Etude théorique des effets relativistes induits par une impulsion lumineuse ultra-rapide dans la matière

par Yannick Hinschberger

Thèse de doctorat en Physique

Sous la direction de Paul-Antoine Hervieux.

Soutenue le 15-10-2012

à Strasbourg , dans le cadre de École doctorale Physique et chimie-physique (Strasbourg ; 1994-....) , en partenariat avec Institut de physique et chimie des matériaux (Strasbourg) (équipe de recherche) .

Le président du jury était Jean-Yves Bigot.

Le jury était composé de Denis Ledue, François Reuse.

Les rapporteurs étaient Mustapha Maamache, Jacques Robert.


  • Résumé

    Ce travail de thèse s’intéresse aux corrections relativistes induites par une impulsion lumineuse ultra-brève et intense dans la matière condensée. Il s’inscrit dans la thématique nouvelle de la désaimantation ultra-rapide cohérente de systèmes ferromagnétiques induite par une impulsion laser femto-seconde [Nature 5, 515 (2009)] [1]. Un couplage de nature relativiste entre les spins et les photons a été proposé pour expliquer les résultats expérimentaux observés dans [1]. La première partie de ce travail étudie la limite non relativiste du formalisme de Dirac en présence d’un champ électromagnétique dépendant du temps. En utilisant la transformation de Foldy-Wouthuysen , le hamiltonien électronique de Dirac en présence d’un champ électromagnétique dépendant du temps est développé au cinquième ordre en 1/m. Les résultats obtenus ont permis de postuler une expression générale de l’interaction directe entre le spin et le champ électromagnétique sous la forme d’un développement en série entière. Un travail similaire est réalisé dans le cadre du problème relativiste à deux électrons en interaction coulombienne. La diagonalisation du hamiltonien de Breit au troisième ordre en 1/m fait apparaître une interaction singulière entre le spin, le champ coulombien et le champ électromagnétique externe dépendant du temps. Dans la deuxième partie, on propose un modèle classique pour modéliser une expérience de magnéto-optique non-linéaire réalisée sur des échantillons ferromagnétiques. Les prédictions théoriques des angles de rotation Faraday sont comparées aux résultats expérimentaux de la référence [1] et permettent d’ouvrir une discussion à propos des mécanismes physiques gouvernant les phénomènes magnéto-optiques observés. Le rôle joué par l’interaction spin-orbite entre les spins et le champ électrique du laser est discuté.

  • Titre traduit

    Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter


  • Résumé

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [ Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac’s formalism. By means of the Foldy–Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin–field electronic hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulombian interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.