936. For the MTs in Fig. 4.4(b), the two selected sections are oriented inversely with

constant curvatures before the transition. This is typical feature of the squeezed helical state.

The transition takes place at about t = 2.3 s, the mean curvature for two sections is κ < 0 at

the crossover. Therefore, the segment β (in red) becomes straight before segment α (in blue)

whose flipping motion is slightly delayed. Nonetheless, both the detrended mean curvature

analysis and the correlation coefficient of rα,β = 0.9786 indicate high degree of cooperativity.

In the previous examples one could to some extent object that some type of (although

unlikely) secondary effects could lead to a rotation of the whole filament despite visible surface

adsorption and give rise to the observed correlations. However, there is another more clear class

of transitions that cannot be associated with such rotation effects. It involves conformational

changes from a curved to straight state and vice versa as shown in Fig 4.5. In the time course

of such transition, the entire filament is visibly in the focal plane without intensity variations

(within < 0.5 micron) implying that no spacial rotation could account for the effect.

For the MTs in Fig. 4.5(a), one can easily see that only partial segments are involved in the

conformational transition. Most interestingly arc-sections of δ and ǫ show the transformation

from curved into straight occurring very quickly less than 1 s and simultaneously. Indeed, these

two sections are initially arranged inversely with the same magnitude of curvature. Starting from

that initial configuration, the curvature of these two sections are evolving in synchrony to a value

close to zero (straight state). The detrended mean curvature also reveals the strong correlation

between these adjacent arc-sections. On the other hand, other sections of α, β, and γ stay in

the almost same circular shapes likely because they are strongly adsorbed. On the other hand,

Figure 4.5(b) present the MTs undergoing the opposite conformational transition from straight

to curved. The two selected sections α (in red) and β (in blue) keep building up opposite

curvature in a correlated manner, eventually reaches a constant curvature. Interestingly these

transitions and the coexistence of helical and straight states were predicted by a theoretical

the data set. In forecasting models, the process of removing the effects of accumulating data set from a trend
to show only the absolute changes in values and to allow potential cyclical patterns to be identified. In our
work, detrended is used to investigate the correlation by comparing the absolute changes of curvature in time
for two different arc-sections.

2For a set of N data points (xi, yi), the correlation coefficient is given by rx,y = Cxy/
√
CxxCyy, where the

quantities in the right part are unnormalized variance and covariance as Cxx = Nvar(x), Cyy = Nvar(y), and
Cxy = Ncov(x, y). In our analysis, rα,β is calculated for a set of the mean curvature in time for two distant
arc-sections (κα(t), κβ(t)).
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Figure 4.5: Highly cooperative MTs curvature magnitude transitions. (top) The contours of
several non-overlapping segments superimposed onto the image. (middle) κ is traced with time
for each sections. (bottom) κdet of those two sections. The color code is same as in above
images. Scale bar is 5µm. Correlation coefficient between two arc-sections are obtained as (a)
rǫ,δ = 0.9967, rδ,γ = 0.9582, rγ,β = 0.8108, and rβ,α = 0.3002 (b) rα,β = 0.9072.

model [116]. Depending on the microscopic elastic and energetic parameters involved (like the

free energy of monomer transition from straight to curved) the model predicts that either state

(curved or straight) or even both of them can represent local free energy minima.

4.5 Length-dependent stiffness of clamped MTs

As seen in previous chapter MTs display a non-trivial superhelical shape that can dynamically

rearrange in time. At this point, in the light of our observations, it is interesting to revisit the

classical yet controversial question of MT’s persistence length lp = B/kBT (with the bending

stiffness B ∝ E proportional to MTs Young modulus E). As shown by Pampaloni et al. [2]



64 Polymorphic dynamics of MTs

and Taute et al. [3], clamped MTs seem to exhibit anomalous fluctuations in the direction

lateral to the MT axis for a wide range of contour lengths from 2µm to 65µm. Besides these

experiments, there has been many experimental attempts to estimate E of a stabilized MTs

by chemical agents in vitro [4, 121–125], where the measured values do not show quantitive

consistence and typically range from E = 100 MPa to 1.9 GPa. Based on that observation, it is

hypothesized that some important piece of information about MTs is still missing to understand

the results. In this work, we will investigate how the polymorphic dynamics documented above

gives rise to an effective length-dependent persistence length lp = lp (s), where s is the distance

to the MT’s attachment point. In order to draw closest analogy and to allow comparison

with existing experiments [2, 3], we focus our analysis on the population of MTs possessing

a partially attached (end) segment and one major portion which remains freely fluctuating.

For such partially attached MTs, we avoid trivial spacial rotations of the whole MT as real

fluctuations. Instead we focus only on the relevant intrinsic motions with respect to fixed

reference frame at the attachment point.

Among the several definitions of the persistence length, we consider the one defined by

lateral fluctuation as

l∗p =
L3

3〈(δr⊥(s))2〉
, (4.2)

where the variance 〈(δr⊥(s))2〉 = 〈(r⊥(s) − 〈r⊥(s)〉)2〉 is obtained by the in-plane lateral

displacement r⊥(s) at position s and 〈·〉 is the time average. Figure 4.6(a) shows the typical

sequences of shapes of confined MTs, where the four contours extracted out of 511 frames are

superimposed onto the image in different colors. Figure 4.6(b) to (d) show the measurements

of the effective persistence length l∗p for three different MTs as a function of the position s.

The attachment point (AP) is determined as a crossover between plateau (corresponding to

adsorbed segments) and linear growth as shown in inset of Fig. 4.6(b). Near the AP, pixel noise

becomes dominant over the real signal from the fluorescent MTs leading to growth of l∗p with

s3 as shown in dotted pink. This leads to an uncertainty of about ± 5 pixels, corresponding to

less than 1.5µm. This uncertainty gives rise to an uncertainty on accurate measurement of l∗p.

The corresponding two error bounds are given by two dotted line throughout the measurements.

Despite the error bars within this uncertainty region, l∗p still robustly displays a remarkable non-

monotonic oscillatory behavior around an apparent linear growth with l∗p ∝ s. This very unusual

feature seems to be a characteristic of clamped MTs as already documented in Refs. [2,3]. Note

that this growth of l∗p (s) is in sharp contrast with the standard semiflexible biopolymer models
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Figure 4.6: Effective persistence length l∗p as a function of position from the AP along the
clamped MT contour: experimental data (in crosses [2] and circles [3]). (a) Fitted contours
are superimposed onto the images for various frames, and the region for the AP is shown by
dotted circle (in while). For this MTs, (a) lp is plotted with the error bars calculated from
the uncertainty of the AP. (inset) The STD on the transverse displacement is plotted along
the position. (c-d) lp measurement for another two examples of MTs and their contours are
presented as inset, where the mean position of the lateral fluctuations is denoted in black line.
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(describing e.g. DNA and actin-filament) where lp is merely given by a constant.

For three MTs in Fig. 4.6, the measured l∗p agrees well with previous experiment data on

clamped MTs [2, 3]. However, it is clearly seen that there is one prominent difference with the

data of Pampaloni et al. [2] and Taute et al. [3]. While the data in [2,3] show a linear correlation

between the length and l∗p with a somehow noisy distribution around a line l∗p ∝ s ,there is no

clear oscillation of l∗p (s) observable from their data, it is possibly because of the large error

bars. In contrast to [2, 3], our data display a clear oscillatory trend in l∗p (s). Interestingly

the polymorphic MT model for clamped MTs proposed in [116] predicts a linearly growing

l∗p(s) with oscillations which are an intrinsic geometric signature of a rearranging MT’s helical

polymorphic state. A direct fit of this theory to our data reveals some differences with previous

predictions [116]. While the theory [116] applied to data sets of Pampaloni et al. [2] and Taute

et al. [3] predicted a unique helical wavelength (or pitch) P ≈ 7.5µm, our data display more

spread wavelengths depending on MT specimen - in the range from P ≈ 8µm (in blue contour)

to 18µm (in black contour) in Fig. 4.6(a).

We should note that there are several effects that could influence the MT wavelength in our

experiment and in turn modify the outcome of the l∗p (s) measurement as compared to previous

experiments [2, 3]. Firstly the presence of the glass surface in our case will partially hinder the

free motion of the polymorphic helix (called "wobbling motion" in [116]). The segment sections

closer to the attachment point will be more constrained due to interaction with the substrate,

whereas the other end is more free to move in the z-direction and can thus assume more easily

the preferred wavelength of free chain. This is visually confirmed by the observation that the

ends of chains appear more often out of focus but also more curved than the sections closer

to the attachment point. Also, we cannot exclude the effect that we might be dealing with a

different lattice type - distinct from that predominantly analysed by Pampaloni et al. [2] and

Taute et al. [3]. In their experiments there might have been a slight psychological bias towards

the more straight looking MT specimen (for understandable experimental reasons) which in

case of multiple lattice / helix types would select in favor of the more slender helices (i.e. those

with smaller amplitudes). Keeping in mind that the visible amplitude (radius) of a helix scales

as R ∼ ω1P
2 (where ω1 is the curvature and P the pitch of the helix) a pitch that is twice

as small will give a four times smaller helix radius, and possibly render smaller pitch (smaller

radius) helices difficult to identify and observe. In our analysis, to avoid pixel noise and other

artifacts we have focussed on most robust and largest amplitude helices and their motions.

Consequently we might have possibly created an opposite bias towards larger pitch (and thus
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larger radius) helices as compared to those in Refs. [2, 3]. Nevertheless, the overall features

of l∗p profiles measured here are in qualitative agreement with previous experiments. Moreover,

our present data provide us with a principal hint towards the mechanism behind the "length-

dependent stiffness phenomenon" : the involvement of MTs superhelicity and the polymorphic

rearrangement motions.

4.6 Conclusion

In this chapter, we have observed anomalous thermal motion of fluorescently labelled MTs con-

fined in a slab geometry. We have found that taxol-stabilized MTs under confinement often

display a wavy shape reflecting a superhelical structure of MTs in 3-d. We have characterized

the helicity of the MTs by constructing the relation between helical radius and pitch, and found

some correlation between them. This correlation is understood as coming from a 3-d helix of

variable pitch and constant curvature squeezed to almost 2-d flat geometry. The analysis of

shapes allow us to extract the relevant helical parameters, pitch ∼ 13µm(±4.5µm) and radius

of curvature ∼ 21µm.

Notably we have observed a new type of anomalous thermal motion of MTs which is qual-

itatively different from usual semiflexible filament behavior. In particular we have witnessed

sudden conformational transitions of MT shapes in two general classes: correlated curvature

reorientations and correlated curvature magnitude transitions corresponding to transformations

from curved to straight shapes and vice versa. These conformational transitions show a high

degree of cooperativity as corroborated by correlation coefficients between adjacent sections’

mean curvatures. As a possible mechanism for the observed behavior, we suggest switching of

the tubulin dimers between straight and curved state and the involvement of cooperative interac-

tions along the protofilament’s axis as hypothesized previously in a theoretical model [116]. This

polymorphic MT model predicts a high degeneracy of the superhelical ground state and thus a

permanently cooperatively reshaping MT with an evolving reference ground state configuration

due to thermal fluctuations. The most intriguing potential consequence of our experimental

findings in this work is that the superhelicity and its cooperative switching could be caused by a

strong cooperative effectively long-range interaction which originates from the specific interac-

tions of tubulin subunits. To test this hypothesis and explore its biological implications remains

one of the most fascinating future challenges.
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Chapter 5

Helices at flat interfaces:

Conformational transformation of a

helical chain under two-dimensional

confinement

Helically coiled filaments are frequently found in nature as illustrated below in Fig. 5.1. In

vitro, the helices are squeezed into flat two-dimensional surfaces. Under such confinement, the

helices form peculiar shapes: looped waves, spirals, or circles, which we named "squeelix". In this

chapter, we study those conformations by introducing the helical WLC model with bending and

twist modulus and preferred curvature and twist. In 3d, the chain has a helical shape (ground

state) satisfying preferred curvature and twist everywhere. When confined in 2-d surface, the

chain displays a variety of shapes which are similar to those found in experiments. In analogy

to soliton physics, we introduce the "twist kink" as a discrete quasi-particle, and discuss the

filament shape and its fluctuations in terms of twist kink injection, interaction, and diffusion.

Numerical study will show the emergence of squeelix shapes, and those shapes can thermally

switch between discrete twist-induced conformational states. The notion of squeelix has been

used in the previous chapter on MTs.
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5.1 Introduction

Among a number of examples of helically coiled filaments, the most prominent ones are

FtsZ [36], Mrb [37], bacterial flagella [75,76], tropomyosin [126], and intermediate filaments [38].

More recently microtubules were suggested to spontaneously form large scale superhelices [4].

Even whole microorganisms exhibit helicity inherited from their constituent filaments [127].

The superhelicity of filaments is in some cases of strong evolutionary benefit as in the ex-

ample of swimming bacteria utilizing the rotational motion of their helical flagellar filament

for propulsion [128] and tropomyosin’s helical "Gestalt-binding" around actin [126]. In addi-

tion to biological evolution artificial, man-made helically coiled structures have been created

including coiled carbon nanotubes [129–131], DNA nanotubes [132], and coiled helical organic

micelles [133].

As observed in experiments, we introduce 2-d confinement to simplify observational con-

ditions. This changes the physical properties of the helical chain in initially unanticipated but

physically rather interesting manner. The purpose of this work is to investigate the rich physi-

cal effects of confinement on helical filaments. As we will show, the confinement changes the

shapes dramatically, and statistical mechanics of the confined helix generates several notable

effects: (i) Enhancement of cyclization probability, (ii) Enhancement of end-to-end distance

fluctuations, and (iii) Generation of conformational multistability (despite apparent linearity of

constitutive relations). We will see that the conformational dynamics of confined helices is

most naturally described in terms of the "twist kinks" entities (cf. Fig. 5.1). We show that

these "twist kinks" are completely analogous to overdamped Sine-Gordon-kinks from soliton

physics [134] as well as loops in stretched elastic filaments [135]. These analogies will help us

to develop a phenomenological understanding of the underlying physics. The peculiar shapes

specified above appear not be rationalized by the conventional Worm Like Chain model. This

riddle feature is the starting point of our investigation. In this chapter, we propose a new

augmented model of confined intrinsically curved and twisted chains that leads to a variety of

2-d shapes matching experimental observations.
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5.2 The Phenomenology of Squeezed Fluctuating Helices

Consider a filament of bending modulus B, twist modulus C and preferred curvature ω1 and

twist ω3. In 3d, preferred curvature and twist are satisfied everywhere simultaneously by the

proper helix. In 2d, some frustration cannot be avoided. Phenomenologically, the main effect of

confinement is to introduce narrow regions where the twist is localized (concentrated) and the

curvature flips. We call this inflection points as "twist-kinks" borrowing the concept of kinks

in soliton physics [134]. Depending on the control parameter γ ∼ Bω2

1

Cω2

3

, two regimes can be

distinguished:

(i) γ > 1: Twist kinks having a positive self-energy are essentially expelled and can only be

thermally activated

(ii) γ < 1: Twist kinks have a negative self-energy and the ground state involves a finite

density of twist kinks.

In both cases, the generic shape is a circular arc or closed circles. The twist kinks, if present,

separate arcs of opposite curvature orientations resulting in a wavy undulatory 2-d shape. For

a squeelix with γ > 1, the ground state over the surface is a circular arc shape that can favor

the occurrence of closed filaments. This is very unlikely in the free helical state (in absence of

confinement).

Our study is based on the analytical analysis of the confined Helical WLC Hamiltonian and

numerical Monte Carlo simulations using the density of states method [137]. In this simulation,

the parameter set (B, C, ω1, ω3) is assigned primarily to illustrate circularization enhancement,

which allows us to focus on the most curious case of twist expulsion (γ > 1). In this regime, the

chain will also comprise excited (wavy looking) states involving a discrete number of thermally

activated twist-kinks. The shapes of excited states can be "hyperflexible" because an isolated

twist-kink almost freely diffuses along the filament. In other words, large shape fluctuations

are induced by simple translational sliding motion of the twist-kink along the contour. For

parameter sets not resulting in twist expulsion (γ < 1), the ground state itself is periodically

wavy. This case is less exciting as effects like circularization and hyperflexibility will be absent.

For this reason we will entirely focus on more illuminating and surprising limit γ > 1.

This conceptual consideration seems appropriate for an experimentalist concerning inter-

preting real filaments (in real world experiments). Bacterial flagella and MTs are known to be

helical filaments, but their mechanical characteristics are generally (in experimental practice)

not always quite uniform along the filament. There could be frozen-in lattice defects like a jump
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Figure 5.1: Several examples of helically coiled filaments at 2-d surface. (a) Intermediate fila-
ment [38] (b) Coiled FtsZ filament [36] (c) Gliding essay of MTs over the kinesin-coated surface
showing a circular shape [136] (Scale bar: 5µm). (d) Polymorphic helical bacterial flagella [75].
Artificial helices also show a peculiar shape. (e) Coiled carbon nanotube when adsorbed onto
the substrate [129], (f) Helical DNA nanotubes [132]. (g) The simulated squeelix appears in
coexisting wavy and coiled circular shapes and display a discrete "twist kink" (curvature flipping
point) indicated by arrow. Twist kink is characterized by a rapid inversion of the binormal vector
along the contour and by a localized twist-angle ψ variation.
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in the number of protofilaments for microtubules [138] or annealed defects like a boundary be-

tween different polymorphic states in bacterial flagella. In the cases of interest, the mechanical

parameters are uniform within some correlation length, which may even be larger for cleanly pre-

pared filaments than the contour length under scrutiny. Our model is generic in the sense that

it always applies to an uniform sub-filament, provided that twist kinks and boundary layers are

much smaller. A clean observation of the shapes described below further supposes that shape

equilibration is possible with stable mechanical parameters, i.e. before polymorphic switching.

5.3 The squeezed helical worm-like chain model

The various shapes of helices can be understood by simple considerations of their elastic energy.

The elastic energy of a HWLC is written as a function of the curvatures Ω1,2 and twist Ω3 as:

E [Ω] =
1

2

∫ L/2

−L/2

[

B(Ω1 − ω1)
2 +BΩ2

2 + C(Ω3 − ω3)
2
]

ds, (5.1)

where B and C are the bending and torsional stiffness, respectively. The intrinsic bending and

twist curvature ω1 and ω3 are related to the 3-d ground state of a helix with radius R = ω1

ω2

1
+ω2

3

and pitch P = 2πω3

ω2

1
+ω2

3

. In order to proceed and access the filament shapes, it is convenient to

express Ωi through the Euler angles (θ, φ, ψ).

Ω1 = φ′ sin θ sinψ + θ′ cosψ

Ω2 = φ′ sin θ cosψ − θ′ sinψ

Ω3 = φ′ cos θ + ψ′

, where ()′ = d
ds

and s is the arc length parameter along the contour.

By imposing θ = π
2
, the helical chain is projected onto 2-d surface, which considerably

simplifies Ωi as:

Ω1 = φ′ sinψ, Ω2 = φ′ cosψ, Ω3 = ψ′ (squeelix). (5.2)

Then, the elastic energy of the squeelix is written as a function of φ, ψ:

E [φ, ψ] =
1

2
B
∫ L/2

−L/2

(

(φ′)2 − 2ω1φ
′ sinψ + ω2

1

)

+ c (ψ′ − ω3)
2
ds, (5.3)
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Figure 5.2: Schematic description of (a) squeelix with local twist ψ and tangent angle φ and
(b) WLC under tension with a loop size λ.

where c = C/B. Now, φ′2(s) = Ω2
1 + Ω2

2 ≡ κ2(s) is in-plane local curvature of the chain and

ψ′(s) = Ω3 is the local twist. The optimal shape of chain is obtained via the Euler-Lagrange

equations:

∂E

∂φ
= B

d

ds
(φ′ − ω1 sinψ) = 0

∂E

∂ψ
= 2ω1φ

′ cosψ + 2c
d

ds
(ψ′ − ω3) = 0.

For an uniform "helix" with constant ω1 and ω3:

φ′ = ω1 sinψ (5.4)

ψ′′ +
ω2

1

2c
sin 2ψ = 0. (5.5)

If there is no external torque applied on the HWLC, the twist must satisfy the boundary condi-

tions ψ′(−L/2) = ψ′(L/2) = ω3. As shown in Eq. 5.4, under the confinement the curvature

is determined by the twist and is no more an independent parameter as for a free chain. This

obviously is at the origin of the localization of twist. From Eq. 5.5, we see that ψ(s) is solution

of a pendulum equation and thus is the Elliptic Jacobi function1.

1The solution is ψ(s) = am
(√

a(s− s0)| ω2

1

ca

)

(elliptic amplitude function) where the constants of integration

a and s0 are determined by the boundary conditions.
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Analogy with WLC under tension

For better intuition, we map our problem into a WLC under tension (hereafter, WLCT). To

do so, we introduce a new angle ϑ/2 as ψ = π/2 + ϑ/2. By plugging Eq. 5.4 in Eq. 5.3, the

energy is rewritten as a function of ϑ

E [ϑ] =
∫ L/2

−L/2

[
1

2
Ãϑ′2 + F̃ (1 − cosϑ)

]

ds− M

2
[ϑ (L/2) − ϑ (−L/2)] , (5.6)

where we represent Ã = C/4 as the effective bending modulus of the WLCT and F̃ = Bω2
1/4

as the effective external force acting on it (cf. Fig. 5.2). The first integral term is precisely the

WLCT energy. The last term represents an energy related to the loop accumulation, where the

notation M = ω3C is introduced to stand for two external antagonistic torques exerted on both

ends. If the torque is large enough, extra n turns or loops are accumulated on the contour,

which enforces ϑ (L/2) − ϑ (−L/2) = 2πn or in the ψ representation n twist-kinks along the

squeelix.

The phenomenology of the stretched chain makes the mapping attractive. The decay length

of a localized distortion (correlation length) λ is also the optimal size of loop grown against the

tension F̃ (in the loop picture) or kinks-spatial extension (in the twist-kink picture, this will be

discussed below):

λ =

√

Ã

F̃
=

1

ω1

√

C

B
. (5.7)

The WLCT loop stores a typical energy ∼ λF̃ . If the work of the external torques 2πM per

loop reduces sufficiently the WLCT energy, loops form spontaneously (otherwise they can be

thermally activated). We hence conclude that the ground state is wavy for M & λF̃ , which

translates into Bω2

1

Cω2

3

. 1, and circular otherwise.

Now, let us return to a circular shape, in this case the twist expulsion parameter γ > 1,

which corresponds to a WLCT without loops in the ground state. We hence consider a WLCT

with ϑ = 0 (no loop) everywhere along the chain except at the ends where there is a small

deformation due to the boundary condition ϑ′(−L/2) = ϑ′(L/2) = 2ω3. The solution for the

WLCT without loop corresponds to a constant angle ψ = π/2 along the chain, and there is no

twist in this case ψ′ = 0 and the curvature is constant φ′ ≈ ω1. This corresponds to a circular

arc of constant curvature, from which the twist has been completely expelled.

Concerning the small deviation at the edges, the energy of a nearly circular shape can be
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determined by expanding Eq. 5.6 for small deformation ϑ ≪ 1:

E [ϑ] ≃
∫ L/2

−L/2

(
1

2
Ãϑ′2 +

1

2
F̃ϑ2

)

ds− M

2
[ϑ (L/2) − ϑ (−L/2)] . (5.8)

The associated elastic Euler-Lagrange equation produces a differential equation ϑ
′′

= λ−2ϑ.

Applying the boundary condition, the solution is obtained as

ϑ(s) =
4

π
√
γ cosh(L/2λ)

sinh(s/λ), (5.9)

where the control parameter γ is introduced with prefactor (see below):

γ =
4

π2

Bω2
1

Cω2
3

. (5.10)

The small deflection hypothesis on the WLCT is satisfied provided γ > 1, i.e. deep in the twist

expulsion regime. In a consistent picture, the twist-kink density should be calculated including

shape fluctuations, i.e the coupling of the twist kink to the small thermal deformations. This

is taken into account by the simulation presented in this chapter. Simple geometry allows to

calculate the shape fluctuations associated with the free motion of the narrow twist-kink along

the filament in the excited state. This soft mode gives rise to large fluctuations in the excited

state reported in this work.

Single twist-kink solution: Shape and Self-energy

For one isolated twist kink on an infinite filament, the solution of Eq. 5.5 can be obtained easily.

For this shape, the boundary condition is given by ψ(±L/2) = ±π/2. By multiplying ψ′ to

both sides of Eq. 5.5, one can get the first integral:

dψ

ds
= ±

√

a2 − ω2
1

c
sin2 ψ. (5.11)

The boundary condition ψ′(−L/2) = ψ′(L/2) = 0 determines a2 =
ω2

1

c
≡ 1

λ2 , where we

encounter λ =
√

C
Bω2

1

again. For a squeelix having twist-kinks, λ measures the size of the

twist-kink along the contour.
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By integrating Eq. 5.11, the solution of Eq. 5.5 is obtained as

ψ(s) = 2 arctan (exp(s/λ)) − π/2. (5.12)

Rewriting this equation

sinψ (s) = tanh
s

λ
, (5.13)

which describes the localized twist-angle ψ variation. The corresponding chain shape is given

by:

φ′ (s) = ω1 tanh
s

λ
and φ (s) = ω1λ ln

∣
∣
∣
∣cosh

s

λ

∣
∣
∣
∣ , (5.14)

in which one can see that the twist-kink is localized provided that L ≫ λ and separates two

flipped regions of almost constant curvature ≈ ω1.

By plugging Eq. 5.12 in Eq. 5.6, the self-energy of the twist-kink is obtained as energy of

WLCT featuring one loop:

E1kink = 8
√

ÃF̃
︸ ︷︷ ︸

Eloop

− πM
︸︷︷︸

Etorque

= (
√
γ − 1)πCω3 (5.15)

where γ is the twist-kink expulsion parameter introduced previously. As mentioned earlier, γ = 1

separates the regime of positive and negative self-energy.

5.4 Simulation

5.4.1 Simulation model for a squeelix

We modelled a HWLC consisting of N -monomers, whose position vector are represented by

ri (i=1, 2, ... N). The shape of HWLC can be described by a material orthonormal frame

{fi,vi,ui} [139] where u is tangent vector defined as ui = ri+1 − ri satisfying the constraint

|ui| = 1 for all i. The normal and binormal vector f and v are pointing two perpendicular

directions to the tangent, and ui = fi × vi. The total energy of a confined helix consists of the

elastic and confinement energy Etot = Eel +Econf . The discretized version of elastic energy is
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given by

Eel =
1

2

N−2∑

i=1

B
{

(Ω1,i − ω1)
2 + Ω2

2,i

}

+ C(Ω3,i − ω3)
2, (5.16)

where the strain tensor Ωi = (Ω1,i,Ω2,i,Ω3,i) is defined for each body frame as

Ω1,i = (ui+1 − ui) · fi

Ω2,i = (ui+1 − ui) · vi

Ω3,i = (vi+1 − vi) · fi.

The chain is confined under harmonic potential so that each monomer located at distance z

away from the surface experiences potential Econf = Kz2. In this work, B = 50, C = 25 kBTb,

and K = 25 kBT/b
2, and the bond length is fixed as b = 1. When K = 0, we recover the free

chain statistics in 3-d.

5.4.2 Monte Carlo simulation using Wang-Landau sampling idea

In order to gain insight into the conformation of squeelices in thermodynamic equilibrium,

we performed Monte Carlo simulation using density of states method [137]. The equilibrium

conformational statistics of squeelices can be obtained via the calculation of the density of

states (DOS), g(E). Once g(E) is obtained, the average of a quantity A that depends on E

only can be computed using

〈A〉 =

∫

drA(r) exp[−βE(r)]
∫

dr exp[−βE(r)]
=

∑

E A(E)g(E)e−βE

∑

E g(E)e−βE
(5.17)

The bracket denotes an average in the canonical ensemble and β = 1/kBT = 1. At given

end-to-end distance D, each conformation of energy Er contributes with statistical weight

exp [−βEr(D)]. To compute an ensemble average at a given extension D, we have to compute

the density of states as a two-dimensional function g(E,D), so called JDOS. Sampling of

two-dimensional histograms is often computationally more demanding than one-dimensional

histograms. For efficient sampling, we used the global update method introduced by [140].
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The average end-to-end distance 〈D〉 can be computed by

〈D〉 =

∑

E,D Dg(E,D)e−βE

∑

E,D g(E,D)e−βE
. (5.18)

In the calculation of g(E,D), the ranges on E and D are assigned in order to cover the wide

range of the conformational states. The bin sizes for the sampling are chosen as dE = 0.5 kBT

and dD = 0.5 b (in the unit of monomer size). From the obtained JDOS, we calculate the

probability distribution of D within the interval of [D,D + dD] using:

pd(D) =

∑

E g(E,D)e−βE

∑

E,D g(E,D)e−βE
. (5.19)

In order to generate a new conformation of a chain, we introduced two types of Monte Carlo

(MC) moves: pivot and pure twist. Within each pivot move, a randomly selected monomer is

rotated by an arbitrary angle around the axis defined by two neighboring monomers. This move

changes the chain shape and twist simultaneously. By pure twist, f and v are only updated by

rotation with respect to the local tangent. To enhance the sampling and avoid being trapped in

local energy minimum, the large scale pivot is furthermore introduced once for each MC sweep

(MCS). This move is tried in such a way that a vector rN − ri=2,...,N−1 defined by a selected

i−th monomer is reoriented by a set of arbitrary euler angles. Each computation of g(E,D) of

16-mer with accuracy ffinal = exp (10−6) ≃ 1.000001 reduced from finitial = exp (1.0) takes

approximately 1 hour on a Intel Xenon CPU at 2.40 GHz, 8192 MB RAM running Linux.

5.5 Simulation results

We performed our simulations for several chain lengths, N = 16, 32, 64. Throughout the

simulation, the mechanical constant is fixed as B = 50 kBTb and C = 25 kBTb, respectively.

One of main goal of our simulation is to quantitatively study the conformational changes of a

helix upon confinement. As discussed above, the twist expulsion parameter γ determines the

chain’s shape over the surface. We first verify that from the simulation. The results are shown

in Fig. 5.3. For γ > 1, the chain becomes a circular shape as shown in the process (a) → (a′),

where the binormal vectors (shown in red) pointing all the same direction indicates that twist

is expelled. The normal vectors (shown in blue) are in-plane and pointing the center of circle.
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Figure 5.3: Formation of two different types of conformations of a confined helix depending on
the twist expulsion parameter γ. The contour is represented by a tube shape with normal (in
red) and binormal (in blue) vectors. (a) and (b) are typical helical chain shapes in 3-d before
confined. When confined, (a′) untwisted and circularized shape (γ > 1) and (b′) twisted and
wavy shape (γ < 1) are formed.

For γ < 1, on the other hand, the chain is twisted and stretched in the process of confinement

(b) → (b′). The "twist-kink" emerges on a wavy shape, where in-plane normal vectors switches

their signs. Note that the number of twist-kinks significantly influence on the shape of the

chain and its fluctuation.

A variety of chain’s shapes is characterized in terms of two quantities, the end-to-end

distance D and the number of inflection points n = 1
π

∑N−2
i Ω3,i. The latter is a statistical

analogue of the discrete twist kink number in the theoretical consideration above. The density

of states g(E,D, n) is computed in the simulation as a function of these quantities and energy

E.
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Figure 5.4: Joint density of states for a confined helical chain of length (a) N = 32 and (b)
N = 64. The colored surface represents the ln[g(E,D)] as a function of total energy E and
end-to-end distance D.

5.5.1 Joint Density of States

As the main product of the simulation, we obtained the JDOS for a confined helix of length

N = 32, 64. The parameter set (ω1, ω3) is chosen for N = 32, 64 as (0.15, 0.1)b−1 and

(0.09, 0.08)b−1, respectively, and always ω2 = 0 to make an uniform helix in 2d. The ground

state of 2-d is a circular shape satisfying γ > 1. Figure 5.4 presents the estimated JDOS over a

given range of E and D. To avoid the numerical divergence, the logarithmic value of g(E,D)

is computed. The range of energy E and end-to-end distance D are assigned to cover large

enough conformational states, from a circular shape of ground state to a completely random

conformation. For data analysis, the corresponding energy range are chosen in such a way that

the largely contributing states to the average are located within the energy range. For N = 32

with E = [10, 300] kBT , the temperature varies for T = [0.3, 10] k−1
B .

5.5.2 Hypercyclization

The phenomenological arguments presented in Fig. 5.3 predict a significant circularization en-

hancement for a twist-expelling chain (γ > 1). We subject this hypothesis to a simulation test.

By using JDOS, the partition function and end-to-end distance distribution can be calculated
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Figure 5.5: (Top panels) The end-to-end distance D distribution pd(D) at various temperature
lp = 167, 83, 50, 12.5 b. (Bottom panels) Normalized capturing probability Pd(Dcap)/Dd

cap as a
function of N/lp for Dcap = 0.5, 1.0, 1.5, 2.0, 2.5 b. (a) 2d and (b) 3d. N = 32, ω1 = 0.15 b−1,
ω3 = 0.1 b−1, and γ ≈ 1.8 > 1.

as

Z(T ) =
∑

E,D

g(E,D)e−βE (5.20)

pd(D, T ) =
1

Z(T )

∑

D

g(E,D)e−βE. (5.21)

For the geometric parameters ω1N = 4.8 and ω3N = 3.2 and the elastic constant ratio

B/C = 2, the twist expulsion parameter is given as γ = 1.82 larger than unity, which ensures

the circular shape of ground state in 2d. In the absence of confinement, the chain with such pa-
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Figure 5.6: (a) Plot of ratio P2(Dcap)/P3(Dcap) as a function of N/lp for N = 16, 32, 64.
The given values are scaled according to the geometric capture distance Dcap/N . From top
to bottom Dcap/N = 1/16 (green), 1/8 (orange), 1/4 (red), 1/2 (blue). The data collapse
for the same geometric ratio. (b) Mean elastic energy of a confined helix 〈Eel〉 plotted as a
function of N/lp. Dashed line indicates the bending energy of a circularized WLC by theory.
The simulation data of N = 16, 32 are collapsed.

rameters has a helical shape whose radius and pitch R = 0.14Nb and P = 0.62Nb, respectively.

When a chain is confined to 2-d surface, on the other hand, it transforms into a slightly open

but approximately circular shape with the end-to-end distance D0

Nb
≈
∣
∣
∣

2
ω1N

sin
(

ω1N
2

)∣
∣
∣ = 0.28.

In this case, the newly formed ground state under confinement seems to enhance circularization.

To quantify the circularization enhancement, we define the circularization probability Pd(Dcap)

for both chain ends to meet within the capture distance Dcap as

Pd(Dcap) =
∫ Dcap

0
pd(D)dD, (5.22)

where the index d = 2, 3 stands for the dimensionality of the chains (confined one in 2d or free

one in 3d). Figure 5.5 shows the circularization probabilities in both 2d and 3d for chains with

various flexibility lp. Note that lp is related to the temperature via lp = B/kBT .

In the top panels of Fig. 5.5, the maximum of p3(D) (blue line) is located at about
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D = 0.58Nb which is close to the expected helical pitch at a given parameter. In contrast, the

largest closure probability in 2-d (blue line) is located at about D ≈ 0.3Nb which corresponds

to D0 in the estimate of the end-to-end distance of circular shape in the 2-d ground state.

At high temperatures, chains are more flexible and the end-to-end distribution broadens due

to the thermal fluctuation. In the bottom panels of Fig. 5.5, the normalized circularization

probabilities Pd(Dcap)/D
d
cap are presented as a function of chain’s flexibility N/lp for small

values of Dcap < 3b. Note that the probability is normalized by the capture area and the

capture volume in each dimension, respectively.

The Pd(Dcap) reveals the probability enhancement of circularization by 2-d confinement.

For quantitative estimation of circularization enhancement are computed as the relative ratio

of P2(Dcap)/P3(Dcap) at various small Dcap. As expected, the closure probability is greatly

enhanced (more than 103) due to the confinement as seen in Fig. 5.6(a). In this graph, the

different colors indicate different relative capturing sizes. For Dcap/N = 1/16 (green), in

particular, the most pronounced enhancement on circularization takes place with the smallest

capturing size at low temperature, which results from adjusting to a circular shape of ground

state at given parameters. This is also checked by the elastic energy measurement as shown in

Fig. 5.6(b). As the chain stiffens (small N/lp), the elastic energy decreases smaller than that

of WLC model.

5.5.3 Multi-stability and Hyper-flexibility

The theoretical considerations of kink solutions (Chap. 5.3 and Appendix 5.6) suggest that con-

fining a helical chain generates a complex energy landscape with many metastable states. Some

of these states, in particular those comprising only a few kinks, exhibit anomalous hyperflexible

behavior due to the energetically low-cost displacement of kinks. For instance, the motion of

a single kink on a chain of length L and curvature satisfying a close to "resonance" condition

ω1 ≈ 2πk
L

(k = 1, 2, ..) expects to give rise to most dramatic end fluctuation effects.

In order to get various conformational states specified, we further calculate the JDOS for

a chain of length N = 48 with ω1 = 0.26b−1 and ω3 = 0.1b−1. With the fixed mechanical

ratio B/C = 2, the control parameter is given as γ ≈ 5.5 > 1. Considering the chain length,

the ground state shape of helix in 2-d is a coiled shape with exactly two turns. With given

parameters, a chain forms a helix in 3-d with radius R = 8.09b and pitch P = 3.35b. For more

detailed sampling, we extended our algorithm to have three variables (E,D, n). Note that the
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Figure 5.7: For the chain of length N = 48 with ω1 = 0.26 b−1 and ω3 = 0.1 b−1 yielding
γ = 5.47 > 1, the ground state in 2-d is a coiled shape by two turns. Free energy is plotted as
a function of the end-to-end distance D and the number of twist kinks n for (a) a helix confined
in 2-d and (c) in free space of 3-d. In both graphs, the color code indicates the depth of energy,
and the representative shapes of chain are shown for corresponding regions. (b) Contour plot
of free energy for 2-d chain, where the numbers denote the value of free energy in the unit of
kBT .
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Figure 5.8: (a) Cross section plot of free energy parallel to the F − D plane at n ≈ 1 states.
(b) Mean distance 〈D〉 (data in blue) and its fluctuations 〈(δD)2〉 (data in red) are plotted as
a function of n on dual axis graph.
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number of twist-kinks n is now included in the calculation for JDOS g(E,D, n). Convergence

of the JDOS with three variables costs a lot of computational time, which takes about one week

with same ffinal ≈ 10−6 in the same machine. Once the JDOS is obtained, the calculation

of any thermal average is straightforward. Mainly, we focus on the calculation of free energy

defined as βF (D, n) = − ln
[
∑

E g(E,D, n)e−βE
]

.

Figure 5.7(a) shows the free energy landscape over the D − n plane. As expected, the

ground state shape of the chain in 2-d is a coiled circle with exactly two turns. In addition to

the ground state, the free-energy along n-axis displays the existence of "excited" metastable

states with n = 1, 2, .... These states with distinct n are separated by small free energy barriers,

which is clearly seen in the contour plot in Fig. 5.7(b). In particular, the free energy difference

between n = 0 and n = 1 state is only ∆F1kink ≈ 4 kBT . This value is not far from the

theoretical estimation of one kink free energy ∆F1kink = E1kink − kBT lnN ≈ 6.6 kBT , where

the lnN (N = 48) term accounts for kinks positional entropy gain along the discrete positions

of the chain. As shown in Fig 5.7(c), the free energy landscape of the free chain (not confined)

appears rather featureless, displaying no local minima or barriers and lacking the complexity of

its confined chain counterpart.

The n = 1 state (cf. Fig. 5.8(b)) exhibits an enhanced end-to-end distance fluctuation

〈(δD)2〉 in qualitative agreement with the mobile kink interpretation. For the given length

(L = 48b) and curvature, we expect an almost flat free energy landscape as a function the

end-to-end distance D in the range D ∈ [0, Dmax]. Here, Dmax ≈ 4ω−1
1 = 15. 4b is the max-

imal extension for the n = 1 state. It is reached when the twist-kink is located at a position

≈ L/4 from any of the borders as seen from straightforward geometric reasoning. The standard

deviation expected from analytic estimation 〈(δD)2〉n=1 ≈ 28b2 agrees well with the simulation

result 〈(δD)2〉n=1 ≈ 26b2. The larger states n ≥ 2 display again lower fluctuations. This is in

agreement with the interpretation that with growing kink density their repulsion and eventually

mutual confinement become important.

5.6 Conclusion

We have shown that the conceptually simple procedure of planar confinement transforms a sim-

ple mundane object - a helically coiled filament- into a complex metastable, and anomalously

fluctuating filament. The statistical mechanics of this exotic object, the "squeelix", can be
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qualitatively understood in terms of the motion of discrete particle-like entities corresponding

to sharp curvature inversion points, called "twist kinks". At low twist kink concentrations, they

move almost freely along the chain and induce anomalously enhanced conformational fluctua-

tions notably deviating from WLC behavior. The "squeelical" shapes formed under confinement

range from almost ideally circular to wavy depending on the value of a single dimensionless

"twist expulsion" parameter γ =
4Bω2

1

π2Cω2

3

. This parameter depends both on the chain’s elastic

moduli (flexural modulus B and twist modulus C) and the geometric properties (intrinsic cur-

vature ω1 and twist ω3). For γ > 1, the twist is curiously expelled from the chain. Under these

conditions the squeelix becomes almost circular (up to minor end-effects) and the circulariza-

tion probability can be dramatically enhanced. In the other limit γ < 1 the squeelix comprises

densely packed twist-kinks in its ground state which is now wavy. Several authors studied the

case when there is no preferred twist and the ground state is circular [141, 142].

We may speculate whether abnormal wavy shapes or enhanced closure of confined filaments

found in literature are fingerprints of hidden helical superstructures whose microscopic origin

should be elucidated for each type of filament, case by case. Such peculiar behavior under

confinement is observed for essential filaments like microtubules [4], F-actin [115] and possibly

for intermediate filaments [71]. It also has been observed that actin-filaments circularize on

stunningly small scales (∼ 5µm length rings) [115, 143] and exhibit wavy periodic tangent-

correlation functions in narrow, flat-channels (cf. Fig.6 in [144]). These phenomena cannot be

understood within the naive WLC model. Similarly intermediate filaments under confinement

show wiggly periodic shapes [71] suspiciously reminiscent of squeezed helices.

It is our feeling that the illustrated phenomena of multistability, hyperflexibility and enhanced

closure probability are just the tip of an ice-berg. The floppy "squeelix" concept will help us to

figure out the underlying mechanism on polymorphic conformations of biofilaments. We have

evidence that additional lateral confinement of filaments in narrow channels, as encountered in

microfluidic devices [71], further enhances the visibly wavy shapes for helical filaments and gives

easier access to the underlying mechanical parameters. The potential of the 2-d and especially

double confinement experiments (in microchannels) has been vastly underestimated so far. The

"squeelix" phenomenology laid out here will serve us as a "dictionary" to decode these peculiar

observations in forthcoming works.
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In this work, the dynamics of confined stabilized biofilaments has been studied. The filaments

under consideration are mostly confined to 2-d surface, this provides a good tool for investi-

gating the intrinsic mechanical properties of filaments such as DNA molecule and cytoskeleton

filaments. Traditionally, such filaments have been described as an homogeneous elastic rod

with a single elastic modulus, and the Worm-Like Chain (WLC) model has been successfully

implemented to describe their dynamics. However, many recent experiments indicate that the

WLC model may not be enough to explain the elasticity and dynamics, in particular, for the

MTs’ length-dependent stiffness and polymorphic dynamics for example. This eventually calls

for an augmented model to describe such behaviors. In our study, the Helical WLC model

(HWLC) has been employed to investigate the unusual features of MTs, and should provided a

useful tool for studying other biofilaments.

The first two chapters were dedicated to the dynamics of a semiflexible polymer as a classical

model for biofilaments. We studied the conformations of DNA grafted on a streptavidin coated

surface on which a biotinilated vesicle spreads. The main issue here is the unraveling of the

DNA coil pushed by the vesicle front. Some DNA/DNA-sections appear unable to uncoil at

the imposed velocity and are overrolled. Inspired by the experiment, we have performed 2-d

Langevin simulation for a semiflexible polymer in an array of obstacles closer than the persistence

length. We studied early stages of reptation for a stiff chain with free ends both analytically

and numerically. For a chain grafted by one end, we described relaxation via hairpin formation.

The last two chapters present the dynamics of MTs and rationalize it by the "confined

HWLC" model. For the MT, image data analysis enabled us to monitor its unusual thermal

motion, and revealed its cooperative polymorphic dynamics. The most controversial length-

dependent stiffness has been reproduced and accounted for as a consequence of such polymor-

phic conformational transitions. In our work, the MTs are also confined in 2d plane, where

they often displays a wavy shape. This reflects a superhelical structure of the MT in 3d. In
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order to investigate the formation of such shapes, we studied the effect of 2d confinement on

a generic HWLC. By using an elastic theory and Monte-Carlo simulation, the metastable states

corresponding to various shapes are observed in the free energy landscape. The confined HWLC

has a soft mode corresponding to the diffusion of particle-like twist-kinks, which accounts for

most of the dynamics. We do not explicity discuss the origin of superhelicity which in the case

of MTs may be linked to the polymorphism (curved and straight state) of the tubulin dimer

associated with the intrinsic helicity of the MT lattice.

The other biofilaments like actin- and intermediate filament also exhibit anomalous structure

and dynamics. Open questions about the static and dynamic features could be addressed. For

actin-filament, indeed, the unusual dynamics was experimentally observed like annealing process

at the end of inter/intra filaments [145] and the polymorphic switching process at the level of

the actin monomer [146], which lead to large scale conformational changes. Most intriguing

feature is in the formation of small actin-rings in solution confined to the surface by the depletion

interaction [115]. For intermediate filament, the various shapes [38] and wavy shapes in narrow

channels [71] might imply a possible helical superstructure and its polymorphism. We are left

with the feeling that even stabilized biofilaments are far more complex than usually assumed.



Appendix A: Compliance J

The transverse equal time correlation Cq = 1
αS

〈r⊥,qr⊥,−q〉 needs to be calculated under the

tension σq from the transverse Langevin equation:

ζ⊥
∂r⊥,q

∂t
= −(lpq

4 + κ+ q2σ)r⊥,q + ξ⊥,q, (5.23)

with stochastic noise ξ. Here in Eq. 5.23 the tension is assumed to be uniform because the

typical transverse wavelength is short [147] (in the harmonic potential, it further saturates at

l1) as compared to the longitudinal one at some time t. The corresponding equation for Cq,

ζ⊥
∂Cq

∂t
= −2(lpq

4 + κ+ q2σ)Cq + 2, (5.24)

where the additive constant 2 comes from the noise and allows for the equilibrium correlation

(σeq = 0) can be solved perturbatively [147]. After Laplace Transform with respect to time we

obtain:

Cq(p) =
1

p(κ+ lpq4)
− 2q2

(lpq4 + κ){2(lpq4 + κ) + pζ⊥}σ, (5.25)

where only the linear term in σ is relevant according to the definition of longitudinal coordinates.

Finally 〈dδr‖,s

ds
〉 is related to the tension σ via the equation: 〈dδr‖,s

ds
〉 = −α

2

∫ dq
2π
q2Cq(p) = Jσ.

Performing the integration, we obtain the expression of the compliance J for two confined

transverse directions (α = 2):

J =
l31
l2p

1

2
√

2{1 + (1 + p̃)1/4}{1 + (1 + p̃)1/2}
with p̃ = pτe, (5.26)

where τe is the entanglement time introduced earlier as τe = ζ⊥/2κ = ζ⊥l
4
1/2lp.
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Appendix B: Reorientation of a

semiflexible polymer

In this part, we will briefly study on relaxation of stiff chains freely rotating around the grafting

point by two dimensional computer simulations and scaling argument. The main focus is on

the orientational relxation of the whole chain (soft mode) and some end-section by means of

the auto-correlation function P (t) = 〈cos θ〉 and similarly we define Pe(t) for an end-section

(See Fig. 5.9 for schematic description). Here, we only present them for both obstacle free

space and in the presence of obstacles. In order to characterize the relaxation of the initial

overall chain orientation, we define a relaxation function P (t) as 〈cos θ(t)〉, where θ is an angle

between the initial end-to-end vector RE(0) and the end-to-end vector at time t, RE(t). The

relaxation function is computed from the simulation data as: P (t) =
〈

RE(t)·RE (0)
RE(t)RE (0)

〉

. A more

detailed description can be found in Ref [148].

Reorientation of a grafted stiff chain in obstacle free space

In the soft mode, the angle θ is a Gaussian variable obeying a diffusion equation with (angular)

diffusion constant Dθ = 3/(ζSL2), where L is the average end-to-end distance of the chain.

The correlation function is hence,

P (t) = P0 exp
(

− t

τrot

)

, where τrot =
1

3
ζSL2. (5.27)

As the major contribution for the orientational relaxation comes from the soft mode for stiff

filaments (S < lp), we may approximate P0 ≈ 1.

Figure 5.10 shows the relaxation function Pe(t) of a short end-section of length δ = S− s

for a stiff filament S = 16b and δ = 2b. The bending modes provide about half of the relaxation,
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Figure 5.9: (a) Illustration of a grafted polymer chain surrounded by obstacles with many hernias
(b) formation of a hairpin (c) Soft mode (d) The orientation of the whole chain RE and end
section Re.

and the final relaxation is due to the soft overall rotation mode. A shoulder is observed where

the two regimes match. There is a rather robust regime for intermediate times between the

longest relaxation time of the bending modes of the short end section τδ ≈ ζ (4/5π)4 δ4/lp and

the longest relaxation time of the bending modes of the whole filament τ1 ≈ ζ (4/5π)4 S4/lp.

In this regime the relaxation is independent of the specific length of the end-section.

Pe(t) = 1 − 1

Γ[3/4]

(

t

ζl3p/4

)1/4

(τδ < t < τ1). (5.28)

The detailed derivation can be found in Ref [148]. In Fig. 5.10(b), the predicted power-law

is depicted by the log-log plot of 1 − Pe(t). Note that this relaxation is independent of chain

length. The existence of this scale free regime for the average orientation can be understood

in a simple way. Once the active bending modes have wavelength larger than some length λ,

the average orientation of the end section is independent of its specific length provided that it

is shorter than λ. It is then easy to recover the power α = 1/4 in 1 − Pe(t) ∼ tα, asking for a

smooth crossover between the early regime 1 − Pe(t) ∼ l2p
(

t/ζl3p
)3/4

/δ2 for t < τδ, similar to
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Figure 5.10: Relaxation function Pe(t) = 〈cos θ〉 for N = 16 for various end-section length δ.
Pe(t) for δ = 2b (◦) is fitted with Eq. 5.28 (red line) describing the internal fluctuation and
Eq. 5.27 describing overall chain rotation. The dashed line indicates the fitted amplitude 0.5
of the final exponential relaxation with predicted relaxation time SL2/3. The measured value
of L from simulation is L = 13.5b for S = 16b.

short time regime 1 − P (t) ∼ t3/4 and the scale free regime 1 − Pe(t) ∼ tα for t > τδ where

τδ ∼ δ4. Indeed the crossover scaling obeys 1 −Pe(t) =
(

t3/4/δ2
)

F (t/τδ) with F an unknown

scaling function and by construction F (x) → constant for x ≪ 1. The large x asymptote

must restore the scale free regime, this imposes the power law asymptotics F → x−1/2 hence

1−Pe(t) ∼ t1/4. The very simple result Eq. 5.28 is useful as long as δ ≪ S. For the special case

under consideration, S = 16, δ = 2 the soft mode relaxes about half of the initial correlation

(P (0) = 1) and P (t) = 0.5 exp (−t/ (ζSL2/3)).

Reorientation of a grafted stiff chain in the presence of obstacles

In the presence of obstacles, the rotational degree of freedom is strongly hindered if the ob-

stacles are spaced closer than L. Rather than rotating the whole end-to-end vector, the chain

orientation can relax by retracting part of the chain and renewing its path. The retraction

through the obstacles can be established mainly via two processes: (a) small retraction by ther-

mal fluctuation and (b) retraction upon storing extra length in activated hernias beyond typical

thermal fluctuations. Activated hernias provide the late relaxation mechanism. In this section,

we study only the relaxation mechanism by hernias.

When the formation of the hairpin is activated, a required nucleation time is τnc ∼ τ0e
Ehp.
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Figure 5.11: The end section relaxation function Pe(t) for chain N=64 with average obstacle
spacings h=7b in semi-log scale. From the top to bottom, the relaxation function P (t) of
the whole chain(δ = S), half-chain(δ = S/2), quarter chain (δ = S/4) and end segment
(δ = S/32) are shown.

The nucleated hairpins can develop further against entropic force. To retract a length of s1, the

additional free energy penalty is ǫH ∼ s1/(2l1)kBT as the conformation of one strand of the dou-

ble stranded loop of length s1/2 is merely set by the other half. Thus the energy for retracting

length s1 via the formation of a meandering hairpin is ǫH +Ehp, with ǫH = αs1/(2l1)kBT+Ehp,

where α is the proportionality constant of order unity. The time required for a hairpin with

total retracted length s1 is

th(s1) ∼ τ0 exp[(Ehp + ǫH(s1))/kBT ]. (5.29)

Writing s as a function of t(s) and recalling that 〈δy(t)2〉 ∼ s(t)3/lp for stiff chains (S < lp),

we obtain the relaxation function as

1 − P (t) ∼ 〈δy2〉
2L2

≈ l31
lpL2

(

log
t

τnc

)3

(5.30)

with τnc = τ0e
Ehp/kBT .

For flexible chains (S > lp), Eq. 5.30 holds for short times (t < th(lp)) with L2 = 2Slp.

Somewhat larger hairpins (s > lp) relax as flexible strands with 〈δy2
S〉 = slp. The relaxation
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function at times t > t(lp) is dominated by flexible hairpins (s > lp) and:

1 − P (t) ≈ l1
S

(

log
t

τnc

)

(5.31)

Figure 5.11 shows the relaxation function Pe(t) of end-sctions belonging to rather flexible

chain N = 64, lp = 10b in the matrix with obstacle spacing h = 7b. The simulation results

show that the terminal segment exhibits the short time power-law relaxation as a free chain

followed by logarithmic decay as described in Eq. 5.31. By analogy with the case of the free

chain, the crossover from power-law to logarithmic relaxation, indicated by the shoulder, should

be located at the entanglement time τe for smallest end-section which is indeed of order t0.
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Appendix C: Multi-kinks solution

We start with the ansatz that the two discrete twist-kinks are separated by a distance d in such

way that λ ≪ d ≪ L,

ϑ(s) = 4 arctan(e(s+d/2)/λ) + 4 arctan(e(s−d/2)/λ), (5.32)

where λ is the size of twist-kink and ϑ(s) = 2ψ(s) − π as described in Chap. 5. The shape of

chain is then given by Eq. 5.4 as

φ(s) = ω1

∫ s

0
sinψ(s)ds. (5.33)

The integration gives

φ(s) − φ(0) = −ω1λ

[

s

λ
− coth

(

d

2λ

)

ln

(

1 + e(d+2s)/λ

ed/λ + e2s/λ

)]

. (5.34)

The energy of the two twist-kinks is then given by (with 2ψ = ϑ+ π)

EW LCT [ϑ] =
∫ L/2

−L/2

(

1

2
Ãϑ′2 +

F̃

2
ϑ2

)

ds, (5.35)

where Ã = C
4

and F̃ =
Bω2

1

4
. The elastic energy of chain with two twist-kinks is obtained in the

limit L → ∞:

E2kinks = 16
√

ÃF̃ + 16
√

ÃF̃ exp(−d/λ) +O(exp(−2d/λ)), (5.36)
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where 16
√
ÃF̃ corresponds to the energy of two independent twist-kinks, and the interaction

energy of them is given by

Uint = 16
√

ÃF̃ exp(−d/λ) (5.37)

The wavy squeelix shapes obtained for γ < 1 can be described in such a way that the twist-kink

density along the filament is limited by their mutual repulsion. Generally speaking, the gas of

twist kink is then less compressible and the end-to-end distance fluctuations of the squeelix

are weaker. It can be shown that the pair repulsion between twist-kinks decreases with their

distance d as Uint ∼ πCω3
√
γf(d/λ) with f(x) ∼ 1/x for x ≪ 1 and f(x) ∼ e−x/2 at small

x ≫ 1. The dense twist kink regime deserves special consideration, a more detailed description

explicitly involves Jacobi functions.
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Dynamics of confined biofilaments 

Thèse soutenue par Gi-Moon Nam le 28 Septembre 2012 (Université de Strasbourg) 

Résumé  

Cette thèse est consacrée à la mécanique et à la mécanique statistique de biofilaments/biopolymères et de leur modèle le plus 

répandu le Worm-Like Chain (WLC) qu’il s’avère nécessaire d’étendre. Nous étudions WLC à 2-d en présence d’ obstacles 

plus proches que la longueur de persistance.  Nous caractérisons le mouvement aux temps courts par des simulations 

numériques  complétées par des calculs analytiques. Des concepts similaires servent à décrire des ADN greffés balayés par 

le front d’une vésicule en cours d’étalement, l’adhésion de la vésicule est promue par des paires biotine/streptavidine qui 

contraignent les molécules d'ADN sur des chemins étroits où ils peuvent être imagés. Les microtubules (MT) ici stabilisés au 

taxol, présentent par contre certains comportements qui échappent au WLC et doivent être ramenés à leur structure interne : 

i)les déflexions latérales d’un MT attaché par un bout correspondent à une longueur de persistance apparente qui augmente 

avec la longueur ii) les MT adoptent des formes super-hélicoïdales. Ces deux points sont établis au moyen d’analyses de 

forme des MT. Des transitions de forme corrélées le long du MT mises en évidence sont compatibles avec un modèle basé 

sur la bistabilité du dimère de tubuline. Finalement un modèle de chaîne super-hélicoïdale comprenant une courbure et une 

torsion spontanées élargi le WLC. Confiné à 2-d, HWLC peut adopter un état fondamental circulaire ou sinueux caractérisé 

par le nombre de points d’inflexion où se concentre la torsion (twist-kink). Dans le cas circulaire, il existe des états 

métastables proches, à petit nombre de twist-kinks, hyperflexibles. 

____________________________________________________________________________________________________ 

 

Summary 

This PhD is devoted to the mechanics and statistical mechanics of biofilaments and their most widespread model, the Worm-

Like Chain (WLC) model, which, as it turns out, needs to be extended. We study the WLC in 2-d in the presence of obstacles 

closer than their persistence length. We characterize the short time motion by numerical simulations complemented by 

analytical calculations. Similar concepts serve to describe grafted DNAs swept by the front of a spreading vesicle whose 

adhesion is promoted by biotin/streptavidin bonds, which constrain the DNAs on narrow paths where they can be imaged. 

Microtubules (MT), here stabilized by taxol, show features which cannot be rationalized by the WLC and shall be related to 

their internal structure : i)lateral deflections of a clamped MT correspond to an effective persistence length growing with the 

MT size ii) MT adopt super-helical shapes. These two points are proven by refined image analysis. We analyze shape 

transitions correlated along the MT which are compatible with a model based on dimer bi-stability. Finally, a super helical 

chain model (HWLC) allowing for spontaneous curvature and twist is developed which extends the WLC. When confined to 

2-d, the HWLC can adopt a ground state which is circular or wavy with inflection points where twist accumulates, so-called 

twist-kinks. In the circular case there exist close metastable states, with a small number of twist-kinks, which are hyper-

flexible. 

____________________________________________________________________________________________________ 
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