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Introduction

The emergence of the electron spin in data storage devices has opened the door
for a new generation of high technology applications. Although the spin of the
electron is known for long time, it had not been used intensively to carry the in-
formation, until the discovery of the Giant magnetoresistance (GMR) in 1988.
The GMR effect shows the interdependence between the magnetization con-
figuration of the layers and the current. The industry interest for spintronics
emerged when GMR heterostrucutres sensors have appeared in the read head
of hard disc drives [20]. In parallel, the spin transfer torque (STT) phenomenon
was discovered as a promising tool to manipulate the magnetization orientation
of a magnetic layer with a DC current. The STT phenomenon was observed in
a series of experiments: in current induced switching of the magnetization [1]
[66], in spin transfer torque nano-oscillators [48][107], in current induced mag-
netic domain wall motion [116], and recently, in the current induced spin wave
Doppler shift experiment [111].
J. Katine from Hitachi Global Storage Labs and E. Fullerton from Center of
Magnetic Recording Research [91] have declared that the new generation of
the magnetic memories will be based on the spin-torque devices in the near
future. With this very fast multiplication of spintronics devices, a fundamental
understanding of the spin polarized transport is required. The basic physics of
spintronics is known since the beginning of the last century. Its cornerstone is
the "two current model" proposed by Mott [79]. In this model, the majority and
the minority electrons in ferromagnetic metals (Fe, Co, Ni) exhibit different con-
duction properties. Various sources of electron scattering (phonons, impurities
[19], surfaces, grain boundaries [68]...) are likely to contribute to the resistivity
of each band. A number of studies were carried out in the 1970’s to describe the
dominant scattering mechanism and to identify their contribution in each band.
These studies consisted of resistivity measurements in binary and ternary alloys
at different temperatures, which provide one indirectly with the spin-dependent
resistivities associated to the impurities and to the phonons. However at the
nanometer scale the surfaces are expected to play the major role in determining
the characteristics of devices [85]. So far, the impact of the surface scattering
on the spin polarized transport could not be addressed except in some GMR
studies where the presence of several metal layers complicate the picture. The
main difficulty was the lack of a suitable experiment to access directly the degree
of spin polarization which measures the asymmetry between the current carried
by the spin up and the spin down channels.
Recently, a new method based on the current induced spin wave Doppler shift
[111], has been proposed by our group to measure directly the degree of the spin
polarization of the electrical current in ferromagnetic thin films.
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Figure 1: A possible scenario to describe the spin polarized transport in a fer-
romagnetic metal thin film.

Restoring to this new technique, we decided to probe the transport properties
in ferromagnetic alloy thin films. The scenario we believe to account for the spin
polarized transport in a ferromagnetic metal thin film is sketched in the figure-
C.1 in the frame of an electrical circuit model. This scenario is based on the two
current model and it considers that the electrons of each single channel are scat-
tered by different sources including the impurities (alloy disorder), the phonons,
the surfaces, and the grain boundaries. In this scenario spin flip processes are
also possible (due to magnons or other sources) between the two channels. As a
first step to validate / invalidate this scenario, a film thickness dependence study
was performed in the frame of this thesis work in order to understand the role
of the surfaces in the spin dependent transport and to identify the contribution
of the surface scattering to the spin up and spin down resistivities.

This manuscript is divided into five chapters whose content is as follows:

In the first chapter, the general theoretical background describing the mag-
netization dynamics (uniform oscillations and spin waves) in ferromagnetic thin
films is discussed. In addition a picture of the magnetization relaxation processes
including recent works is presented.

In the second chapter, some basics of the spin polarized transport are pre-
sented. Three main parts are discussed there: the spin polarized transport, the
surface scattering, and the spin transfer torque phenomena.

In the third chapter we start to discuss the experimental results. This chapter
describes structural, electrical, and magnetic (static and dynamic) characteri-
zation of the permalloy thin films used for the spin wave studies.

In the fourth chapter, we discuss the propagating spin wave spectroscopy
(PSWS) measurements in the absence of the DC current. The results of this



3

chapter are original in the sense that it is the first thickness dependence study
performed for the propagating spin waves (typically such studies are performed
on a single film thickness). The reflection signals of the PSWS are interpreted to
provide us with the magnetic parameters which can be compared to those ob-
tained by other characterization methods. The transmission signals are analyzed
to understand qualitatively the spin wave propagation in the microstructures.
At the end of this chapter, we discuss the non-reciprocity character of the mag-
netostatic surface waves.

In the fifth chapter, we present the results of the film thickness dependence of
the current induced spin wave Doppler shift. These results are discussed within
the two current model including surface electron scattering.
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Chapter 1

Spin dynamics

This chapter describes the magnetization dynamics in ferromagnetic materials.
It provides the theoretical background for the coming discussion in the next
chapters. The discussion is focused on the uniform magnetic excitation (k =
0), i.e. the ferromagnetic resonance (FMR) and on the non-uniform excitation
(k ̸= 0), i.e. the spin waves, which are of particular interest in this thesis. At
the end of the chapter, an overview for the magnetization relaxation in metallic
ferromagnets is presented.

1.1 Ferromagnetism

In ferromagnets the magnetic moments are spontaneously aligned parallel to
each other below a critical temperature, even in the absence of an external
field. In 1907 Pierre Weiss attributed this spontaneous behavior to an inter-
nal molecular field which is strong enough to conserve a parallel alignment of
the moments against the thermal fluctuations. Before starting the discussion of
the dynamics in ferromagnets, we will describe the magnetic free energy of an
ordered magnetic crystal.

1.1.1 Energy formulation

Consider a ferromagnetic sample placed in an external magnetic field Hext, the
magnetic moment will experience an effective field Heff , defined as:

Heff = − 1

µ0

δεtot
δM

, (1.1)

where the total magnetic energy εtot is a functional of
−→
M(r) defined as

−→
M(r) =

Ms.
−→m(r) with || −→m ||= 1, described as a sum of the different energies acting in

the ferromagnet
εtot = εzee + εdem + εK + εex. (1.2)

εzee corresponds to the Zeeman interaction, εdem is the demagnetizing energy,
εK is the energy of the anisotropy interaction and εex is the exchange energy.
The expression of the energy for each of these interactions is given below.
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• Zeeman energy
As a magnetic sample is placed in an external magnetic field Hext, the
magnetic moments favor a parallel alignment to Hext. The Zeeman energy
is expressed as [16]:

εzee = −µ0

∫ −→
H ext.

−→
MdV. (1.3)

• Demagnetizing energy
When a magnetic field is applied to the sample the aligned magnetic mo-
ments will interact with each other via the dipole-dipole interaction. Mag-
netic poles are generated on the boundaries of the sample, which creates
a demagnetizing field Hd opposite to the direction of the external field.
The demagnetizing field depends on the distribution of the poles over the
sample boundaries. It is expressed as

Hd = −µ0[N ].
−→
M,

with [N ] is a 3× 3 dimensionless tensor, whose trace is equal to unity,

Nxx +Nyy +Nzz = 1.

The energy associated with the demagnetizing field is called the demagne-
tizing energy, the magnetostatic energy, or the dipolar energy. It is written
as:

εdem = −µ0

2

∫
sample

−→
M.

−→
HddV. (1.4)

Of particular importance throughout this thesis is the case of thin films
with the z-axis oriented perpendicular to the film plane, then the demag-
netizing coefficients are (Nxx = 0, Nyy = 0, Nzz = 1). The associated
demagnetizing energy in such films is written as:

εdem = +
µ0V

2
(−→e z.

−→
M)2. (1.5)

• Anisotropy energy
The magnetocrystalline anisotropy describes the dependence of the mag-
netic energy on the relative orientation between the magnetization and
the crystal lattice. This dependence arises from the spin-orbit interaction,
where the spin moments are coupled to the lattice via the orbital motion
of the electrons. In an anisotropic lattice, the lattice is easily magnetized
along a preferable crystallographical direction. This is known as a uniaxial
anisotropy. The associated volume energy density is:

eK = Kusin
2θ,

where Ku is in J/m3 and θ is the angle between the magnetization vector
and the preferred crystallographical direction.
Depending on the sign of Ku, the uniaxial direction will be either an easy
axis for Ku > 0, or a hard axis for Ku < 0.
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At the surface of the film, the reduced symmetry of the atomic orbital pro-
duces a surface anisotropy for the magnetization. The surface anisotropy
energy density is defined as a function of the angle θ between the surface
magnetization and the normal [49]:

es = −Ks cos
2 θ,

where Ks is in J/m2. For Ks > 0 the normal of the surface is an easy axis.

1.2 Magnetization dynamics

The response of the magnetic moments to an external magnetic excitation such
as a weak alternating field in the microwave range (several GHz) is obtained
by solving the Landau-Lifshitz equation of motion. In this section, we will first
describe the solution of the LL equation in a non-dissipative medium. Second,
the effects of the anisotropy (shape, and surface anisotropy) on the uniform
resonance will be considered.

1.2.1 Equation of motion of the magnetization

In a ferromagnetic material, the microscopic exchange interaction forces the
spins of the system to be well aligned. A weak microwave excitation of the
ferromagnet drives the magnetic moments away from their equilibrium posi-
tion, but the spins remain aligned parallel over a small region. Accordingly, the
magnetic moments in a continuum approximation are described with a classical
magnetization vector (

−→
M). In the presence of a static external magnetic field,

the magnetization vector precesses around an effective field (Heff ) with a cone
angle θ as shown in figure-1.1a. The equation of motion governing the precession
is written [42]:

∂
−→
M

∂t
= −γµ0

−→
M ×

−→
H eff , (1.6)

where γ is the gyromagnetic ratio and µ0 is the permeability of the vacuum.
This is known as the Landau-Lifshitz (LL) equation. It relates the rate change
of the magnetization to the torque exerted by the effective field Heff on the
magnetization.
In the equation of motion (1.6) the magnitude of the magnetization vector is
conserved:

∂

∂t

−→
M2 = 0, (1.7)

which indicates that the magnetization vector precesses on the surface of a
sphere.

1.2.1.1 Solution of the equation of motion

Consider a ferromagnetic sample in a static magnetic field directed along the
z-axis. The equilibrium magnetization is oriented parallel to the magnetic field.
Assume that, the sample is excited by an alternating microwave field

−→
h (t)

oriented along the xy plane. In ferromagnetic resonance experiments we assume
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Figure 1.1: a) Sketch of the precession of the magnetization around an effective
field oriented along the z-axis. The magnetization rotates in an anticlockwise
direction. b) Notations and coordinates describing the magnetization and the
field in the linearized LL-equation

the dynamical components of the field
−→
h (t) and the magnetization −→m(t) are

very small compared to the static components. We write
−→
H and

−→
M as:

−→
H =

−→
H 0 +

−→
h (t)

−→
M =

−→
M0 +

−→m(t).

Let us define the dynamical susceptibility χ̄ as the response of the dynamical
magnetization −→m(t) at a given point to the microwave field at the same point:

−→m = χ̄
−→
h . (1.8)

The susceptibility χ̄ is the 2× 2 Polder tensor. To derive the Polder tensor [χ̄],
one should solve the LL-equation. First, the equation of motion-1.6 is written
as follows:

∂−→m
∂t

= −γµ0[
−→
M0 ×

−→
H 0 + (−→m ×

−→
H 0) + (

−→
M0 ×

−→
h ) +−→m ×

−→
h ]. (1.9)

−→
M0 ×

−→
H 0 term is zero since the magnetization is aligned parallel to the applied

static field. To the first order approximation, the product of the alternating
parts −→m ×

−→
h is neglected. Then the linearized equation (1.9) becomes:

∂−→m
∂t

= −γµ0[
−→m ×

−→
H 0 +

−→
M0 ×

−→
h ]. (1.10)

Projecting equation-1.10 along the coordinates axes shown in figure-1.1b and as-
suming the time dependent oscillation is of the form eiωt, the linearized equation
is written as:

−iω−→m = ẑ ×
[
+ωM

−→
h − ω0

−→m
]
, (1.11)
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where we define ωM = γµ0Ms, and ω0 = γµ0H0.
Solving the system of equation, and expressing hx and hy in terms of mx and
my, one obtains: (

hx

hy

)
=

1

ωM

(
ω0 iω
−iω ω0

)(
mx

my

)
. (1.12)

Equation (1.12) is of the form h = χ−1m. To obtain the Polder susceptibility
tensor, one should calculate the inverse of the matrix in equation (1.12)

χ̄ =

(
χ iκ

−iκ χ

)
, (1.13)

with
χ =

ω0ωM

ω2
0 − ω2

, κ =
ωωM

ω2
0 − ω2

. (1.14)

The Polder tensor is a non-diagonal and an antisymmetric tensor. The mi-
crowave field will not only produce a component of the dynamical magnetiza-
tion parallel to it but also a perpendicular component with a π/2 shift. As ω
approaches γH the components of Polder tensor diverge. It corresponds to the
resonance condition of the sample in an unbounded medium. In a finite sample,
the resonance frequency depends also on the sample geometry as we will discuss
in the section-1.2.2.

1.2.2 Ferromagnetic resonance
1.2.2.1 Ferromagnetic resonance in an ellipsoid

In the previous section, the susceptibility tensor was derived assuming that
the field is known at a given point. This assumption is oversimplified since the
dipolar field depends on the distribution of the magnetization over the entire
sample. In this section, we will solve the LL equation in an ellipsoid geometry,
where the magnetization has a uniform distribution. The static directions of the
field and of the magnetization are oriented along the z-axis. The same notation
as in the section 1.2.1.1 is used for the magnetic field and the magnetization
coordinates,

−→
H =

 hx(t)
hy(t)
Hz

 ,
−→
M =

 mx(t)
my(t)
Mz

 . (1.15)

The demagnetizing field arises from the accumulation of the poles on the surfaces
of the ellipsoid. The axes of the ellipse coincides with the coordinate axes as
shown in figure-1.2. Then the tensor [N ] will be symmetric and diagonal. The
demagnetizing field Hd of an ellipsoid is expressed as:

Hdem = −

 Nxx 0 0
0 Nyy 0
0 0 Nzz

 mx

my

Mz

 . (1.16)

Then the effective field is the sum of the external and the demagnetizing fields:

Heff =

 hx −Nxxmx

hy −Nyymy

Hz −NzzMz

 . (1.17)
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Figure 1.2: The system of coordinates used for describing the uniform resonance
of an ellipsoid

Under the action of the effective field the LL equation is solved following the
same procedure as in the last section-1.2.1.1 to derive the susceptibility. One
obtains:

−→
h = χ−1−→m =

1

wM

(
ωx iω
−iω ωy

)
−→m, (1.18)

where ωx and ωy are defined as:

ωx = ω0 +NxxωM , ωy = ω0 +NyyωM .

One could deduce the resonance frequency by solving det(χ−1) = 0, which
gives: ωres =

√
ωxωy, or [42]:

ωres = γ{[H0 + (Nxx −Nzz)M0][H0 + (Nyy −Nzz)M0]}
1
2 . (1.19)

It is clear that the resonance frequency depends on the geometry of the sam-
ple through the demagnetizing factor. The equation (1.19) is known as the
Kittel formula. Although the Kittel formula is derived for samples with an ellip-
soidal shape it is also applied to other geometries with a uniform magnetization.
Figure-1.3 shows magnetic field dependence of the resonance frequency for two
particular cases of ellipsoid (film and sphere).

1.2.2.2 Including surface anisotropy

In this section, the LL equation is solved for a thin film in the presence of
surface anisotropy. This is done using an alternative method known as Smit-
Beljers formalism. In this formalism, the resonance frequency is derived from
the total energy ε of the sample.
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Figure 1.3: The dispersion relation for a thin film normally and tangentially
magnetized, and for a sphere. ( µ0M0=0.9 T and γ/2π=29 GHz/T).

Figure 1.4: The geometry of the magnetization M⃗ in the cartesian coordinate
axis xyz. θ is the angle between the magnetization and z-axis, ϕ is the projection
angle of M⃗ on the xy-plane.
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In this formalism spherical coordinate representation are used to express the
equation of motion (1.6) as shown in the figure-1.4. In such coordinates the
equation of motion of the magnetization writes:{ δϕ

δt = − γ
M sin θ

δε
δθ

δθ
δt = γ

M sin θ
δε
δϕ

(1.20)

The equilibrium position of the magnetization is obtained when the free energy
is minimum,

(
δε

δθ
)θ=θ0,ϕ=ϕ0 = 0; (

δε

δϕ
)θ=θ0,ϕ=ϕ0 = 0 (1.21)

where the angles θ0 and ϕ0 represent the equilibrium orientation of the magne-
tization. Assuming a small deviation of the magnetization from the equilibrium
position, and solving the system of equation-1.20 one can derive the resonance
frequency as [42]:

ω2 =
γ2

(M sin θ)2
(FϕϕFθθ − F 2

ϕθ), (1.22)

where Fij are the second derivatives of the energy with respect to the angles.
This general condition is known as the Smit-Beljers formula. The resonance fre-
quency is related to the curvature of the total energy evaluated at its minimum.
Let us consider the case of a thin film, where the total free energy is the sum
of the Zeeman, the dipolar, and the surface anisotropy energies. Writing each
term in its spherical representation, one obtains the total energy as:

ε =
1

2
µ0M

2
s cos2 θSt︸ ︷︷ ︸

dipolarfield

− Ks cos
2 θS︸ ︷︷ ︸

surfaceanisotropy

−µ0MsHe[cos θ cos θH + sin θ sin θH cos(ϕ− ϕH)]St︸ ︷︷ ︸
Zeemaninteraction

ε = 1
2µ0Ms cos

2 θStMeff − µ0MsHe[cos θ cos θH + sin θ sin θH cos(ϕ− ϕH)]St
(1.23)

where S and t are the surface and the thickness of the film respectively, and the
effective magnetization Meff is defined as

Meff =Ms −HK . (1.24)

Hk is the anisotropy field which writes:

HK =
2Ks

µ0Mst
. (1.25)

The resonance formula allows us to derive the resonance frequency for an arbi-
trary angle of the anisotropy direction. Let us consider a case where the equi-
librium magnetization is in the plane, the equilibrium angles are:

ϕ = ϕ0 = 0, θ = θ0 =
π

2
.

Evaluating the equation 1.22 at θ0 and ϕ0 one obtains the resonance frequency
as:

ωres = γµ0

√
(H0 +Meff )H0. (1.26)

The surface anisotropy appears in the resonance frequency to modify the satura-
tion magnetization of the film. From equations-1.24, 1.25, it is clear that we can
have an access to the saturation magnetization and to the surface anisotropy
by following the effective magnetization as a function of the film thickness. This
will be used in the experimental part.
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1.3 Spin waves

In 1930’s Bloch introduced the concept of the low energy excitations in a fer-
romagnetic materials, the spin waves. These excitations are explained as slight
deviations of the spins away from their parallel orientation. In contrast to the
uniform precession already mentioned in section-1.2.2 where all the spins are
precessing at the same frequency and the same phase, the spin waves are non-
uniform excitations in which the spins are oscillating at the same frequency but
with different phases as shown in figure-1.5. In this thesis our concern is focused

Figure 1.5: a) Sketch of a propagating spin wave with a frequency f0 and a
wavevector k. b) a top view of the wave showing the phase shift between the
spins

on the spin waves propagating in the magnetostatic regime. In this regime the
coupling between the spins is due to the dipolar interaction rather than the
exchange interaction since the spin waves are propagating with a wavelength λ
much greater than the exchange length lex. In the magnetostatic regime the cou-
pling between the electrical and the magnetic field is neglected and the Maxwell
equation is written as: { −→

∇ ×
−→
h = 0,

−→
∇ ·

−→
b = 0,

(1.27)

where
−→
h is the magnetic field, and

−→
b = (1 + χ̄)

−→
h is the magnetic induction.

From the first equation of 1.27 one can write the magnetic field in terms of a
scalar potential Ψ as

−→
h = −

−→
∇Ψ. Based on the equations of 1.27 one can derive

the wave equation of the spatial part for the scalar potential as [100]:

(1 + χ)(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
) +

∂2Ψ

∂z2
= 0, (1.28)

This is the well known Walker equation. Imposing the electromagnetic boundary
conditions one can solve the Walker equation (i.e solve for the scalar potential)
to determine the dynamical magnetization profile (m) of the spin wave using:

−→m = χ
−→
h = −χ

−→
∇Ψ.



14 CHAPTER 1. SPIN DYNAMICS

In the next sections, we present the solution of the Walker equation and the
dispersion relation in a bulk ferromagnet and in a thin film. In the case of thin
films the scalar potential solution is determined for three different configurations
of the spin waves.

1.3.1 In a bulk ferromagnet
The spatial symmetry of the bulk ferromagnet allows us to express the trial
solution of the scalar potential in equation-1.28 in terms of a plane wave solution,

Ψ(r⃗, t) = Ψ0e
i(ωt−k⃗.r⃗).

Substituting the trial solution of Ψ in equation-(1.28), and considering that the
wave is propagating with an angle θ with respect to the applied field H, one
obtains: {

(1 + χ)(k2x + k2y) + k2z = 0

sin2 θ =
k2
z

k2

(1.29)

where k = k2x + k2y + k2z . Then the solution of equation (1.29) is written as:

χ sin2 θ = −1. (1.30)

By substituting χ from (1.14) in (1.30), one can derive the magnetostatic modes
in a bulk ferromagnet which writes as [100]:

ω = [ω0(ω0 + ωM sin2 θ)]
1
2 . (1.31)

One notices that the dispersion relation in (1.31) represents a frequency band
which is independent of the wavevector k. This degeneracy is lifted when the
boundary conditions are imposed as in the case of thin films or when the waves
in the exchange-dipolar regime are considered.
The frequency of the modes are in the range (ω0 ≤ ω ≤

√
ω0(ω0 + ωM )),

where the lower and higher limits correspond to the frequencies of the waves
propagating parallel and perpendicular to the applied field respectively.

1.3.2 Thin films
In this section, the characteristics of the magnetostatic waves are studied in
a thin film with a finite thickness (t) bounded with dielectric materials. We
solve the Walker equation-1.28 accounting for the electromagnetic boundary
conditions. We will describe the solution obtained in the case of spin waves
propagating in a normally and in a tangentially magnetized thin film as shown
in the figure-1.6.
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Figure 1.6: Sketch of the coordinate axis used for the cases of a normally mag-
netized film (a) and of a tangentially magnetized film (b).

1.3.3 Normally magnetized films
Assume that a static magnetic field is applied perpendicular to the film plane
(z-axis) as shown in figure-1.6a. If this field is high enough to overcome the shape
anisotropy (H0 > Ms), the magnetization will align parallel to the film normal
(
−→
M ∥ −→n ). Assume, a spin wave propagates in the film plane with a wavevector
−→
k such as (

−→
k ⊥ −→n ). A spin wave propagating in this geometry ((

−→
M ∥ −→n ) ⊥

(
−→
k )) is known as a magnetostatic forward volume waves (MSFVW). In the

following, we derive the dispersion relation and the scalar potential for the
MSFVW configuration.
Suppose the spin waves propagates with a wave vector

−→
k

−→
k =

−→
k t where

−→
k t = x̂kx + ŷky.

Since in the dielectric layers χ = 0, Walker’s equation reduces to a Laplace’s
equation (∆Ψ = 0). The solution of the scalar potential in the dielectric layers
is written with the assumption that it vanishes at infinity as:

ΨI(r) = Aei
−→
k t.

−→r −ktz, z > t/2

ΨIII(r) = Bei
−→
k t·−→r +ktz, z < −t/2,

(1.32)

where A, and B are constants to be determined later.
Inside the magnetic layer, the trial solutions of the Walker equation are ex-
pressed as an even or odd function respectively, they are of the form :

ΨII(r) = Ψ0 cos(qz)e
i
−→
k t·−→r , −t/2 < z < t/2

ΨII(r) = Ψ0 sin(qz)e
i
−→
k t·−→r , −t/2 < z < t/2,

(1.33)

where Ψ0 is a constant which determines the amplitude of the mode and q is a
quantity to be determined . Applying the boundary conditions at the interfaces
of the magnetic and the dielectric layers and solving the system of equations,
one can derive the dispersion relation of the (MSFVW) and obtain the constants
A, B, Ψ0. After a few steps of mathematical calculations, an implicit dispersion
relation is obtained [100]:

tan[
ktt

2

√
−(1 + χ)− nπ

2
] =

1√
−(1 + χ)

, (1.34)
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where n could be an even or odd integer. In the general case, for any mode of
order n, the frequency spectrum is obtained by looking for a graphical solution
of (1.34). Kalinikos derives an explicit dispersion relation of the frequency ω for
the lowest order mode (n=0) which writes [54]:

ω2 = ω0[ω0 + ωM (1− 1− e−ktt

ktt
)]. (1.35)

The solid red line in the figure-1.8 shows a plot for the dispersion relation of
the MSFVW configuration. The frequency of the MSFVW depends on the film
thickness t and on the magnitude of the wavevector k. It is independent on the
direction of the wavevector, so the wave propagation is isotropic in the plane
of the film. In contrary to the continuum frequency spectrum in the bulk, the
frequency band is discrete in the MSFVW .
From the boundary conditions, One can find the constants (A, B) and q as:

A = B = Ψ0e
ktt/2 cos(qt/2), q = kt

√
−(1 + χ). (1.36)

The even solution of the scalar potential for the MSFVW is expressed as:
ΨI(r) = Ψ0e

ktt/2 cos(kt
√
−(1 + χ)t/2)ei

−→
k t.

−→r −ktz z > t/2

ΨII(r) = Ψ0 cos(kt
√

−(1 + χ)z)ei
−→
k t·−→r − t/2 < z < t/2

ΨIII(r) = Ψ0e
ktt/2 cos(kt

√
−(1 + χ)t/2)ei

−→
k t·−→r +ktz z < −t/2.

(1.37)
Inside the magnetic layer the wave amplitude of the MSFVW signals is dis-
tributed sinusoidally over the volume of the film. The dynamical magnetization
for the MSFVW are plotted in the figure-1.7a).
In this configuration, the group and the phase velocities are both in the same
direction (vg and vph > 0). Accordingly, these waves are called forward waves.

1.3.4 Tangentially magnetized films
In this section, we will consider the case of a tangentially magnetized film with
(
−→
M ⊥ −→n ). The Walker equation is solved in two cases: where the magnetization
(
−→
M) orientation is either parallel or perpendicular to the propagation direction
(
−→
k ).

1.3.4.1 Magnetostatic backward volume wave

Here, we will discuss briefly the magnetostatic backward volume wave (MS-
BVW) configuration where the propagation direction is parallel to the magneti-
zation direction (

−→
k ∥ −→

M). Following the same procedure as in the section 1.3.3,
one can obtain the dispersion relation for the even and odd modes solution as:

tan[
kzt

2
√
−(1 + χ)

− (n− 1)π

2
] =

√
−(1 + χ), (1.38)

where n is an integer. An explicit dispersion relation is derived by Kalinikos for
the lowest order mode (n=1):

ω2 = ω0[ω0 + ωM (
1− e−kzt

kzt
)]. (1.39)
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Figure 1.7: Sketch of a propagating spin wave with a wavevector k and with dif-
ferent orientations of the magnetic field. It corresponds to the configurations a)
Magnetostatic forward volume wave, b) Magnetostatic backward volume wave
c) Magnetostatic surface waves. In each sketch we plot the dynamical magneti-
zation (white arrows) and the dipolar field ( dark cyan arrows) over a quarter
wavelength region.
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The solid green line in the figure-1.8 shows a plot for the dispersion relation of
the MSBVW. With few mathematical steps, one can write the scalar potential
of the even modes as:

ΨI(r) = Ψ0e
kzt/2 cos(kyt/2)e

iνkz.z−kz.y y > t/2
ΨII(r) = Ψ0 cos(kyy)e

iνkzz − t/2 < y < t/2
ΨIII(r) = Ψ0e

kzt/2 cos(kyt/2)e
iνkz.z+kz.y z < −t/2

(1.40)

with ν = ±1 indicates the propagation direction. The amplitude of the MSBVW
in the magnetic layer is distributed sinusoidally over the thickness. Figure-1.7b
shows the dynamical magnetization of this MSBVW configuration.
It is known as a backward volume wave since its group velocity is negative and
it is opposite to its phase velocity.

Figure 1.8: Plot of the dispersion relation in the magnetostatic regime (solid
lines) and the exchange-dipolar regime (dotted line) for the three configurations:
MSFVW, MSBVW, and MSSW. The film thickness is t =10nm, µ0Ms=0.9T,
and the other parameters are γ/2π =29 GHz/T. In the case of the MSSW and
MSBVW the field is µ0H0=0.15T, and in the case of the MSFVW the total
applied field is µ0H0=1.05T.

1.3.4.2 Magnetostatic surface waves

Consider a thin film magnetized in-plane along the z-axis and a wave propa-
gating along the x-axis with a wave vector k, such that (

−→
k ⊥ −→

M) as shown in
fig-1.6b. This configuration where ((

−→
k ⊥

−→
M) ⊥ −→n ) is known as magnetostatic
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surface spin waves (MSSW) or Damon-Esbach modes [26].
Now, we will solve the Walker equation (1.28) in the MSSW configuration to
obtain the dispersion relation and the scalar potential of this mode.
As mentioned previously, the Walker equation (1.28) reduces to Laplace’s equa-
tion in the dielectric medium. Then the scalar potential reads:

ΨI(
−→r ) = Ce−ikyy+iνkxx z > t/2

ΨIII(
−→r ) = Deikxy+iνkxx z < −t/2 (1.41)

where C, D are constant, and ν = ±1 corresponds to the propagation direction.
Substituting the scalar potential into the Laplace’s equation one obtains:

(k2x + k2y) = 0. (1.42)

The solution of this equation provides us with the condition ky = ikx. Then the
scalar potential becomes:

ΨI(
−→r ) = Ce−ky+iνkx z > t/2

ΨIII(
−→r ) = Deky+iνkx z < −t/2 (1.43)

where k = kx. Inside the magnetic layer, there exists a hyperbolic solution to
the Walker equation (1.28) it writes:

ΨII(
−→r ) = eiνkx[Ψ0+e

ky +Ψ0−e
−ky] (1.44)

Note that the scalar potential in MSSW consists of a propagating part along
the x-axis and an evanescent profile over the y-axis. By solving explicitly the
boundary conditions on the two surfaces

ΨI(t/2) = ΨII(t/2)
ΨIII(−t/2) = ΨII(−t/2)

(1 + χ)∂ΨII(t/2)
∂y + iκΨII(t/2) = ∇ΨI(t/2)

∇ΨIII(−t/2) = (1 + χ)∂ΨII(−t/2)
∂y + iκΨII(−t/2)

(1.45)
one can derive the dispersion relation of MSSW. Collecting the similar terms
together and solving the system of equations one obtains the dispersion relation
as:

e−2kt =
(χ+ 2)2 − κ2

χ2 − κ2
, (1.46)

inserting χ and κ from (1.14) and developing (1.46), the dispersion relation is
obtained as [100]:

ω2 = ω0(ω0 + ωM ) +
ω2
M

4
[1− e−2kt] (1.47)

The dispersion relation depends on the film thickness (t) and on the magnitude
of the wavevector (k). The solid blue line in the figure-1.8 represents a plot of
the dispersion relation of the MSSW configuration.
Arranging the boundary equations and solving for the constants, the scalar
potential in the three layers can be written as:

Ψν(
−→r ) =

 Ψ0(e
kt + p(ν))e−ky+iνkx y > t/2

Ψ0(e
ky + p(ν)e−ky)eiνkx − t/2 < y < t/2
Ψ0(1 + p(ν)ekt)eky+iνkx y < −t/2

(1.48)
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where Ψ0 is a constant, and

p(ν) =
Ψ0−

Ψ0+
=

χ− νκ

χ+ 2 + νκ
e−kt. (1.49)

1.3.4.3 Characteristics of MSSW

The characteristics of the magnetostatic surface wave configuration are of a
particular importance for this PhD thesis. Here we summarize some of these
properties:

• Dispersion relation
The dispersion relation in the MSSW is independent on the direction of
ν for a thin film bounded by two dielectrics. In contrary to the other
configurations the MSSW propagates with a single frequency instead of
a series of modes as it was pointed for the MSFVW and the MSBVW.
Notice also the frequency of the MSSW is higher than the limit for the
frequency of a wave propagating in the bulk 1.3.1, this is because the wave
of this configuration can not exist in the bulk of the ferromagnet. These
waves exist only near the surface and for this reason they are known as
surface waves.

• Scalar potential
The scalar potential of the magnetostatic surface wave depends on the
direction of ν. A mode propagating with a wave vector

−→
k has more am-

plitude near one of the surfaces. The largest amplitude is shifted to the
other surface if the wavevector direction is reversed (+

−→
k −→ −

−→
k ). This

is known as field displacement non-reciprocity.

• Wave amplitude
The wave amplitude is not distributed sinusoidally through the film thick-
ness as in the MSFVW and MSBVW modes. It is decaying exponentially
away from the surface of the film as shown in figure-1.9 which displays the
variation of the magnitude of Ψ over the film thickness.

• Dynamical magnetization
The dynamical components of the magnetization mx and my have dif-
ferent magnitudes as shown in figure-1.9. The out of plane orientation of
the demagnetizing field hd along the y-axis reduces the magnitude of the
magnetization my as shown in figure-1.7c. The asymmetry between mx

and my indicates that the magnetization has an elliptical trajectory.

• The velocity
The MSSW configuration have also the highest group velocity among the
three types of magnetostatic waves. The group velocity of the MSSW is
given by

vg =
∂ω

∂k
vg =

ω2
M t

4ω
e−2kt, (1.50)

the frequency increases with the wavevector which results in a positive
group velocity.
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Figure 1.9: Plot of the scalar potential and of the dynamical magnetization
distribution profile in the MSSW configuration. The calculation is performed
with the following set of the parameters: thickness t =10nm, field µ0H0=30mT,
µ0Ms=0.9T, γ/2π =29 GHz/T and k=3.86µm−1. I, and III indicate the dielec-
tric region whereas II indicates the magnetic layer.

1.3.5 Exchange-dipole regime
In the section 1.3, the wavelength (λ) of the spin waves is considered to be
larger than the exchange length (lex), so that the spin waves are in the pure
magnetostatic regime approximation. However, in the region where the wave
propagates with a wavelength comparable to the exchange length one should
account for the exchange interaction. The exchange-dipolar regime is briefly
discussed in this section based on the Kalinikos-Slavin theory [55].

Due to the presence of the exchange operator in the effective field, the equa-
tion of motion will be an integro-differential equation of the second order. To
solve this equation one needs supplementary boundary conditions in addition to
the electromagnetic boundary conditions. Rado and Weertman [88] studied the
modification in the ferromagnetic resonance under the influence of the exchange
interaction. They introduced surface spin pinning conditions. The supplemen-
tary exchange boundary condition is written as [99]:

Tsurf = − 2A

M2
s

M × ∂M

∂n
, (1.51)

where n is the normal of the surface, and Tsurf is the total surface torque den-
sity which arises from forces other than the exchange interaction. Using these
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boundary conditions, Kalinikos and Slavin solved the integro-differential equa-
tion for the spin wave modes with an arbitrary angle between the propagation
direction and the field. The dispersion relation of the spin wave in the case of
the exchange-dipolar regime reads [55] :

ω2
n = (ωH + αωMk

2
n)(ωH + αωMk

2
n + ωMFnn) (1.52)

with k2n = k2∥ + q2n, where qn is the wavevector over the thickness of the film,
and α = 2A

µ0M2
0
, with

Fnn = Pnn + sin2θ(1− Pnn(1 + cos2ϕ) + ωM
Pnn(1− Pnnsin

2ϕ)

ωH + αk2n
, (1.53)

where the θ is the angle between the magnetization and the normal of the film,
and ϕ is the angle between

−→
M and

−→
k . Pnn are the matrix elements relating the

dynamical magnetization and the dipolar field. In the case of unpinned surface
spins (qn = nπ

d ), the expression for Pnn has the form

Pnn =
k2

k2n
(1 +

k2

k2n

2

1 + δ0n

1− (−1)ne−kt

kt
) (1.54)

where δ0n is the kronecker delta.
Figure-1.8 shows the dispersion relation in the exchange-dipolar regime (the
dotted lines) for the three configuration of the spin wave (MSFVW, MSBVW,
MSSW). The dispersion relation in the exchange-dipolar regime differs signifi-
cantly from the dispersion relation of the magnetostatic regime at high k values.
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1.4 Magnetization relaxation in ferromagnetic metal
thin films

According to the Landau-Lifshitz model the effective field exerts a torque on
the magnetic moments resulting in a precessional motion. However after a finite
time the magnetization will align with the direction of the minimum energy. This
relaxation of the magnetization is accompanied with a transfer of energy from
the magnetic system to other degrees of freedom such as impurities, phonons,
magnons, ... . Various physical processes are responsible for the relaxation mech-
anism in metallic ferromagnetic systems, either through a spin-spin process or
via a coupling with the lattice. In this section, a phenomenological description
of the damping in the Landau-Lifshitz equation is introduced. Then a discussion
of the possible physical origin for the relaxation processes is presented.

1.4.1 Phenomenological description
According to the (LL) equation-1.6, the magnetization can precess forever around
the external field, and it never returns back to the equilibrium position which
is its lowest energy state. Since in a real system the magnetization dynamics is
always damped, Landau and Lifshitz proposed to introduce a damping term on
the right hand of the equation-1.6 which reads:

∂
−→
M

∂t
= −γµ0

−→
M ×

−→
H eff − γλ

M2

−→
M × (

−→
M ×

−→
H eff ), (1.55)

where λ is a dissipation parameter with the dimensionality of a field. Although,
equation-1.55 accounts for the damping, the most familiar equation of motion
is the Landau-Lifshitz-Gilbert (LLG) equation. In 1955 Gilbert modeled the
damping as a ’friction’ which is proportional to the rate change of

−→
M , the LLG

equation reads as [38]:

∂
−→
M

∂t
= −γµ0

−→
M ×−→

H eff +
α

Ms

−→
M × (

∂
−→
M

∂t
), (1.56)

where α is a dimensionless coefficient known as the Gilbert damping coefficient.
The equation-1.55 can be transformed to the equation-1.56 by performing the
substitution:

γ → γ

1 + α2
, λ→ αM

1 + α2
.

The phenomenon of damping is sketched on the figure-1.10, where the precessing
magnetization relaxes toward the direction of the effective field. Writing the
linearized equation as in the section-1.2.1.1 one finds:

iωm = ẑ × [−ωMh+ (ω0 + iαω)m], (1.57)

it appears that the effect of the damping parameter is to add an imaginary part
to the natural frequency of the oscillations. Accordingly, one can include the
losses in the Polder tensor simply by performing the following transformation
(ω0 → ω0 + iαω).

The components of the Polder tensor are written as a sum of a real (χ
′
)

and an imaginary (χ
′′
) part. The real part is expected to change its sign and
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Figure 1.10: The damping term causes the magnetization to relax toward the
direction of the effective field.

the imaginary part passes through a maximum at the resonance. The damping
parameter α is extracted from the full width at half maximum (FWHM) of the
imaginary part. In a conventional ferromagnetic resonance (FMR) experiment
where we sweep the field at a fixed frequency the linewidth is ∆H = 2αω

γ . The
single parameter α contains a contribution from intrinsic and extrinsic relaxation
processes as we will discuss in the following subsections.

1.4.2 Intrinsic processes

The intrinsic precession damping in transition metals elements and their alloys
mainly results from the spin-orbit which couples the spin of the itinerant elec-
trons with other degrees of freedoms. We shall now discuss the pictures for such
processes.

• Berger picture: collision of a magnon with conduction electrons

In this picture described in reference [12] a magnon with an energy E(q) =
~ω collides with an electron with an energy ϵk,s where s denotes its spin
as shown in figure-1.11. The magnon is destructed and the electron is
transferred from one band to another band with higher energy. One can
distinguish between two cases:
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– In the first case, the magnon-electron interaction conserves the spin
angular momentum (e.g. s-d exchange interaction). Then the elec-
trons should flip its spin during the collision. The magnon relaxation
time (τm) is given by [12]:

1

τm
∝ [A+A′/Λe]E(q) (1.58)

where Λe is the electronic mean free path.

– In the second case, the interaction does not conserve the spin mo-
mentum (e.g. spin-orbit coupling). The magnon relaxation time in
that case is given by:

1

τm
= A

m2E(q)

~5π24q
arctan(Λeq). (1.59)

where A is a constant related to the anisotropic exchange factor.

The magnon relaxation time in the 2 processes depends on the overlap
between the spectral density of the state of the occupied and unoccupied
states around the Fermi level. Due to the Heisenberg uncertainty principle
the finite mean free path of the electrons implies an uncertainty on the
wavevector of the electrons (∆k = Λe). The relaxation time increases
linearly with the frequency ω, with a constant slope proportional to the
Gilbert damping factor (α = (2ωτm)−1).

Figure 1.11: A sketch showing a magnon with an energy ~ωq being absorbed by
an electron with an energy εi and being scattered to a state with an energy εf .

• Elliot-Yafet picture: phonon-magnon collision:
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In this picture, the magnetization relaxation is due to the interaction be-
tween the magnon and the lattice vibration. The process is a destruction of
a spin precession by a phonon, assisted by a spin flip of the electron state.
This interaction is mediated by the spin-orbit interaction. In the presence
of the spin orbit interaction, the electron wavefunctions are an admixture
of spin-up and spin-down states. Hence, phonon scattering induces finite
spin flip probabilities. The scattering rate of the magnon is given by [56]:

τ−1 = (
γ~
2
)2Zfτ

−1
s , (1.60)

where τs is the spin flip relaxation given by τ−1
s = (δg)2

τe
. (δg)2 is the

deviation of the g-factor from the free-electron value, τe is the ordinary
electron-phonon collision, and Zf is the density of states at the Fermi level.

• The Kambersky torque model

The torque model proposed by Kambersky [56] describes the non mono-
tonic dependence of the damping of the transition metals (Fe, Co, Ni) as a
function of the temperature. In this model, the damping of a uniform pre-
cession is dominated by a combination of the spin-orbit coupling and the
electron-lattice scattering. This process includes 2 sub-mechanisms: first
a uniform magnon decays into an electron-hole pair due to the spin-orbit
coupling, then the electron-hole pair is scattered by the lattice vibration.
In the Landau-Lifshitz formulation the magnetization conserves its magni-
tude whereas it changes its direction. Due to the spin-orbit interaction, the
precession of the magnetization is accompanied by a variation of the en-
ergy of the electron states, and by transitions between the electron states.
The effective field Heff is written as:

Heff = − 1

µ0M

∑
n,k

[ρn,k
∂εn,k
∂M

+ εn,k
∂ρn,k
∂M

], (1.61)

where εn,k is the energy of a single electron state and ρn,k is the state
occupancy. Let us examine how the two terms in the right hand side of
equation-1.61 can lead to a relaxation of the magnetization dynamics.

– Intraband transition:

The first term of the effective field represents the variation of the spin-
orbit energy of the state with the direction of the magnetization. This
term causes a variation of the Fermi surface. As a consequence some
of the occupied states below the Fermi level are shifted above it, and
other unoccupied states above the Fermi level are shifted down. The
resulting out of equilibrium electrons distribution is brought back to
the equilibrium by intraband transitions due to scattering. This pro-
cess known as a "breathing Fermi surface" was described by Kamber-
sky [56], Koreman [60] and Gilmore [39]. The damping rate is given
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by:

λbfs = π~
γ2

µ0

∑
n

∫
d3k

(2π)2
Γ−
n (k)

2 ×
∫
dε1Ank(ε1)Ank(ε1)η(ε1).

(1.62)
The integral describes the overlap between the spectral densityAn,k(ε)
of states with the same band index n around the Fermi level. The
torque matrix elements are described by the term Γ−

n . A calculation
of the damping rate using the torque model by virtually modify-
ing the Fermi level performed by [39] shows a correlation between
the damping coefficient and the density of states of the material as
shown in fig-1.12 for (Fe, Co, Ni). The integral of the square of the
spectral functions is proportional to the scattering time just as the
conductivity. .

Figure 1.12: The calculated damping rate due to intraband transitions compared
with the density of state for Fe, Co, and Ni. The image is taken from [39].

– Interband transition:
The second term of the effective field represents the change of the
occupancy of the state due to the rotation of the magnetization.
The rotation acts as a time dependent perturbation caused by band
transitions between the states Ψm,k and Ψn,k (same wavevector but
different band). The damping rate is given as [39]:

λ = π~
γ2

µ0

∑
n

∑
m ̸=n

∫
d3k

(2π)2
Γ−
mn(k)

2 ×
∫
dε1Ank(ε1)Amk(ε1)η(ε1),

(1.63)
where the integral represents the overlap between the electron spec-
tral function of the bands Am and An. The probability of interband
transitions between the states m and n depends on the energy dif-
ference εm − εn. If the scattering rate ~/τ is less than the energy
difference the interband transition probability is inversely propor-
tional to the scattering time just like the resistivity.

The torque operator is written as:

Γ− = ξ(l−σz − lzσ−),
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where the ξ is the strength of the spin-orbit coupling. The torque op-
erator acts to lower the angular momentum of the state. This happens
either by lowering the spin-orbit moment through a spin flip or by
lowering the orbital momentum through an orbital excitation. Then
the intraband and interband transition both have two sub mecha-
nisms: either an orbital excitation or a spin flip process.
We consider the unperturbed spin state as ψ0

n and the spin-orbit in-
teraction as a perturbation potential V = ξV

′
. The states can be

expanded as:
ψn = ψ0

n + ξ1ψ1
n + ξ2ψ2

n.

The damping rate due to intraband transitions is found to have a
quadratic dependence on ξ and it is dominated by the orbital exci-
tations. The damping rate due to interband transitions is found to
be of the third order in ξ, it contains contributions from both the
orbital excitations and the spin flip process.
The damping rate of bulk Ni metal is observed to increase as the
temperature decreases, and it shows a plateau at low temperature,
however the damping rate of bulk Fe varies slowly with the temper-
ature, it varies of about less than a factor of 2 between 4 and 300 K
[15]. The damping rate in Ni is higher than in Fe which is attributed
to a larger density of states and to a larger spin orbit coupling.
Recently, first principle calculations accounting for disorder and spin-
orbit coupling in bulk permalloy give α = 0.0046 [101]. All these
observations are explained by the torque model described above.

1.4.3 Inhomogeneous broadening

Magnetic inhomogeneities in a thin film result in an extrinsic broadening of
the ferromagnetic resonance line. Such inhomogeneities can arise from a spatial
distribution of the local field or from the misalignment of the applied field with
respect to the normal of the surface of each individual crystallite.
The effect of inhomogeneities can be easily understand in two extreme cases:

• Negligible inhomogeneity:
If the magnetic material is uniform the inhomogeneity could be ignored
and the line width represents the intrinsic damping only.

• Uncorrelated grains:
When the exchange and the dipolar interaction between the grains of an
inhomogeneous sample are negligible, the grains are oscillating indepen-
dently (local resonance). Then the measured linewidth reflects the convo-
lution of the intrinsic line with the distribution of the resonance fields.

In the intermediate case where the different grains are correlated and the mag-
netic inhomogeneities are considered, the broadening might be described in some
cases by the 2-magnon model [71] [3]. In the following we will describe the more
general mean field model proposed by McMichael [70].
In this model the film is divided into blocks, where the block size D is chosen as
a characteristic length scale of the inhomogeneity. The static field H is oriented
along the x-axis and the pumping field hp is in the yz plane. In each individual
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block (i) the linear response to a magnetic field is described as:

mi = χi(ω,Hx,Ki).hi, (1.64)

where the local susceptibility χi(ω,Hx,Ki) depends on the frequency ω, the
local static field, and on a parameter Ki that differs by from one block to
another. In each block the field is a sum of the applied field and the interaction
field between different blocks. The interaction field is assumed to depend on the
average of the magnetization M . It is written in terms of the interaction tensor
J as:

Hint = J.M = JxMs + Jyz.χeff .hp, (1.65)

where Jyz is the y-z part of the J and χeff is the global magnetic susceptibility
of the film. Substituting the Hint in equation 1.64 and averaging over the blocks
we obtain,

m̄ = χ̄(ω,H0 + JxMs,Ki)[I + Jyzχeff ].hp, (1.66)

where I is the identity tensor, and χ̄ is the average susceptibility of the block
array which represent the susceptibility of the non interacting blocks with a
distribution P(K) of the local properties, with a shift of the applied field by the
interaction field. Then one can deduce the

χeff = [(χ̄(ω,H0 + JxMs,Ki))
−1 − Jyz]

−1 (1.67)

McMichael determines numerically χeff accounting for exchange and dipolar
interaction in J. The full width half maximum (FWHM) is extracted from the
imaginary part of the effective susceptibility. The calculation was done for a
permalloy film of thickness 3 nm, and Gilbert damping coefficient α = 0.008
with the exchange length 5.7nm. The inhomogeneity is considered to be due to
a local anisotropy field added to the applied field, and the distribution P(K) is
considered to be Gaussian with a standard deviation σ. The calculated linewidth
for different values of the block size are shown in figure 1.13. For infinite blocks
one recovers the local resonance results whereas for smaller blocks the frequency
dependence becomes non-linear and gradually tends to the intrinsic linewidth.

1.4.4 Slow relaxers
Consider a ferromagnet layer coupled to a fluctuating system with a relaxation
time τ . It can be shown that the ferromagnet resonance is modified as follows:
at a constant frequency ω the resonance field is shifted down by an amount S
and the line is broadened by ∆H, where S and ∆H writes:

S ∝ 1
2

(ωτ)2

1+(ωτ)2

∆H ∝ ωτ
1+(ωτ)2 .

(1.68)

Because τ is assumed to vary strongly with the temperature, the slow relaxers
phenomenon results in strong temperature dependence of S and ∆H. This has
been observed in YIG doped with rare earth metals, in Py doped with rare earth
[114] and in exchange bias bilayer systems such as Py/NiO [29][64] or Py/FeMn
[40]. In each system the relaxation mechanism of the slow fluctuators is different
which yields a different temperature scale.
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Figure 1.13: a) Frequency dependence of full width at half maximum linewidth.
b) The red lines are the meanfield results compared to an eigenmode spectrum
calculated in [71]. The image is taken from the reference [70].

Conclusion
In this chapter, we describe the uniform magnetization and the spin waves phe-
nomena in the ferromagnetic thin films. A special attention to the magneto-
static surface waves characteristics is provided since we choose to perform the
experiments using this configuration. And a general review of the magnetization
relaxation processes in thin films is presented.
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Chapter 2

Electrical transport and spin
transfer torque in
ferromagnetic metal thin films

This chapter is dedicated to explain the physical basis needed for the discussion
of the film thickness dependence of the spin polarized transport. It is divided
into three sections. In §2.1 we will discuss the electrical transport in ferromag-
nets based on the two current model. In §2.2 the electron-surface scattering is
presented based on the Fuchs-Sondheimer model. In §2.3 the spin transfer torque
phenomenon is explained and some experimental observations are presented.

2.1 Electrical transport in a ferromagnet

The two current model is a well known model used to describe the spin depen-
dent transport in a ferromagnetic metal. This section discusses first the basic
vision of the two current model, then it presents the calculation suggested by
Fert and Campbell to make it more realistic. Finally more recent ab initio cal-
culations illustrating the limitations of the two current model are discussed.

2.1.1 The two current model

In transition metals, the electrons are split into two populations according to
their spin direction, the spin-up (majority) and the spin-down (minority) elec-
trons whose spin magnetic moment is parallel and antiparallel to the magnetiza-
tion direction respectively. The electron states for the majority and the minority
electrons at the Fermi levels are different as shown in figure 2.1-a. This yields
a different scattering probability for the 2 populations or equivalently different
relaxation times. Consequently, the resistivity of the spin-up ρ↑ and spin-down
ρ↓ channels are different. Accordingly, Mott proposed to describe the transport
properties of a ferromagnet in terms of the two current model. It depicts the
spin-up and the spin-down electrons as two independent conduction channels as
shown in the figure- 2.1-b. The physical background of the two current model is
that the interaction between the two bands are small. At low temperature, one
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can neglect any angular momentum transfer between the two channels (no spin
flip scattering).

Figure 2.1: a- The density of state for the majority and minority electrons in a
ferromagnet. b- A scheme for the two current model showing the resistivity of
the spin up ρ↑ and the spin down ρ↓ channels.

Accordingly, the two channels contribute to the resistivity of the metals as
two parallel resistors. Then the total resistivity is given as parallel resistance
[19]:

ρ =
ρ↑ρ↓
ρ↑ + ρ↓

, (2.1)

with the scattering spin asymmetry ratio defined as

α =
ρ↓
ρ↑
. (2.2)

And the degree of spin polarization defined as:

P =
ρ↓ − ρ↑
ρ↓ + ρ↑

=
α− 1

α+ 1
. (2.3)

The spin dependent resistivities were determined by measuring the deviations
from the Matthiessen rule in binary and ternary alloys obtained by diluting dif-
ferent impurities into ferromagnetic metals. The Matthiessen rule would suggest
that the total resistivity is the sum of the resistivities (ρi) one would have if each
scattering process (each impurity) were present alone [4] as series resistance:

ρ =
∑
i

ρi. (2.4)

In the case of impurities into Ni[30], Fe, and Co [63] large deviation from the
Matthiessen rule were observed which were interpreted as signatures of large
spin asymmetry ratios. In particular, for most impurities in Ni it was shown
that the majority channel carries most of the current.



2.1. ELECTRICAL TRANSPORT IN A FERROMAGNET 33

2.1.2 The modified two current model
Fert and Campbell [34] presented theoretical calculations of the two current
model where the spin-flip scattering events are considered. Here, we refer to
their calculation of the spin dependent resistivities.

In this model, the Boltzmann equation is solved for a distribution of the
spin up and the spin down electrons using the variational method used by Zi-
man [120]. In the notation of Ziman, the Boltzmann equation is expressed as a
deviation of the electron distribution from the equilibrium under the action of
an external field. The Boltzman equation is written as [120]:

X = PΨ(k, σ), (2.5)

where X depends on the external field, P is the scattering operator and Ψ(kσ)
is the deviation of the electron distribution from its equilibrium defined as:

f(kσ) = f0(ϵk)−Ψ(kσ)(
∂f0

∂ϵk
),

where k is the wavevector and σ = ±1
2 is the spin index. The problem is simply

to find the form of the Ψ(kσ) by searching for a minimum value of the quantity:

< Ψ, PΨ >

|< Ψ, X >|2
. (2.6)

To determine the out of equilibrium distribution, a trial solution of Ψ(kσ) is
expressed in terms of a linear combination of the spin up and the spin down
distribution ϕσ(k) as:

Ψ(kσ) =
∑
σ′

ησ′ϕσ′ (k)δσσ′ , (2.7)

where ϕσ′ (k) is assumed to be known and independent on the scattering process,
while ησ′ are variable coefficients which have to be adjusted to find the minimum.
The values of ησ′ are given by:

EXσ =
∑
σ′

Pσσ′ ησ′ (2.8)

where Xσ = −
∫
(vk.u)e

∂f0

∂ϵk
Φσ(k)dk with u a unit vector in the direction of the

applied electric field (E), and Pσσ′ is

Pσσ′ =
1

kBT

∑
σ′′σ′′′

[ϕσ(k)δσσ′′−ϕσ(k
′
)δσσ′′′ ]P (kσ′′k

′

σ′′′ )×[ϕσ′ (k)δσ′σ′′−ϕσ′ (k
′
)δσ′σ′′′ ]dkdk

′
.

(2.9)
where P (kσ′′k

′

σ′′′ ) is the equilibrium rate between the state (kσ
′′
) and (k

′
σ

′′′
).

Ziman wrote the electrical resistivity ρ as:

ρ−1 = Σσσ′Xσ(P
−1)σσ′Xσ′ . (2.10)

The circuit scheme in the figure 2.2 represents the scattering processes after
including the spin-mixing. The total resistivity and the degree of the spin po-
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Figure 2.2: A scheme for the two current model after the spin flip scattering is
included.

larization are:

ρ =
ρ↑ρ↓+ρ↑↓(ρ↑+ρ↓)

ρ↑+ρ↓+4ρ↑↓
,

P =
ρ↓−ρ↑

ρ↑+ρ↓+4ρ↑↓
,

(2.11)

where

ρ↑ =
P↑↑
X2

↑
+

P↑↓
X↑X↓

ρ↓ =
P↓↓
X2

↓
+

P↓↑
X↓X↑

ρ↑↓ = − P↑↓
X↑X↓

.

(2.12)

This is a general expression of the resistivity which accounts for the interband
transitions between the majority and the minority electrons. The ρ↑, ρ↓, ρ↑↓
are linearly proportional to the scattering operator, which indicates that the
different scattering processes provide an additive contribution to the resistivity,
which justifies Mathiessen′s rule for each sub-band resistivity. In this model
the band σ includes all the electrons with the spin σ with s, d or hybridized
characters.
The spin flip scattering events tend to the equalize the currents in the two chan-
nels. They could be attributed to two different scattering processes:

• In the first process, the conduction electrons scatter onto spin waves. By
conservation of the angular momentum, this is accompanied with a spin
flip. This process induces a ρ↑↓(T ) which vanishes at T= 0K as calculated
by [33] [90].

• In the second process, the spin-orbit coupling can contribute to a spin flip
scattering of conduction electrons even at low temperature. The spin-orbit
coupling mixes the spin state of each band and there is no more pure spin
state. The majority spin electron states acquire some minority character,
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so that the electrons can be scattered into the minority spin band states.
The additional scattering in light metals as Ni, Fe is strong because of
the large minority density of the final state. Consequently the resistivity
is strongly enhanced [22].

2.1.3 Ab-initio calculation of spin dependent resistivities

Mertig et al. [74] performed an ab-initio calculation of the spin-dependent resis-
tivity for the dilute Ni alloys. The calculation of the residual resistivity confirms
that the current is mostly carried by the electrons of the majority band in most
cases, whereas the calculated values of the residual resistivity for Ni alloyed
with Fe, Zn ,Co, and Cu impurities are too small compared to the measured
values. The small calculated values of the resistivities highlight the importance
of including the spin-orbit coupling since it was ignored in their calculation.
Banhart et al. [9] have performed a fully relativistic transport calculation of the
resistivities in ferromagnetic alloys of Ni1−xFex and Co1−xFex. They obtained
higher values of the resistivities which are more comparable to the experimental
measurements. This work shows the importance of the spin-orbit coupling which
is in contrast to the assumption of the basic two current model.

Figure 2.3: The density of the state for the majority and the minority spin band
of the Nickel and Iron. The figure is taken from the reference [75].

In (Ni80Fe20) permalloy, the impurities act as spin-dependent scattering
centers as Minjnarends et al. [75] suggested. Figure-2.3 shows the density of
states for the spin-up and the spin-down bands (top and bottom panel respec-
tively) for Ni and Fe sites ( left and right panels respectively). The density of
states of the majority spin band of both Nickel and Iron sites have a narrow peak
below the Fermi level and they are almost at the same energy, which indicates
that the majority spin up of Ni is undamped by the Fe impurities. However
the density of the state of the minority spin band of the nickel and iron are
significantly different, and hence the minority spin down of Nickel are strongly
damped by the Fe impurities.
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2.2 Size effect

In the form of thin films, metals can show higher resistivities than in the bulk if
their thickness is comparable to the electronic mean free path. A large number of
measurements of thickness dependence of the resistivity were done for different
materials (Cu, Ni, Au,...), in order to study this phenomenon. To interpret these
measurements, theoretical models separating the surface and the bulk scattering
contributions have been used. The Fuchs-Sondheimer theory [98] is the leading
theory for this. This section will discuss the size effects in a thin film. We will
first focus on the electron surface scattering (the Fuchs- Sondheimer theory)
and we will briefly describe the electron scattering due to the grain boundaries.
At the end of the discussion, experimental work is presented for some materials.

2.2.1 Surface scattering in thin films

Fuchs-Sondheimer model
The aim of this section is to present the electron surface scattering contribu-

tion to the resistivity based on the Fuchs-Sondheimer theory [98]. The formalism
consists in solving the Boltzmann equation accounting for the boundary condi-
tions at the film surfaces.
Consider a metallic thin film of thickness t, such that the surfaces of the film
are located at the planes z=0 and z= t. The velocity distribution function of
the electrons can be written as: f = f0 + f1(v, z), where f0 is the equilibrium
distribution and f1 is the out of equilibrium distribution which depends only on
the z coordinate. The rest of the problem is to solve the Boltzmann equation
to determine this out of equilibrium function. Suppose the electrical field (E) is
applied along the x-direction, the Boltzmann equation can be written as:

∂f1
∂z

+
f1
τvz

=
eE

mvz

∂f0
∂x

(2.13)

where τ is the relaxation time of the electrons. The general solution of the
Boltzmann equation can be written as:

f1 =
eτE

m

∂f0
∂vx

{1 + F (v) exp(− z

τvz
)} (2.14)

where F (v) is an arbitrary function of the velocity. By imposing the boundary
condition one can determine F (v). Fuchs-Sondheimer introduces a p coefficient
in the model to describe how the electrons are scattered from the surface. The p-
coefficient is assumed to be independent of the motion of the electrons and it has
a value between 0 and 1. For p=0 the surface scattering is completely diffusive
(i.e the momentum is randomized) and for p=1 the scattering is specular (i.e
the in-plane momentum is conserved). The boundary condition can be written
for the electrons leaving the surface z = 0 and z = t in terms of the distribution
functions f+1 and f−1 for the electrons with the velocity vz > 0 and vz < 0 as:

f0 + f+1 (vz, z = 0) = p(f0 + f−1 (−vz, z = 0)) + (1− p)f0 (2.15)

f0 + f−1 (vz, z = t) = p(f0 + f+1 (−vz, z = t)) + (1− p)f0 (2.16)
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With these two boundary conditions the solution of the Boltzmann equation
can be written as:

f+1 (vz, z) = eτE
m

∂f0
∂vx

[1− 1−p
1−p exp(− t

τvz
)
exp(− z

τvz
)] vz > 0

f−1 (vz, z) = eτE
m

∂f0
∂vx

[1− 1−p
1−p exp(− t

τvz
)
exp( t−z

τvz
)] vz < 0.

(2.17)

Once the distribution function of the electrons is known, the current density J
can be calculated using

J = 2e(
m

h
)3

∫
vfdv, (2.18)

then Fuchs and Sondheimer deduce the conductivity of the thin film to be:

σ0
σ

=
ϕp(κ)

κ
(2.19)

where κ = t
ℓ , with ℓ is the electron mean free path and

1

ϕp(κ)
=

1

κ
− 3

2κ2
(1− p)

∫ ∞

1

(
1

t3
− 1

t5
)
1− e−κt

1− pe−κt
dt. (2.20)

For very thick films (κ >> 1), equation-2.19 can be written as:

ρ

ρ0
=
σ0
σ

= 1 +
3

8κ
(1− p). (2.21)

This equation is still approximately valid even if the thickness is comparable to
the mean free path.
Accordingly, the electron-surface scattering contributes to the resistivity of the
thin films in addition to the bulk scattering. Normally, the surface scattering
contribution to the resistivity is determined by carrying out a thickness depen-
dence measurements of the resistivity as we will see in chapter 3.

2.2.2 Grain boundaries
This section will discuss briefly the contribution to resistivity of the electron
scattering by the grain boundaries. The scattering of the electrons by the grain
boundaries is believed to have a small effect on the resistivity, when the grain
size (d) in a metallic film is larger than the mean free path. Mayadas et al. [68]
proposed a model to account for the contribution of the grain boundary scatter-
ing to the total resistivity. In this model, the grain boundaries are represented by
N parallel planes oriented perpendicular to the direction of the electrical field.
Each of these planes is modelled as a δ function potential. The reflection of
the electrons due to the grain boundaries is described by a reflection coefficient
(R). Mayadas et al. solved the Boltzmann equation to evaluate the conductivity
in the presence of the grain boundaries and background scattering (phonons,
defects) they obtained:

σg
σ0

= 1− 3

2
α+ 3α2 − 3α3 ln(1 +

1

α
), (2.22)

where α = ℓ
d

R
1−R .

The scattering of the electrons by the grain boundaries for fine grains can usually
be included as a bulk parameter.
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2.2.3 Experimental measurements

During the 1970’s and 1980’s many studies were carried out to understand the
size effects in a wide range of metals such as (Al, Cu, Pd, Au, Ni,..) [109]. In
these studies, the bulk resistivity (ρ) and the mean free path (ℓ) are extracted
with the help of various models [46]. Mainly, ρ and ℓ are extracted using the
Fuchs-Sondheimer model and/or the Mayadas model, in these models the only
adjusted parameters are the specularity parameter p and the reflection coeffi-
cient R.
Jacob et al. [53] suggested a method to separate the surface and volume scat-
tering in a polycrystalline metal. In this work, the surface of Cu films were
coated with adatoms of Ni or Al. Accordingly, the surface scattering increases
whereas the volume scattering remained unchanged. From the maximum rela-
tive increase in the resistivity at two different temperature of two identical films
coated, the mean free path can simply be determined. Using this method the
mean free path and the specularity parameter are ℓ(300K) = 24 ± 4nm, p=
0.42 ± 0.07. In the following, we will present two recent thickness dependence

Figure 2.4: a) The variation of the resistivity of a copper film during coating
with nickel atoms. b) The relative change in resistivity during coating with Ni
and Al atoms as a function of the copper film thickness. The image is taken
from the reference [53].

studies performed on copper thin films and gold nanowires.

Figure-2.5 shows measurements of the thickness dependence of the resistivity
on epitaxial copper thin film done by [21]. The resistivity measurements were
done at 298 K in vacuum and in air, and at liquid nitrogen (77 K). The results
follow the FS model with the parameter p = 0.6± 0.2 for Cu-vacuum interface
and p = 0 ± 0.1 for the Cu-air interface with a mean free path ℓ = 39 and 313
nm for 298 K and 77 K.
In the second study the film thickness was held constant whereas the width of the
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Figure 2.5: The variation of the resistivity as a function of the film thickness for
epitaxial copper thin films. The image is taken from the reference [21].

gold nanowire is varied [31]. The measured resistivity values are not accounted
well by the Fuchs-Sondheimer theory as shown in figure 2.6a. This deficiency
is resolved when the grain boundaries contribution is considered. A better fit
of the result was done with a combination of the Fuchs-Sondheimer and the
Mayadas-Shatzkes theory as shown in the figure 2.6b. The parameter of the fit
were obtained as ℓ = 40 nm, average grain size is 40 nm, p=0.5 and R=0.9.

Figure 2.6: The variation of the resistivity in a nanowire of gold of thickness 20
nm as a function of the wire width. A) Measured dependence of resistivity on
wire width for a mean grain size of 20 nm (filled circles) and 40 nm (triangles).
B) A fitting of the data with fuchs Sondheimer (solid line), Mayadas-Shatzkes
(dashed curves) and a combination of the two models (dotted curves). The image
is taken from the reference [31].
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2.3 Spin transfer torque

After the discovery of the spin transfer torque by Berger [13] and Slonczweski
[97] in 1996, this phenomenon has attracted the attention for fundamental and
technological studies. In this section, the basic elements for understanding the
spin transfer torque are discussed.

2.3.1 Spin current

A moving ensemble of spins engenders a spin current. It originates from an im-
balance between the number of the spin-up and the spin-down carriers. In other
words due to the spin-dependent properties of the electrons in a ferromagnet,
a magnetic layer can act as a spin filter. Because the spin current is a flow of
spins, it is characterized by a velocity velocity vector v in the real space and
a spin density vector S in the spin space. Classically, the spin current Qij is a
tensorial quantity defined as: Qij=Si

⊗
vj .

Figure 2.7: A scheme for the spin current definition. It shows the motion of a
spin Sz in the real space [110].

Figure-2.7 shows a schematic drawing for the spin current associated to the
z-component of a spin. The spin current associated to a motion along the three
axis is shown (vx, vy, vz).
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2.3.2 Spin transfer torque
In 1996, Berger [13] and Slonczweski [97] studied independently the coupling be-
tween a spin polarized current and the magnetization of a ferromagnetic layer
in a multilayer structure. They predicted a vectorial transfer of the spin angular
momentum between the flowing electrons and the magnetization. This is the so
called spin transfer torque phenomenon. It arises whenever the flow of angular
momentum is not constant through the ferromagnet.
Figure-2.8 illustrates the basic physics of the spin transfer torque. It describes
the interaction between the spin of the electrons flowing and the magnetization.
This interaction results in a reorientation of the electrons spin in order to follow
the direction of the local magnetization. This yields the outgoing electrons to
have a different spin direction compared to the incident ones. By conservation
of the angular momentum, the flowing spins exert an equal and opposite torque
on the magnetization vector. As a result, a spin polarized current can manipu-
late the direction of the magnetization in a ferromagnetic layer. A simple way

Figure 2.8: A spin polarized current passes through a ferromagnet. The inter-
action between the incident current and the magnetization of the layer results
in a change of the spin direction for the outgoing spin electrons. The change in
the spin direction between the incident and the outgoing spins give rises to a
spin transfer torque on the ferromagnet.

to calculate the spin transfer torque (dMdt )STT acting on a volume (V) of the
ferromagnet is to consider the net change in the flux of the spin current (NSTT )
through a surface of that volume.

2.3.3 Adiabatic spin transfer torque
In this section we will derive the spin transfer torque for a continuous magneti-
zation distribution. We assume the magnetization varies slowly. I.e, it changes
over a length scale smaller than the characteristic length of transport, (the de-
coherence length, the electronic mean free path of the majority and the minority
spin, and the spin flip length). In this case it is supposed that the electron spin
is aligned everywhere with the local magnetization direction: the electron spin
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is said to follow "adiabatically" the magnetization.
Let us consider an incoming spin current Q(x) at a position x flowing along the
x-axis through a surface (A) of the ferromagnet. The outgoing spin current is
Q(x+dx). The spin balance for the volume Adx during the infinitesimal time
interval dt is written as:

NSTT = (Q(x) − Q(x+dx))Adt. (2.23)

Due to the conservation of the angular momentum, the variation of the magnetic
moment in the ferromagnet is equal to NSTT

δµ = (Q(x) − Q(x+dx))Adt, (2.24)

using the definition of the magnetization M = µ
Adx then one can write the

change of the magnetization with time, i.e. the spin transfer torque, as:

dM

dt
= −dQ

dx
. (2.25)

This definition of the spin transfer torque can be generalized to 3-dimensions
as:

dM

dt STT
= −∇Q, (2.26)

notice that the spin transfer torque is opposite to the spatial variation of the
spin current density.
For a continuous magnetization distribution the spin current is expressed as:

Q = −P µB

e

M
Ms

⊗
j, (2.27)

where j and M are the current density and the magnetization vector, Ms is the
saturation magnetization P is the degree of the spin polarization.
For the basic two current model, the degree of the spin polarization is expressed
in terms of the resistivities of the two conduction channels (ρ↑, ρ↓) as:

P =
ρ↓ − ρ↑
ρ↑ + ρ↓

. (2.28)

Then the adiabatic spin transfer torque for a current density flowing along the
x-direction is written as:

dM

dt
= +P

µBj

eM

dM

dx
, (2.29)

For a current passing along an arbitrary direction in the space, the spin torque
is generally expressed as:

dM

dt
= −(−→u .−→∇)

−→
M. (2.30)

where u is the effective magnetization velocity defined as u = −µBP
eMs

j. The spin
transfer between the current and the local magnetization is determined once the
variation of the magnetization profile is known.
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2.3.4 Non-adiabatic spin transfer torque
Phenomenologically, the spin polarized current is expected to exert another
torque on the magnetization. This additional torque is perpendicular to the
adiabatic spin transfer torque. It is known as the non-adiabatic spin transfer
torque, which is described as a spatial damping of the magnetization [105]:

βu
M

Ms
× ∂M

∂x
, (2.31)

with β the non adiabatic coefficient.
The non-adiabatic spin transfer torque is explained based on two approaches:

• In the first approach, Zhang et Li [117] derived the non adiabatic term
by computing the response of the conduction electrons to a magnetization
distribution varying in space and time within the semiclassical transport
theory. The non-adiabatic term originates from the mistracking between
the spin of the conduction electrons and the magnetization. This mistrack-
ing depends on the the relaxation of the conduction electron spins to the
local magnetization by means of spin-flip scattering.

• In the second approach, Xiao et al. [115] studied the non-adiabatic spin
transfer torque by considering the length scale of the variation of the mag-
netization (typically the domain-wall width) is comparable to the char-
acteristics length L of transport, without accounting explicitly for the
scattering in contrary to the Zhang approach. Their results showed the
non-adiabatic torque occurs when the width of the domain-wall is smaller
or comparable to L. The non-adiabatic torque is found to decrease expo-
nentially as the width of the domain wall increases.

Although, the magnitude of the β coefficient is expected to be very small
(of the order of the Gilbert damping coefficient α), this small effect is able to
explain the domain wall motion in the current induced domain wall motion
experiments (see 2.4.2).

2.3.5 The role of the spin transfer torque in the magneti-
zation dynamics

As we have seen in the first chapter, the magnetization dynamics in a ferromag-
netic sample is described by the Landau-Lifschitz-Gilbert equation of motion.
As we have seen in the previous section 2.3.2, the spin current exerts a torque
on the the magnetization orientation. Hence, in the presence of a spin current,
the dynamical equation should be modified to include the adiabatic and the
non-adiabatic spin transfer torque terms. It is written as:

∂M

∂t
= −γM×Heff +

α

Ms
M× ∂M

∂t
− u

∂M

∂x
+ βu

M

Ms
× ∂M

∂x
(2.32)

where the current is supposed to be along the x-axis and u is the effective spin
transfer velocity defined as u = −P µBj

eMs
[104].
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2.4 Experimental observation of the spin transfer
torque

In this section we present some observations of the spin transfer torque in spin
valves, domain walls and spin waves experiments.

2.4.1 Spin transfer torque in spin valves

In the beginning of the 90th, the giant magnetoresistance (GMR) effect [5][41]
was measured in ferromagnetic (FM) multilayer stacks (FM 1 / normal metal/
FM 2). A spin valve consists of two ferromagnetic layers (FM1, FM2) separated
by a non-magnetic layer. The resistance of this stack depends on the relative
orientation of the magnetization between the two ferromagnetic layers. Most
often it is low when the magnetization of the two layers are aligned parallel and
it is high when they are aligned antiparallel. In a spin valve the current induced
switching of the magnetization can be viewed as a reciprocal effect to the GMR.
According to the description of the spin transfer torque phenomenon in the last
section, a spin polarized current can be used to manipulate the magnetization
of a ferromagnetic layer [80].

Figure 2.9: A schematic drawing of a spin valve where the electrons flow from
the fixed to the free layer. The spin current exerts a torque on the magnetization
m of the free layer tends to align it parallel to M.

Consider an electrical current passing through the spin valve as shown in
figure 2.9 i.e electrons flowing from the FM1 to the FM2 layer. FM1 is a thick
ferromagnetic layer with a hard magnetization direction M (the fixed layer)
which serves to spin-polarize the current flowing perpendicular to the interfaces.
FM2 is a thin ferromagnetic layer with a magnetization m (the free layer).
The transmitted flow becomes spin polarized after it passes through the fixed
layer. In the spacer layer, the flow conserves its spin orientation parallel to
M with a non zero spin current. Let us assume the magnetization m of the
FM2 is not aligned parallel to the magnetization M of the FM1 layer. The spin
current Q can be decomposed into a longitudinal and a transverse component.
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The longitudinal component passes through the FM2 layer and the transverse
component is absorbed by the interface. The transverse component transfers
angular momentum to m. The transfer of the angular momentum exerts a torque
on m and it acts to pull m towards the direction of the magnetization of the
fixed layer. Consider now an electrical current such as the electrons flow from
the free to the fixed layer as shown in figure 2.10. The electrons coming from the
free layer are reflected back into it, and the spin polarized current results from
the reflected electrons. In the spacer the magnetization of the spin current Q is
antiparallel to M. As in the preceding case, angular momentum is transferred
from the transverse component of Q to m. The resulting torque pulls out the
magnetization of the free layer. Therefore this current polarity destabilizes the
parallel configuration between the two layers and it stabilizes the antiparallel
configuration.
Slonczewski calculated the spin transfer torque on the free layer magnetization

Figure 2.10: A schematic drawing of a spin valve where the electron flow from
the free to the fixed layer. The spin current exerts a torque on the magnetization
m of the free layer tends to align it antiparallel to M.

m due to the misalignment angle θ with the fixed layer magnetization M as
[97]:

∂m

∂t
= g(θ)

I

e
m× (m×M) (2.33)

where g(θ) depends only on the polarization of the spin current P =
I↑−I↓
I↑+I↓

in
the spacer. It is written as:

g(θ) = [−4 +
(1 + P )3(3 +mM cos θ)

4P 3/2
]−1 (2.34)

Equation-2.33 shows the torque direction depends essentially on the sign of the
injected current. It is zero once the magnetization directions in the two layers
are aligned parallel or antiparallel to each other.



46 CHAPTER 2. ELECTRICAL TRANSPORT AND STT

Figure 2.11: dV/dI of a pillar device (Co/Cu/Co) exhibiting hysteretic jumps
as the current is swept. The current sweep begins at zero; light and dark lines
indicate increasing and decreasing current, respectively. (b) Zero-bias magne-
toresistive hysteresis loop for the same sample. The blue arrows indicate the
direction of the magnetization in the two FM layers. The image is taken from
[57].
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2.4.2 Current induced domain wall motion

Another manifestation of the spin transfer torque phenomenon is the current
induced domain wall motion. Originally, three decades ago, Berger asked the
question: What would be the effect of the electrical current on a stationary
magnetic domain wall? Theoretically, he predicted that a spin current exerts a
torque on the domain which tends to displace or to distort the domain wall.
Due to the many technological difficulties it was difficult to check this idea until
recently. One of the first domain wall study performed in a nanowire was done
by Yamaguchi et al. [116], it will be presented in this paragraph.
The study was performed in a 10nm thick permalloy nanowire with an L-shape.
A magnetic domain wall is injected in the nanowire, with a head to head con-
figuration. Sequential current pulses at a constant current density are applied
through the wire. A magnetic force microscopy images was taken after each
pulse as shown in the figure-2.12. The MFM images show a sequential displace-

Figure 2.12: A) Successive MFM images with one pulse applied between consec-
utive images. The domain wall motion is viewed in the dark contrast and the
current direction is shown by the white arrows. The image is taken from the
reference [116]. B) Shows the domain wall motion in a zigzag wire. The image
is taken from the reference [59].
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ments of the domain wall from its original position, and the displacement of the
domain wall is opposite to the current direction. The measurement is repeated
with a tail to tail domain wall and the result showed the motion of the domain
wall is also opposite to the direction of the applied current. This observation
excludes the hypothesis of the Oersted field contribution of the domain wall mo-
tion. The displacement of the wall is almost proportional to the pulse duration
and the domain wall velocity increases as the current intensity increases, which
is in agreement with the effect of the spin transfer torque.
Other experimental works which used spin polarized scanning electron mi-
croscopy in zigzag nanowires [59] and x-ray microscopy in curved nanowires
[72] showed a distortion of the domain wall configuration after many repetitive
current pulses.
The results of a micromagnetic simulation by Thiaville et al. [104] of the domain
wall motion due to a spin polarized current using the adiabatic spin transfer
torque 2.30 suggested that the phenomenon should be observed with a cur-
rent density ten times higher than the density used in the experiments. This
discrepancy motivated the introduction of another spin transfer torque (the
non-adiabatic torque of equation-2.31), which was shown to be likely to explain
the measured domain wall velocities.

2.4.3 Current induced spin wave Doppler shift

Another consequence of the spin transfer torque is the current-induced change
of the frequency of spin waves (spin-wave Doppler shift). In the following para-
graphs, we review the theoretical predictions of this effect, we show how it can
be deduced from the expression of the spin transfer torque given in 2.3 and we
review the experimental works published so far.

Theoretical predictions:

In the 1960’s Lederer and Mills [62] suggested that a Doppler shift could
occur for the spin waves of a metal ferromagnet subjected to an electrical field.
A spin wave propagating in a reference frame R

′
has a plane wave form as:

m
′
(x

′
) = m0e

i(w0t−k0x
′
). (2.35)

In the lab frame R the effect of the electrical field can be seen as a global drift
of the reference frame (linked to the electrons of the metals) with a velocity vd.
The coordinates of the lab frame R can be expressed in terms of the coordinates
of R

′
as: x = x

′
+ vdt as shown in the figure 2.13. Then the spin wave in R is

written as:
m(x) = m0e

i(w0t−k0x+k0vdt), (2.36)

with an apparent frequency ω
′

0 = ω0 + δω, where the Doppler frequency shift
writes

δω = k0.vd. (2.37)

Later, Bazaliy et al. [11] derived a continuum description for the magnetiza-
tion of a ferromagnet in the presence of a spin-polarized current (i.e with spin
transfer torque). Their results showed that a spin current induces a shift in the
spin wave spectrum. In 2004 Fernandez-Rossier et al. [32] studied the influence
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Figure 2.13: An illustration of the current induced spin wave Doppler shift [110].

of the DC electrical current on the collective magnetization dynamics in a ferro-
magnet based on different approaches (classical Galilean invariance, microscopic
description starting from the Hubbard model, spin transfer theory). All these
approaches showed that the effect of a uniform current is to introduce an extra
term in the spin wave spectrum which is proportional to the current density J
and to the wavevector q:

δϵ(q) ∝ q.J. (2.38)

Coupling between the spin transfer torque and a spin wave:

Let us now investigate the effects of the spin transfer torques of equation
2.32 on a spin-wave. The spin wave is a stationary system with a defined
frequency ω and wavevector k. It is written in the form of a plane wave as
(m = m0e

i(ωt−k.x)). Therefore, its spatial and temporal evolution are simply
known as (∂m∂x = −ikm, ∂m

∂t = iωm). Then the linearized equation 2.32 can
easily be rewritten as:

iωm = −γ(m×µ0H0+M0×µ0h)+
iωα

Ms
M0×m+ikum−ikβuM0

Ms
×m (2.39)

One could remark that the adiabatic and the non-adiabatic spin transfer
torque are accounted by the following substitution:

ω −→ ω + u.k (2.40)

αω −→ αω − βu.k. (2.41)

Figure 2.14 shows an illustration of the spin transfer torque effects on the
precessing magnetization m. The adiabatic torque tends to modify the preces-
sional frequency, as shown by the dark blue arrow. The non-adiabatic torque
tends to modify the damping of the magnetization, as shown by the gray arrow.

Experimental observations of the CISWDS:

In 2008 our group in Strasbourg was the first to set an experimental de-
sign for the current induced spin wave Doppler shift. Figure-2.15 shows the
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Figure 2.14: A schematic picture showing the effect of the spin transfer torque on
the precession of the magnetization. The orange arrow represents the Gilbert
damping coefficient. The dark blue and the gray arrows corresponds to the
adiabatic and the non-adiabatic spin transfer torques respectively.

device used for the experiment. The spin waves are excited in the magnetostatic
forward volume wave configuration in a permalloy stripe using micro-sized an-
tennas. The spin wave propagates with a wavevector k and at a pulsation ω0

along the stripe. A DC current (I) is sourced along the propagation direction
(k) of the spin wave. The flow of the spin polarized electrons exerts an angu-
lar momentum on the propagating spin waves. Due to the spin transfer torque
phenomenon, a frequency shift is measured for the propagating spin wave as
shown in figure-2.16. The frequency shift is observed to increase linearly with
the applied dc current. Based on the Doppler shift deduced from the adiabatic
spin transfer torque term: (δω = k.u where u = P µBjc

eMs
), the degree of the spin

polarization of the electric current is extracted. The degree of the spin polariza-
tion in a 20 nm permalloy film is measured to be about 0.5 [111].
Later the current induced spin wave Doppler shift was measured by two other
groups in the frequency domain at low temperature [118] and in the time do-
main [92]. Both experiments use the magnetostatic surface wave configuration.
The low temperature measurements showed the polarization to increase from
0.58 to 0.75 between 300 to 80K as shown on the figure 2.17. Current induced
spin wave Doppler shift measurements were also performed on other systems:
(CoFe)1−xGex [119] and (Ni0.8Fe0.2)1−xGdx [106]. The results of the polar-
ization measurements as a function of the impurity concentration are shown in
figure 2.18.

Non-adiabatic spin transfer torque:
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Figure 2.15: The experimental device for the current induced spin wave Doppler
shift experiment. The image is taken from [111].

Figure 2.16: The current induced frequency shift measured between two opposite
propagating signals.
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Figure 2.17: The degree of the spin polarization of the electrical current versus
temperature extracted from the CISWDS measurements. The image is take from
the [118].

Figure 2.18: The degree of the spin polarization of the electrical current versus
impurities concentration in a)(Ni0.8Fe0.2)1−xGdx and b)(CoFe)1−xGex. The
images are taken from [106] and [119] respectively.
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In 2009 Seo et al. [95] studied theoretically the effect of the dc current on
the amplitude of a propagating spin wave. Their results indicates that the at-
tenuation length of the spin wave increases when the spin wave and the electron
are moving in the same direction. This enhancement in the attenuation was
explained as a direct impact of the non adiabatic spin transfer torque. As it
was discussed in the section 2.3.5, the non adiabatic term could be seen as an
additional spatial damping of the propagating waves. In 2012, Sekiguchi et al.
[92] detected a change in the amplitude of the propagating wave when the dc
current is applied. The attenuation in the amplitude of the signal is analyzed in
the frame of the non-adiabatic spin transfer torque. Solving the LLG equation
including the spin transfer torque terms, Sekiguchi et al. derive the following
formula for the non-adiabatic parameter beta:

β = − α(ω0 − u0k)(ω/k)

(2πγMs)2d exp(−2kd)
+
(ω0 − u0k)u0 + (2πγMs)

2d exp(−2kd)

γ(Hi + 2πMs)u0k

ln(ASTT )

x
(2.42)

where x, k, d, andMs are the propagation distance of the spin wave, the wavevec-
tor, the film thickness, and the saturation magnetization. ASTT is the normal-
ized spin wave amplitude defined as A(u ̸= 0)/A(u = 0). They estimate the
measured beta to be between 0.02 and 0.03. A general believe in the community
is that the beta term and the Gilbert damping term (α) are of the same order
of magnitude. However the microscopic origin of this term is still controversial
and its value is still not known precisely.

Conclusion
This chapter provides a sufficient background to understand and to analyze the
role of the surfaces scattering of the spin polarized transport using the current
induced Doppler shift experiment.
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Chapter 3

Magnetic and electrical
characterization of thickness
series of Permalloy thin films

For thicknesses in the nanometer range, devices become very sensitive to sur-
face effects. In thin films of the transition metal ferromagnets (Fe, Co, Ni) the
surfaces can influence significantly both electrical and magnetic properties. For
a better understanding of the permalloy thin films used in this thesis, we per-
formed various structural, electrical, and magnetic characterizations onto thick-
ness series of such films. This chapter describes the results of these studies.
In section-§3.1 the samples and their structural characterization are presented.
In section-§3.2 the static magnetic properties of the thin films are discussed. In
section-§3.3 the effects of the surfaces on the electrical properties of the thin
films are studied. In section-§3.4 a detailed study of the effects of the surfaces
on the magnetization dynamics is described based on ferromagnetic resonance
measurements. We end the discussion in section-§3.5 with supplementary mea-
surements and a discussion aiming at identifying the origin of the observed
magnetization damping.

3.1 Sample and structure

We deposit series of permalloy (Ni80Fe20) thin films of different thicknesses (t)
ranging from 4 to 160 nm. The permalloy films were sputtered using a magnetron
sputtering machine available at the IPCMS. The sputtering chamber has a space
to place 9 substrates on the sample holder and to install 6 different targets.
The sample holder is automatically rotated over a specific target to deposit
the desired material. Four series of the permalloy thin films sandwiched with
aluminium oxide Al2O3 layer are sputtered, the parameters of each series are
mentioned in the table-3.1. The films were deposited using the DC mode for the
permalloy and the RF mode for the Al2O3. The permalloy is sputtered using a
face to face target with a deposition rate of 0.25 nm/sec at a current of 800 mA
and a power of 500 Watt. The Al2O3 is sputtered using a circular target with a
deposition rate of 0.04 nm/sec and at a power of 150 Watt. The base vacuum
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is of the order of a few 10−8 mbar. The deposition was done under pure argon
at a pressure of 2.10−3 mbar with a flow of about 15 sccm.

Series composition thickness (nm)
S1 SiOx/ Al2O3 8 nm /Py (t nm)/Al2O3 8 nm [4-160]
S2 SiOx/Py (t nm)/Al2O38 nm [4-160]
S3 Si/Al2O3 21 nm /Py (t nm)/Al2O3 5 nm [6-40]
S4 Si/Al2O3 21 nm /Py (t nm)/Al2O3 5 nm [6-40]

Table 3.1: The composition and the thickness of the 4 series of permalloy thin
films.

The layers are sputtered on (001) intrinsic silicon substrates (resistivity
(> 100Ωcm). For the series (S1, S2) thermally oxidized substrates (oxide thick-
ness 300 nm) were used. The upper Al2O3 layer was deposited to protect the
permalloy surface from oxidation. The lower Al2O3 layer is used since it is a
better heat conductor than the thermal silicon oxide layer. This step will be
helpful for the current induced spin wave Doppler shift measurements. The four
series were used for the electrical and magnetic characterization.

3.1.1 Structural characterization
A sample of Si/Al2O3 (12 nm)/Py (10 nm)/ Al2O3 (12 nm) has been studied us-
ing a transmission electron microscope for a structural characterization. Images
both in a plane view and in a cross view of the sample were taken. The cross view
images indicates that the measured film thickness is 10 nm, in agreement with
the nominal deposited thickness. It also shows that the interfaces between the
permalloy and the Al2O3 are very smooth with negligible roughness as shown
in figure-3.1. The plane view images indicate that the film is polycrystalline
without showing a well defined texture.

Figure 3.1: Transmission electron microscope images a) Cross view. b) Diffrac-
tion image for the plane view: Sample Si/Al2O3 (12 nm)/Py (10 nm)/ Al2O3

(12 nm).
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3.2 Static magnetic characterization
For the magnetic characterization of the thin films superconducting quantum in-
terference device (SQUID) and alternating gradient force magnetometer (AGFM)
measurements are performed. Hysteresis loops for all the samples of S2 series
were measured along the easy and hard axis using the AGFM. The easy axis is
oriented parallel to the normal of the targets of the face to face magnetron. The
measurements show a coercive field µ0Hc = 0.1 mT along the easy axis of the
film, and an in-plane anisotropy µ0HK = 0.5 mT along the hard axis as shown
in figure-3.2. The SQUID measurement are performed at room temperature for
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Figure 3.2: The hysteresis loop at room temperature for the 80 nm film from
the S2 series. The applied field is oriented along the easy (blue curve) and the
hard axis (red curve). It indicates a coercive field of 0.1 mT, and an in-plane
anisotropy of 0.5 mT.

the sample of the S1 and S2 series. Figure-3.3 shows the variation of the magne-
tization density as a function of the film thickness. The magnetization density
increases gradually with the thickness. The magnetic moments per unit surface
(µs/S) is plotted in the figure-3.4. µs/S increases linearly with the thickness. It
writes as:

µs

S
= A+Ms × t

From the slope, the saturation magnetization µ0Ms is deduced to be equal
to 0.96 T. One could notice a zero µs/S for a finite thickness of the order of
1.1 nm. This magnetic dead layer tdead could be due to an oxidation of the
permalloy surfaces during the deposition [35] or due to the inter-diffusion of
permalloy and Al2O3 layers. We define the magnetic thickness tmag of the films
as: tmag = tnominal − tdead, where tnominal is the nominal deposited thickness.
For a 40 nm film from the S1 series we follow the variation in the hysteresis loop
at different temperatures as shown in the figure-3.5. One can notice a change in
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Figure 3.3: The variation of the magnetization density as a function of the
thickness for the S1 and S2 series. The measurements were performed at room
temperature (300K) and under a weak field, using the SQUID and AGFM ex-
periments.
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the coercive field with temperature, (increases at low temperature). At 2 K a
shift of the hysteresis cycle of about 1.5 mT is measured. This is attributed to
an effect of exchange bias which could be due to a coupling of the ferromagnetic
film to an antiferromagnetic layer. The same behavior was observed for a film
of 8 nm thickness.
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Figure 3.5: The hysteresis loop for the 40 nm film at different temperatures.
The coercive field increases as the temperature decreases. In addition a shift of
the hysteresis loops of about 1.5 mT is observed below 20 K.
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3.3 Electrical resistivity
The resistivity of bulk metals is mainly due to the scattering of the electrons
by phonons, lattice imperfections, and grain boundaries. In confined geometries
such as thin films, the surfaces contribute to the resistivity when the electron
mean free path is comparable to the film thickness. In this section we aim to
study the electron surface scattering. Carrying out a thickness dependent study,
the bulk and the surfaces contributions to the electrical resistivity are separated.

We perform resistivity measurements at room temperature for the 4 series
of permalloy thin films using the Van der Pauw (VdP) method. This method
measures the sheet resistance (Rs) of a sample with an arbitrary shape. VdP
method can be applied for a sample verifying the following conditions:

• The film thickness should be homogeneous over the entire sample.

• No holes should exist in the surface of the sample.

• The contacts of the needles should have a very small dimension.

Consider a sample with a square dimension labeled as ABCD, two successive
measurements of the resistance were done: RAB,CD, and RBC,DA. The resistance
RAB,CD is measured with the current entering through the contact A and leaving
through the contact B, where the potential measured is VD − VC . For RBC,DA,
the current passes through the contacts B and C, and the potential measured
is VA − VD. We obtain the measured sheet resistance (Rs) of the sample from
the following relation [108]:

exp(−πRAB,CD/Rs) + exp(−πRBC,DA/Rs) = 1. (3.1)

The sheet resistance is measured for a piece with a square shape of 3 × 3 mm
dimensions cut from the thin films, and we deduce the resistivity (ρ) of each
film using the relation: ρ = Rs × t.
The resistivity of the films increases as the film thickness decreases as shown in
figure-3.6. The resistivity of the films increases from 26 µΩ.cm for the 160 nm
film to 77 µΩ.cm for the 4 nm film. Because we do not expect a major change of
the film structure with the film thickness, most of this change is attributed to an
additional contribution to the resistivity due to the electron-surface scattering.
Using the Fuchs-Sondheimer theory described in 2.2.1 one can determine the
bulk resistivity and the electronic mean free path. We calculate numerically the
resistivity from equation 2.19 with the assumption that ρB = 1/σ0, p, and ℓ
are thickness independent. Our experimental data are reproduced well by the
curves corresponding to p=0 and p=0.5 as shown in the figure-3.6 with a bulk
resistivity ρB equal to 26 µΩ.cm. The electronic mean free path is found to be:
ℓ = 11 nm with p=0, and ℓ = 25 nm with p=0.5. Note that the choice of p is
arbitrary as the thickness dependence of the resistivity depends mostly on the
product (1 − p)ℓ (see equation 2.21). We also performed a simple linear fit of
the data of the form ρ = ρB(1 +B/t), with the bulk resistivity ρB = 26 µΩ.cm
and B= 5.15 nm. Using equation 2.21 we deduce the mean free path to be: ℓ =
13.7 nm with p=0, and ℓ = 27.5 nm with p=0.5 from this simple linear fit.
We also performed the Van der Pauw measurements at variable temperature
down to 6K, using a helium cryostat. This was done for the film with thicknesses
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Figure 3.6: The variation of the resistivity for the 4 series of the permalloy as
a function of the inverse of the film thickness. The measurements were done
with 1 mA current for a piece of a sample with a square dimension of 3 × 3
mm. The dotted line shows the results of fitting the resistivity to the Fuchs-
Sondheimer model. The red line corresponds to the (p=0, ℓ= 11 nm) and the
blue line corresponds to (p=0.5, ℓ= 25 nm), with the bulk resistivity ρB =26
µΩ.cm. The solid black line shows a linear fit of the results.

(6, 10, 20, and 80) nm belonging to the S1 series. Figure-3.7 shows the variation
of the resistivity for each film as a function of the temperature. The measured
resistivity increases with the temperature. One can extract a residual resistiv-
ity ρ0 and a temperature dependent resistivity. The temperature dependence
is well reproduced by a quadratic law: ρ = ρ0 + A.T 2. Performing a quadratic
fit of the data one can extract the A and the residual resistivity for each film
thickness. The A parameter is found to be thickness independent with a value
1.6× 10−4 Ω.cm.K−2. Figure-3.8 shows the variation of the residual resistivity
as a function of the inverse of the thickness (t−1). The residual resistivity in-
creases as the thickness decreases, it varies from 15.2 µΩ.cm for the 80 nm film
to 42.4 µΩ.cm for the 6 nm film. The temperature contribution of the resistiv-
ity can be attributed due to the scattering of the electrons by the phonons and
magnons. The bulk extrapolation of the residual resistivity is associated with
the scattering of electrons by the alloy disorder and by grain boundaries. The
variation of the residual resistivity with the thickness is associated only to the
electron-surface scattering.

A comparison between the measured values and the values from literature
indicates that the permalloy films have typical electrical characteristics[81]. For
instance, the measured bulk resistivity (26 µΩ.cm) is in good agreement with
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Figure 3.7: The variation of the resistivity as a function of the temperature for
four different samples belonging to the S1 series. The resistivity is written as a
residual resistivity and a temperature dependent resistivity.
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Figure 3.8: The variation of residual resistivity versus t−1 obtained from the low
temperature measurements. The bulk residual resistivity value is = 10.8µΩ.cm

the values deduced from film thickness dependence 14-24 µΩ.cm [52] [67] [77]
and with the value 14.9µΩ.cm measured for bulk Ni83Fe17 [69]. The estimated
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mean free path 11 nm is in agreement with the reported values in the range
9.6-23 nm [52][67]. The bulk residual resistivity 10.8 µΩ.cm is comparable to
the values deduced from film thickness dependence in the range 14-22.3 µΩ.cm
[23][52] and to the value 4.75 µΩ.cm in bulk Ni83Fe17 [69]. The temperature
dependence parameter A found to be 1.6×10−4 is comparable to the 1.3×10−4

measured by [23].

3.4 Ferromagnetic resonance

At the nanometer scale, the surfaces and the interfaces are expected to influ-
ence the magnetic properties of the thin films. The surfaces and the interfaces
can contribute to the magnetization relaxation, in particular through extrinsic
processes such as 2-magnon scattering or spin pumping [37]. Although the mag-
netization relaxation is phenomenologically described with the Gilbert damping
coefficient α, the underlying physical relaxation processes are still unclear. Here,
we will study the surface effects on the magnetization dynamics of permalloy
layers in contact with insulating Al2O3 layers. Sets of ferromagnetic resonance
(FMR) experiments are performed as a function of the film thickness t.
The dynamics in the 4 series of the permalloy thin films are measured using a
FMR setup with a X-band cavity (f∼ 10 GHz). For each film, a 5× 3mm piece
is cleaved, and it is glued on a teflon piece inserted into a quartz tube. Then the
quartz tube is inserted in the center of the microwave cavity (TE 102) through
a goniometer. The static magnetic field is applied in the film plane along the
easy axis of the film. The experiment is carried out at a fixed frequency, the
frequency of the cavity, while the magnetic field is varied slowly. The measured
signals represent the derivative of the power absorbed by the sample with re-
spect to the magnetic field ∂P

∂H as a function of the magnetic field, as shown
in figure-3.10. The resonance field and the peak to peak line width ∆Hpp are
extracted either directly from the measured signals, or by integrating the FMR
signal and then performing a Lorentzian fit. The Lorentzian fit is quite good for
most of the samples as shown in figure-3.10.

3.4.1 Resonance field

In thin films, the surface atoms introduce a surface anisotropy due to the break-
ing of their orbital symmetry. Hence the first effect of the surface is to introduce
an additional surface energy term to the total magnetic energy of the system.
We aim to deduce the surface anisotropy for the 4 series from thickness depen-
dent ferromagnetic resonance measurements [89].
Figure-3.11 shows the variation of the resonance field as a function of the film
thickness. The resonance field increases as the film thickness decreases, this is
a common behavior for the 4 series. The samples from the series (S1, S3 and
S4) have almost the same resonance field, whereas the samples of the S2 series
for which Py is sandwiched between SiOx and Al2O3 shows a higher resonance
field than the other series for which Py is sandwiched between the two Al2O3

layers.
Qualitatively this behavior is explained as follows: For thick films, the demag-
netizing field tends to keep the magnetization in the film plane. However for
thinner films the surface anisotropy competes against the demagnetizing field
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and tends to change the alignment of the magnetization. The resonance field
becomes higher for thinner film to conserve an in-plane orientation of the mag-
netization.
Quantitatively, we can use the resonance condition derived in section 1.2.2.2.
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Figure 3.11: The variation of the resonance field as a function of the magnetic
film thickness for the different samples of the 4 series of permalloy.

In the presence of a surface anisotropy oriented normal to the film, and for an
external field oriented in the plane of the film one obtains:

ωres = γµ0

√
(Hres +Meff )Hres, (3.2)

where γ is the gyromagnetic ratio and the effective magnetization is defined as:

Meff =Ms −
2Ks

µ0Mst
(3.3)

Using equation-3.2 and assuming γ/2π= 30 GHz/T, the effective magnetization
for each film thickness is determined. Figure-3.12 shows the effective magneti-
zation has a linear dependence on the inverse of film thickness. From this linear
dependence and using equation-3.3 one can deduce the saturation magnetization
Ms and the surface anisotropy Ks. Table-3.2 displays the results for the 4 series.
One could notice that the Ks for (S1, S3 and S4) are all about 0.23mJ.m−2,
whereas the surface anisotropy for the S2 is increased by a factor of 2. The satu-
ration magnetization Ms for all the films is roughly 0.96 T. The obtained values
of the surface anisotropy are in good agreement with other reported values for
interfaces of permalloy to both non-magnetic metals and insulators as indicated
in the table-3.3.
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Figure 3.12: The changes of the effective magnetization with the inverse of the
thickness for the 4 series. From the linear fit we extract the saturation magne-
tization of about 0.96 T and the surface anisotropy Ks.

Samples Ks(mJ.m−2) µ0Ms(T)
S1 0.23 0.96
S2 0.45 0.97
S3 0.25 0.95
S4 0.24 0.97

Table 3.2: A summary of the surface anisotropy coefficientKs and the saturation
magnetization Ms for the 4 series.

Samples Ks(mJ.m−2) reference
SiOx/Py/resist 0.3 [52]
Al2O3/Py/Al2O3 0.5 [50]

Au/Py/Au 0.5 [51]
Ag/Py/Ag 0.2 [89]
Au/Py/Au 0.2 [89]
Ta/Py/Ta 0.16 [89]

Table 3.3: A comparison of the surface anisotropy coefficient Ks obtained from
other studies for permalloy films with different capping layers
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3.4.2 Line width
The second effect of the surfaces is to contribute to the magnetization relaxation
processes. We aim to examine this effect through the thickness dependence of
the peak to peak linewidth of the FMR signal.

We extract the peak to peak linewidth (∆Hpp) from the Lorentzian fitting
of the FMR signal for each film thickness. Figure-3.13 shows that the line width
increases dramatically as the film thickness decreases for the 4 series. The line
width increases from 2.8 mT for the 40 nm film to 5.8 mT for the 4 nm film. We
can relate the line width to the Gilbert damping coefficient using ∆H = 2αω√

3γ
.

The α coefficient varies linearly with the inverse of the film thickness as shown
in figure-3.13, it can be modelled as:

α = α0(1 + S/t).

In this expression, bulk (α0) and surface (S) contributions to the Gilbert damp-
ing are separated. The bulk damping coefficient of the 4 series is ∼ 0.007, and
the surface damping of our films and of others studies are given in the table-3.4.

Samples α0[10
−3] S[nm] reference

S1 7 2.7 our results
S2 6.7 3.6
S3 7 2.1
S4 6.7 2.7

Al2O3/Py/Al2O3 7 1 [50]
SiOx/Py/PR - Cu/Py/Cu - Nb/Py/Nb 8 4 [52]

Al2O3/Py/PR 8 4 [23]
Cu/Py/Cu - Ta/Py/Ta 6.5-8 0 [78]

Ta/Py/Cu 8 2 [84]
Cu/Py/Cu- Ag/Py/Ag 8 1.5 [89]

Ta/Py/Ta 4 8 [89]

Table 3.4: The bulk and the surface contribution to the Gilbert coefficient for
the four measured series, with a comparison with other studies. PR corresponds
to the photoresist capping layer.

The damping coefficient in bulk permalloy is about 0.007 as measured in
[10]. They attribute the magnetization relaxation to the spin-flip scattering of
a conduction electron by phonons or defects through the spin-orbit coupling as
discussed in [56].
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Figure 3.13: a) The variation of the line width as a function of the film thickness
for the 4 series. b) The α damping coefficient as a function of inverse of the film
thickness for the 4 series.



3.5. COMPLEMENTARY FMR 69

3.5 Complementary Ferromagnetic resonance char-
acterization

In this section, first we present the results of complementary ferromagnetic
resonance measurements as a function of the temperature and the angle. Second,
we comment on a possible correlation between the magnetization relaxation and
the resistivity, and we discuss the possible origin of the magnetization damping
measured in our films.

3.5.1 Temperature dependence
As we conclude in section §(3.2), the static magnetic measurements at low tem-
perature indicate an exchange bias effect in the thin films. It is known that
the exchange bias contributes to an extrinsic contribution to the magnetization
relaxation (see section §(1.4.4)). To investigate if the exchange bias influences
the magnetization dynamics in our thin films ferromagnetic resonance measure-
ments at variable temperature have been performed.
The measurements were done for 2 samples from the S1 series, with thicknesses
10 and 40 nm. The resonance field and the peak to peak line width from the
FMR signals were extracted as we mention in a section §(3.4) at each tem-
perature. The variation of the resonance field and the ∆Hpp are shown in the
figure-3.14.
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Figure 3.14: The Hres and the ∆Hpp as a function of the temperature for 2 films
of thickness 10 and 40 nm from S1 series. The measurements were performed
with a resonance frequency of the cavity is 9.38 GHz. The closed labels indicate
the results of the resonance field and the open labels represent the linewidth.
The blue and the black labels are for 10 nm and 40 nm film respectively.

One can observe a reduction in the value of the resonance field Hres as the
temperature decreases for the 2 films. The Hres of the 10 nm film decreases more
rapidly than that of the 40 nm film and at around 80 K it becomes sharper.
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The Hres of the 10 nm reduces from ∼ 960 Oe at room temperature to ∼
590 Oe at 4.2 K and the Hres of the 40 nm reduces from ∼ 935 Oe at room
temperature to ∼ 810 Oe at 4.2 K. Notice that the relative variation of the Hres

for the 10 nm between 300 K and 4.2 K is reduced by 4 time compared to the
relative variation of the Hres of the 40 nm. This observation was explained by
the exchange bias. At low temperature, either the oxide of the permalloy turns
to be antiferromagnet, or the magnetic impurities are pinned near the interfaces.
From this one expects a strong reduction of the resonance field. The effect seems
to be a pure surface effect because it appears much more pronounced on the 10
nm than on the 40 nm film.
The peak to peak linewidth for the 10 nm film varies from about 30 Oe at room
temperature to 60 Oe at 4.2 K and for the 40 nm film it varies from 28 Oe
at room temperature to 36 Oe at 4,2 K. The peak to peak linewidth increases
as the temperature decreases down to around 20 K. Then it passes through a
maximum and it decreases again between 20 K and 4.2 K. The maximum of the
line width at 20 K is more pronounced for the 10 nm film than for the 40 nm
film as expected for a surface effect.
The temperature dependence of the linewidth is attributed to the slow relaxors
effect (see §1.4.4) which adds an extrinsic process to the intrinsic linewidth.
Accordingly, the total linewidth is expressed as:

∆H = ∆Hint +∆Hrelaxer(T ),

where ∆Hrelaxer is the linewidth contribution due to the slow relaxers.
The slow relaxors effect was observed in permalloy films [87], permalloy layer
with a native oxide layer [64], permalloy films in contact with NiO [29], CoO
layers [65] and in permalloy doped by heavy rare earth metals [114].
However in other studies the line width peak to peak is measured to be tem-
perature independent as in permalloy layers protected with resist [23] and in
permalloy layers which have a copper capping on both surfaces [64].

3.5.2 Angular dependence

An in-plane inhomogeneity of the sample results in an inhomogeneous broad-
ening of the line of the ferromagnetic resonance as already discussed in the
§(1.4.3). To examine the inhomogeneity in our thin films, angular ferromagnetic
resonance measurements are performed. The variation of the orientation of the
magnetization from the in-plane to the out-of plane configuration can be used
to extract the inhomogeneous broadening in thin films. The angular dependent
FMR measurements were carried out for 2 samples of the thickness of 40 and 6
nm from the S1 series. The angle between the in-plane axis and the static field
was varied using a goniometer. At each angle we extract the resonance field and
the peak to peak linewidth directly from the FMR signals.
Figure-3.15 shows the results of the measurements for Hres and ∆Hpp. One can
observe an increase of Hres as the angle approaches the normal of the surface.
It increases from 0.099 T (0.106T) when the field is applied in the film plane
θ = 0◦ to reach a maximum at 1.325 T (1.238T) when the field is applied out
of the plane θ = 90◦ for the 40 nm (respectively 6 nm) film. This is mainly due
to a competition between the in-plane demagnetizing field and the out of plane
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Figure 3.15: The FMR angular dependence for 2 samples of the S1 series of the
thickness a) 40 nm and b) 6nm. The measured Hres and the ∆Hpp are plotted
as a function of the angle θ between the in-plane axis and the applied static
field. In the figure we indicate the Hres and the ∆Hpp for the in-plane and out
of plane orientation of the magnetization. On each panel we indicate also the
effective magnetization Meff and the gyromagnetic ratio γ

2π for each film. The
measurements were performed at a resonance frequency 9.766 GHz of the cavity.
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anisotropy field. Using the in-plane resonance condition in equation-3.2, and the
out of the plane resonance condition ωres = γµ0(H

⊥
res −Meff ), one can solve

for Meff and γ/2π. The extracted values are γ/2π ∼ 29.7 ± 0.05 GHz/T, and
µ0Meff = 0.995 and 0.909 for the 40 nm and 6 nm films respectively.
Figure-3.15 shows also an increase of the linewidth as the magnetization is ori-
ented out of the plane. The line width increases from 3.2 mT (3.9 mT) when
θ = 0◦ to 3.9 mT (4.2 mT) when the θ = 90◦ and it passes through a maxi-
mum around θ = 80◦ for the 40 nm (respectively 6 nm film). The variation of
the linewidth between the in-plane and the out of the plane orientation of the
magnetization (∆H⊥−∆H∥) is measured to be very small for thinner films (0.3
mT) and increases slightly to 0.7 mT for the 40 nm film. These results are in
agreement with the reported values (∆H⊥ −∆H∥)= 0.5 mT for the permalloy
film sandwiched with Al2O3 layer [50]. We interpret this slight difference be-
tween the parallel and the perpendicular orientation to a very weak magnetic
inhomogeneity of the samples. A distribution of the magnetic anisotropy ap-
pears as a distribution of the value of the effective magnetization δMeff , within
the local resonance model, this leads to an increase of linewidth ∆H⊥ = δMeff

for the perpendicular geometry and ∆H∥ = Hres

Hres+2Meff
δMeff for the parallel

geometry. The small measured values of (∆H⊥ −∆H∥) indicates that the inho-
mogeneous broadening exist in our thin films but we emphasize that it is not
dominant, and the measured linewidth is mainly due to the intrinsic relaxation
of the magnetization.
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3.5.3 Correlation between the damping and the resistiv-
ity?

As we have discussed the surfaces contribute to an additional scattering on the
electrical resistivity (see §3.3) and to an additional contribution to the magneti-
zation relaxation (see §3.4). Then a natural question may arise: are the electron
scattering and the relaxation governed with a common process? we will treat
this question first by referring to recent works and then we will discuss our re-
sults.
One of these works was performed by Ingvarsson et al. [52]. In this thickness
dependence study the electrical resistivity and the damping coefficient were mea-
sured at room temperature. Their results showed an increase in the resistivity
ρ is accompanied with an increase of the damping coefficient α. They report a
linear variation between the damping and the resistivity as shown in figure-3.16.
They interpret their results using a model proposed by [44] based on the effect

Figure 3.16: The variation of the damping coefficient α with the resistivity
ρ obtained by Ingvarsson et al. The measurements were done for 2 series of
permalloy film: the triangle label represents the films grown with an applied
magnetic field, and the square label represents the series of the films grown
without an applied field. The picture is taken from [52].

of the random walk process of the conduction electrons. This model predicts the
following relation between the damping and the resistivity:

α =
ξe2kF ρ

π2~
, (3.4)

where ξ is a constant relating the electron scattering and the spin relaxation
τ−1
s = ξτ−1, and kF is the Fermi wave vector. They estimate the proportionality

coefficient e2kF

π2~ = 3.7 × 10−5Ω.m for a 3d metal, to deduce ξ = 10−1 from the
linear fit of the slope of α and ρ.

Counil et al. [23] examined the correlation between the magnetization relax-
ation and the electron scattering rate by extending the thickness dependence
measurements at low temperature. The residual resistivity and the damping
both increase as the thickness decreases. However, they do not show a linear
relation as in [52] as shown in the figure-3.17.
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Figure 3.17: The variation of the residual resistivity and the damping as a func-
tion of the inverse of the thickness obtained by Counil et al. The in set shows
the variation of the Gilbert damping parameter with the residual resistivity.
The picture is taken from [23].

In our measurements the resistivity and the damping both increase as the
film thickness decreases at room temperature. The correlation between the
damping and the resistivity is shown in figure-3.18. One can notice that the
thickness variation of the resistivity is larger than the thickness variation of the
damping. The linear fit of our results shows a straight line which does not pass
through the origin. It indicates the relation between the damping and resistivity
is not compatible with the electron-magnon scattering as measured by Ingvars-
son [52] (α ∝ ρ). As a possible explanation of this observation, one can imagine
that different electron scattering processes (surfaces, disorder, and phonons) do
not contribute in the same manner to the magnetization damping and to the
resistivity [14].
The measured temperature dependence of the resistivity and the damping show
different behaviors. The resistivity decreases with the temperature however the
damping increases with temperature (which is attributed to the slow relaxer
mechanism).

Based on the ferromagnetic resonance measurements we can discuss the pos-
sible origins of the measured FMR linewidth in our thin films.

• First, the intrinsic relaxation processes contribute significantly to the linewidth.

• Second, the inhomogeneous broadening does not contribute significantly
to the measured linewidth.

• Third, the slow relaxors are not expected to contribute to the linewidth
at room temperature.

• Fourth, we observe a surface contribution to the damping. This surface
contribution may be attributed to the following hypothesis:
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Figure 3.18: Variation of the Gilbert damping coefficient with the resistivity
for the four series of permalloy. Open circles are the calculated values using
equation 3.4 and the parameters extracted by [52].

– Due to a breaking of the orbital symmetry for the atoms located at
the interfaces, the surface atoms could produce a higher spin-orbit
coupling than the bulk atoms and hence a higher contribution to the
magnetization damping.

– In case the thin films are not homogeneous (for example if a thin
pure Nickel layer exists an interface α could be written as:

α =
αNitNi + αPytPy

tNi + tPy

which could be explained the observed 1/t behavior.

Conclusion
At the end of this chapter, we have identified the characteristics of our permalloy
thin films by performing a set of measurements as a function of the film thick-
ness. As one can notice, the surfaces play a major role in modifying the electrical
and the magnetic (surface anisotropy) properties of the materials. In addition,
the relaxation processes in the thin films were determined to be dominated by
an intrinsic bulk contribution combined with a surface contribution which does
not follow the simple behavior discussed in [52]. This chapter provides us with a
general understanding of the properties of the permalloy thin films, which will
be used for spin wave experiments of chapters 4 and 5.
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Chapter 4

Propagation of magnetostatic
surface wave in permalloy
thin films of different
thicknesses

Spin wave excitations and propagation in magnetic microstructures have been
widely investigated during the last decade using propagating spin wave spec-
troscopy [6][7][112], Brillouin light scattering microscopy [27][82][113], and copla-
nar waveguide ferromagnetic resonance [24][96].
In this chapter, we present an original thickness dependence study of the prop-
agation of spin waves in permalloy thin films using the propagating spin wave
spectroscopy technique. The spin waves under investigation are the so-called
magnetostatic surface waves (the in-plane magnetic field is perpendicular to the
propagation direction).
In section §4.1 we will describe the principle of the propagating spin wave spec-
troscopy technique. In section §4.2, the magnetic parameters of the permalloy
films are extracted from the reflection measurements. In section §4.3, the propa-
gation characteristics of the magnetostatic surface waves are analyzed from the
transmission signals. In section §4.4 the non reciprocity character in amplitude
and in frequency of the magnetostatic surface wave signals are discussed.
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4.1 Propagating spin wave spectroscopy

Recently the propagating spin wave spectroscopy was applied to study the spin
wave characteristics in metallic ferromagnets. In contrast to the traditional FMR
technique, this method requires nano-fabrication processes for each individual
sample. In this section, the principle of the method is explained and the sample
fabrication procedure is described. Then, a short description how to handle the
measurements is provided (calibration and signal processing).

4.1.1 Principle of the method

Historically, the magnetization dynamics was detected using the cavity ferro-
magnetic resonance. This technique is an effective tool used to measure the
uniform mode (k=0) of the magnetization dynamics in a ferromagnetic sample.
One of the limitation of the cavity FMR technique is that it can not detect the
non-uniform modes (k ̸= 0). In addition, the cavity FMR works at a constant
frequency and can not be used to follow the evolution of the modes as a func-
tion of the frequency. With the need to understand the non uniform oscillations
of the magnetization in a microstructure, many experimental techniques were
proposed to follow the resonance behavior with the frequency as in the coplanar
waveguide FMR (CPW-FMR) or to study the non-uniform excitation with a fi-
nite wavevector (k ̸= 0). Recently, a miniaturized version of the propagating spin
wave spectroscopy technique (PSWS) was developed to study the spin waves in
the frequency domain [7] and in the time domain [25]. The PSWS technique was
initially applied to yttrium iron garnet (YIG) insulating film [18]. The principal
challenge of applying the technique to metallic films was the larger damping of
the oscillations compared to that in the insulating films which impedes propa-
gation over distances larger than a few micrometers. Recently, a miniaturized
version of the propagating spin wave spectroscopy technique at a nanometer
scale was developed. In the following, an explanation of the principle of this
technique is presented.
Propagating spin wave spectroscopy is an inductive technique where micrometer
sized transducers (antennas) are used to excite and to detect the spin waves. In
figure-4.1 a schematic drawing illustrates the principle of the technique. It shows
a spin wave propagating between the two transducers with a given wavevector
(k). The antennas are conducting patterns placed at a distance h on the top
of the ferromagnetic stripe. Once a microwave current i(ω) passes through one
antenna, a microwave field h(ω) is generated around each conductor. The mi-
crowave field h(ω) owes its spatial distribution to the shape of the antennas,
and hence it oscillates at a wavelength determined by their periodicity. The
microwave field couples to the oscillating spin wave modes in the ferromag-
netic stripe and these spin waves propagate in both directions (+k and -k). The
propagating waves induce an additional magnetic flux onto the second antenna.
According to Faraday’s law the magnetic flux generates an oscillating voltage
v(ω) which can be measured using a suitable microwave receiver. Additionally,
the antenna used for the excitation of the spin waves also detects the generated
flux and a microwave voltage can also be measured on the excitation antenna
itself.
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Figure 4.1: A sketch of the propagating spin wave spectroscopy technique. It
displays a spin wave propagating between the antennas at a given wavevector.

4.1.2 Sample fabrication

Standard fabrication processes have been used to fabricate suitable microwave
circuits for the propagating spin wave spectroscopy and the current induced
spin wave Doppler shift experiments. The S4-series (table-3.1) have been used
for that purpose. All the micro and nano-fabrication work has been done in the
nanofabrication platform STnano in Strasbourg.
Four different devices have been realized for each film thickness. The nominal
parameters of each single device are shown in the table-4.1. Each device con-
sists of a ferromagnetic stripe, a pair of coplanar waveguide for the microwave
connection, four DC pads, an insulator, and the two antennas. A picture of a
final device is shown in the figure 4.2.

Figure 4.2: An optical image of a final device showing the result of the four
fabrication steps: 1) the ferromagnetic stripe, 2) the coplanar wave guide and
the DC pads, 3) the insulator pattern, 4) the antennas.
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Device w (µm) k (µm−1) λ (µm) nb of meanders D (µm)
8 µm 8 3.86 1.6 3 8.8

3 µm down 3.5 3.87 1.6 3 14.5
3 µm up 3.5 7.8 0.8 5 5.5

2 µm 2 7.84 0.8 5 7.7

Table 4.1: The parameter of each devices (w, k, λ, D) are the ferromagnetic
stripe width, the wavevector, the wavelength, and the distance between the
centers of the 2 antennas.

The antennas consist of a central conductor between two ground conductors
adapted to the coplanar waveguide geometry. They are folded several times
onto themselves to obtain a nearly periodic distribution. The Fourier transform
of the linear current density normalized by the current is calculated for this
geometry, figure-4.3 shows SEM images of the antenna for 8 µm and 2 µm
devices together with the corresponding Fourier transformation. The Fourier
transform shows two excitation peaks: a principle peak with higher wavevector
(k1) and a secondary peak with lower wavevector (k2) [110]. The wavevectors of
the peaks are almost monochromatic with a dispersion ∆k as indicated on the
figure-4.3. These wavevectors are the highest wavevectors that we could obtain
with the resolution of the e-beam lithography. In the following we will present
the fabrication procedure for each step.

Figure 4.3: SEM images for the antennas used for the excitation of the spin wave
in the 8 µm and 2 µm devices, and their Fourier transforms.

The Stripe:
In the first step, we fabricate the 4 ferromagnetic stripes with a length of 100
µm and a width w as noted in the table-4.1. The sample is covered with 0.5 µm
of photoresist S1805. The sample is aligned below a mask (Chromium pattern
on a glass plate) and the sample is exposed to an ultraviolet light using a MJB4
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mask aligner (∼ 3 sec). Then the sample is put in a solution (AZ developer 1:1
H2O ∼ 12sec) which dissolves only the resist exposed to UV light. We etch the
uncovered parts of the film using the Ar+ ion gun available in the Plassys evap-
orator. We precisely identify the etching rate for each material (table-4.2) by
etching a thick layer of each metal for a long time. The etching time is adjusted
for each sample to etch the top Al2O3 layer, the thickness (t) of the permalloy,
and 5 nm of the bottom layer of the Al2O3. Then, the resist is dissolved to end
up with the 4 stripes as shown in the figure-4.4.

metal rate (nm/min)
Al2O3 6.5

Py 12
SiO2 10

Table 4.2: The etching rates for the different materials.

Figure 4.4: a) A sketch of the device after a positive optical lithography step. b)
The pattern of the stripe after the etching and the removal of the photoresist.

The coplanar waveguide and the DC pads:
In the second step, a pair of coplanar waveguides is fabricated for the microwave
connections together with four DC pads for the DC current used in the Doppler
shift measurements. This is done using an optical lithography in the negative
tone.
In a negative lithography we use an image reversal resist such as AZ 5214 re-
sulting in a negative pattern of the mask. The image reversal is obtained by a
crosslinking of the resist, with a postbake of the substrate at 120◦C for 1 min.
This leads the exposed resist to become insoluble in the developer, whereas the
unexposed resist still behaves like a normal photoresist. After a flood exposure
without a mask, the initially unexposed area is dissolved in the developer, while
the crosslinked areas remain as shown in the fig-4.5a.
The next step (pre-etching and metal deposition) is done again in the Plassys
e-beam evaporator. First, the on top Al2O3 layer is etched to ensure proper
electrical contact with the Permalloy stripe. Then, a metal deposition is done
with 10 nm of Ti and 60 nm of Au (base pressure 10−7 mbar, deposition rates
0.1 nm/min and 0.2 nm/min for Ti and Au respectively). Finally, the film is
immersed in the aceton for a few minutes to lift-off the metals deposited over
the photoresist as shown in figure 4.5.
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Figure 4.5: a) Sketch of the device after a negative optical lithography step.
b) The pattern of the coplanar waveguide and the dc pads after the metal
deposition and the lift off process. c) after the deposition of the insulating SiOx
layer.

The insulator:
In the third step of fabrication, an insulating pattern is fabricated on the top of
the stripe to avoid an electrical connection between the stripe and the antennas
(figure-4.5 C). We pattern the structure by optical lithography using an image
reversal resist as explained in the previous paragraph. An SiO2 layer of 80 nm
(∼ 120 nm for the sample made from the 40 nm permalloy film) is deposited by
sputtering 1 at the ECPM. The pattern is transferred by lift-off (which takes a
longer time compared to the lift off of metals layers deposited by the evaporator).

The antennas:
We use e-beam lithography and e-beam evaporation to fabricate the antennas
on the top of the magnetic stripe. The antennas have a meander shape, they
consist of closely spaced lines with smallest size of the order of 150 nm. The
main difficulty of this step is to adjust the nominal exposure dose of the resist.
It is a critical parameter since if one underestimates the exposure time the resist
will not be sufficiently developed and the lines will not lift off after the metal
deposition, if one overestimates the exposure time the resist will be over exposed
and the lines will fall down. We pay a careful attention to this parameter by
doing several dose tests to identify the right resist and the right dose. The best
results were obtained using a bilayer of resist A5 PMMA 495K/ A2 PMMA 950
K with a dose of 225µC/cm2 and at an electron beam voltage of 20 KV.

1Many attempts had been made to fabricate the SiO2 layer by using an e-beam evaporator,
unfortunately the layers obtained were not robust enough and were frequently destroyed during
the lift off.
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Before the metal deposition the resist is cleaned using a plasma oxygen
cleaner (30 W, 45 sec) to remove any contamination in the lithography and
to improve the connection between the coplanar waveguide and the antennas.
Then a metal deposition of 10 nm of Ti and 120 nm of Al is done using the
e-beam evaporator.

The final sample
During the lithography processes several problems happened which made some
devices unusable. Table-4.3 summarize the results of the fabrication process.

Device k µm−1 40 nm 20 nm 14 nm 10 nm 6 nm
8 µm 3.86 M M X M M

3 µm down 3.87 M X X M NM
3 µm up 7.8 M X M X NM

2 µm 7.84 X M X M NM

Table 4.3: A summary table for the final obtained devices. M represent the
samples that have been measured, X represents samples that were not useable
and NM the samples that were usable but that could not be measured due to
lack of time.

4.1.3 Calibration
4.1.3.1 The experimental setup

Figure-4.6 shows the experimental setup of the propagating spin wave spec-
troscopy. The microwave excitation and detection of the spin waves are per-
formed by a vector network analyzer (VNA) (Agilent PNA E8364B) in the
frequency range between 10 MHz and 26.5 GHz. The exits of the VNA (port
1 and port 2) are connected to flexible coaxial cables. The coaxial cables are
connected to microwave picoprobers with a design matching the design of the
coplanar waveguide. To connect the picoprobers to the coplanar waveguide the
probers are mounted on micropositioners and their manipulation is done using
a microscope.

4.1.3.2 The microwave circuit

Whenever there is an impedance mismatch between the microwave elements
(the vector network analyzer, the coaxial cables, the coplanar waveguide,...), a
part of the propagating signal is reflected and a standing wave is generated in
the transmission line, which leads to a substantial change in the characteristic
of the signal. Since the microwave elements are not ideal we can not avoid the
impedance mismatch between them. However these errors can be corrected with
the help of calibration standards whose reflection and transmission components
are well known. The microwave circuit is calibrated for the 2 ports of the vector
network analyzer using a calibration substrate containing coplanar circuits be-
having electrically as: a short (0 Ω) , an open (∞ Ω), a load (50 Ω) and an ideal
transmission line. We perform the calibration measurements of the microwave
circuit over the whole frequency range (10 MHz- 26.5 GHz) at a power of -5
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Figure 4.6: a) Picture of the propagating spin wave spectroscopy setup, a zoom-
in view showing the coils and the coaxial cables (b), the picoprobers (c), and
the contact between the picoprobers and the coplanar wave guide (d).
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dBm. After we finish the calibration we add an additional electrical delay of
about 17 ps to account for the propagation of the microwave signal between the
coplanar access and the antennas.

4.1.3.3 The magnetic field

We use two home made coils consisting of a copper wire rounded over an alu-
minum cylinder. The coils are held over an iron pole. They are connected to a
DC power supply. In the present version of the experiment, it is not possible to
measure the magnetic field during the measurements. We calibrate the magnetic
field before starting the measurement for each device. We measure the magnetic
field for different current values between +5 A and -5 A with a Hall probe at
the place of the sample. The calibration measurements shows a maximum of the
magnetic field at 5 A of 0.31 T, and it indicates a hysteresis with a field of 15 mT
at zero current as shown in the figure-4.7. During the measurements we start
always from a high magnetic field value near the saturation field to ensure that
the measured magnetic field belong to the major branch of the hysteresis loop.
Any small deviation from the major branch of the loop will lead to a different
value of the magnetic field. This could be reflected to an error on the value of
the field.
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Figure 4.7: The calibration of the magnetic field with a Hall probe between +5
A and -5 A.

4.1.4 Signal processing

We measure the variation in the impedance Zij of the microwave circuit due
to the magnetic flux induced by the propagating wave in the antennas. For
a single measurement a couple of acquisitions is done at two different fields:
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in the first acquisition the impedance Zij(ω,Hres) is measured at a field Hres

corresponding to the spin wave resonance field and in the second measurement
the impedance Zij(ω,Href ) is measured at a reference field Href higher than
Hres. The reference measurement is done to eliminate the electromagnetic peaks
which do not belong to the resonance behavior. Since the coupling between the
ferromagnetic stripe and the antennas is purely inductive, one can deal with the
inductance matrix ∆Lij as a response function of the ferromagnetic stripe to the
microwave excitation. We transform the impedance measurements to inductance
through the operation:

∆Lij =
1

iω
[Zij(ω,Hres)− Zij(ω,Href )], (4.1)

The propagating spin wave spectroscopy signals can be recorded conveniently
using the vector network analyzer (VNA) which is able of determining the
impedance matrix Zij(ω) of a two port device

vij =
∑
j

Zij(ω)ii(ω) (4.2)

where vi and ii are the voltage and the current related to the two ports i=1,2. To
determine the four elements of the matrix, the VNA switches automatically the
excitation between port 1 and port 2. We measure the self inductance ∆Lii and
the mutual inductance signals ∆Lij in the same run. The mutual inductance
signal of the magnetostatic surface waves are measured with a relatively small
amplitude of the order of a picoHenry (pH). Such small signals are sensitive to
any weak perturbation that occurs during the measurements. We average the
signals many times to rule out these perturbation, and to improve the signal
to noise ratio. In the following next sections, we will analyze the self and the
mutual inductance to determine the magnetic parameter of the thin films and
to identify the propagation characteristics of the spin waves in the permalloy
thin films.

4.2 Reflection measurements

4.2.1 Self inductance spectra
This section is devoted to the discussion of the reflection signals measured by
the propagating spin wave spectroscopy in the magnetostatic surface wave con-
figuration. The analysis of the reflection signals allows one to understand the
characteristics of the excited waves in the thin films [8]. The magnetic parame-
ters of the film are extracted by following the frequency at which the waves are
excited, and the line width of the reflection signal is known to be related to the
relaxation processes.

4.2.2 Resonance frequency as a function of the magnetic
field

An example of the measured reflected signals ∆L11 and ∆L22 is shown in figure-
4.8, it corresponds to a measurement performed at an applied field of 28 mT and
a reference field at 200 mT for the 8 µm device of the 10 nm film. Both the real
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Figure 4.8: An example of the measured self inductance signals showing the real
and the imaginary parts of the self inductance ∆L11 and ∆L22. The real and
imaginary parts of the spectra are well reproduced with a lorentzian fit. The
parameter for each peak are noted in the table. The signals are taken for a 10
nm thick film with a width of 8 µm and the wavevectors k1= 3.86 µm−1 and
k2= 1.55 µm−1 with an external applied field of 28 mT. The measurements were
done at a power -10 dB and with a band width of 100 Hz.
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and the imaginary components of the self inductance are shown. The imaginary
part shows a clear absorption peak, and the real part passes through zero and
change its sign at the maximum frequency of this peak. In the given example,
a main resonance peak is observed at a frequency f1 = 6.11 GHz and a sec-
ondary, lower amplitude, resonance peak is observed at a frequency f2 = 5.343
GHz. The two resonance peaks are attributed to the excitation of spin waves
with two different wavevectors k1 and k2. The Fourier transform of the current
density of the antennas in this geometry shows a main peak at a wavevector k1
and a secondary peak at a lower wavevector k2 < k1 as shown in the figure-4.3.
Consequently, the antenna couples to the spin waves with a wavevector k1 at a
higher frequency f1 and with a wavevector k2 at a lower frequency f2.
We also remark that the 2 self inductance ∆L11 and ∆L22 are identical. It in-
dicates that the two antennas have the same excitation characteristics. We note
also that the base line for the 2 signals is almost zero.
A Lorentzian fit reproduces well the form and the amplitude of the self induc-
tance spectra as represented by the wine lines in the figure-4.8. We extract the
resonance frequency, the area and the full width at half maximum for each peak
from the parameter of the Lorentzian fit as indicated in the figure-4.8.

The self-inductance measurements have been repeated for different values
of the applied magnetic field up to 0.3 T. Figure-4.9 shows the self inductance
spectra obtained at different applied fields for two devices of the 10 nm film.
The left column corresponds to the 8 µm device (k= 3.86 µm−1) and the right
column corresponds to the 2µm device (k= 7.8 µm−1). As we increase the field,
we observe an upward shift in the resonance frequency as expected from the
Kittel formula, in addition to a noticeable decrease of the amplitude of the sig-
nal. The amplitude of the signal for the 8 µm stripe is roughly 4 times greater
than the amplitude of the signal for the 2 µm stripe. We notice the main and
the secondary resonance peaks are well separated at lower frequency and they
summed up into one peak at higher frequencies: at higher frequencies the sep-
aration distance between the two peaks vanishes and they collapse to form one
single peak as shown in the panel of the measurement at 257 mT.
We perform a Lorentzian fit for each spectrum as discussed in the previous
section. Figure-4.10 shows the field dependence of the resonance frequencies ex-
tracted from such fits for the main peak (fres(k1)) and for the secondary peak
(fres(k2)) for six different devices. For all the devices the frequency clearly in-
creases with the field. However, the zero field extrapolations are significantly
higher for thicker films and higher wavevectors. This is easily explained consid-
ering the zero field term of the dispersion relation for the magnetostatic surface
waves 1.47 which writes as M2

s

4 (1 − e−2kt). Following a standard procedure for
FMR measurements, we fit the obtained fres(H) to a Kittel formula:

f2 = A(µ0H)2 +B(µ0H) + C, (4.3)

where A, B, and C are constant parameters. The procedure is illustrated in
figure-4.11 which shows the fits for two devices of the 10 nm film. We will now
relate these three parameters to the magnetic properties of the films.
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Figure 4.9: The self inductance signals measured for 2 devices of the 10 nm film
with a width of 8 µm (left column) and 2 µm (right column). The SEM images
in the top panel show the antennas used for the excitation and the detection
of the spin waves. In each panel the applied field and the parameters of the
lorentzian fit are indicated. The measurements were performed with a power of
-10 dB and a 100 Hz bandwidth.
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Figure 4.10: The variation of the resonance frequency as a function of the applied
field for different devices.
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Figure 4.11: Kittel-like fits of the magnetic field dependence of the resonance
frequency for two devices of the 10 nm films.
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4.2.3 Extraction of the magnetic parameters
From the magnetostatic theory the dispersion relation of the magnetostatic
surface waves is derived as:

f2 = (
µ0γ

2π
)2[H2 +HMs +

M2
s

4
(1− e−2kt)], (4.4)

where H is the applied field and Ms is the saturation magnetization. To account
for the effect of an anisotropy field HK perpendicular to the film and for the
effect of the in-plane demagnetizing field Hd, we write an approximate formula
of the dispersion relation:

f2 = (
µ0γ

2π
)2[H2

tot +HtotMeff +
MeffMs

4
(1− e−2kt)], (4.5)

where Htot = H − Hd, Hd = 2
π

t
wMs, and Meff is the effective magnetization

Meff =Ms −HK . (see section 1.2.2.2 and Appendix A).
Equation-4.5 predicts a quadratic field dependence of the square of the resonance
frequency similar to what we observe in figure-4.11. We will now compare the A,
B, C coefficients extracted for the fits to the values expected from equation-4.5
using the magnetic parameters derived from the FMR study of chapter 3.

The gyromagnetic ratio γ
2π :

From equation-4.5, it is clear that the square root of the parameter A of the
quadratic fits can be identified to the square of the gyromagnetic ratio γ

2π .
The obtained values are shown in figure-4.12. The measured values are in the
range of the value deduced from the broadband FMR measurements on similar
films γ

2π = 30GHz/T ± 1. The dispersion of the values is mainly due to some
uncertainty of the values of the magnetic field in the high field limit which has
a large influence on the determination of this parameter.
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Figure 4.12:
√
A parameter deduced from the quadratic fits described by equa-

tion 4.3 and figure 4.11. The horizontal bars shows the estimate deduced from
the broadband FMR measurements:

√
Atheo = γ

2π where γ
2π =30 GHz/T.

The effective magnetization Meff :
From equation 4.5, it can be deduced that the theoretical B coefficient is given
by Btheo = ( γ

2π )
2(µ0Meff−2µ0Hd) whereHd values are relatively small. Figure-

4.13 shows the measured B values, together with the theoretical estimate Btheo

calculated with the parameters deduced from the FMR study ( γ
2π = 30GHz/T ,

HK = 2Ks

µ0Mst
with Ks = 0.24mJ/m2, µ0Ms = 0.96T ) for each film. In spite of

some dispersion for the 10 nm and 40 nm devices, we notice that the measured
values follow the trend expected from the theory, i.e a clear decrease for small
thickness. This trend is due to the surface anisotropy which reduces significantly
the effective magnetization at a small thickness.



94 CHAPTER 4. PROPAGATION OF MSSW

5 10 15 20 25 30 35 40
700

750

800

850

900

 

 

B
co

ef
f (

G
H

z2 /T
)

tmag (nm)

 ( )2 Meff _PSWS
 ( )2 Meff _theo

Figure 4.13: A comparison between the ( γ
2π )

2Meff values obtained from the
propagating spin wave spectroscopy technique (the blue square) and the theo-
retical expected values (the red squares).

The zero field frequency
From equation 4.5, it is clear that the parameter C, i.e the square of the fre-
quency extrapolated to zero field is influenced by the wave vector (k) of the spin
wave. Accounting for the out of plane anisotropy and the in-plane demagnetizing
field, the theoretical estimate writes:

Ctheo = (
µ0γ

2π
)2(

MeffMs

4
(1− e−2kt)− 2

π

t

w
MsMeff ). (4.6)

The main panel of figure-4.14 shows the variation of the measured C coeffi-
cient as a function of the product between the wavevector k and the thickness t
for all measured devices. The (kt) product represents a characteristic parameter
in the magnetostatic theory. The inset of the figure-4.14 shows the percentage
difference of the measured values from the theoretical calculated value of the
C-parameters for the main and the secondary peak. We notice a full agreement
between the 2 values to within an error bar of about 3%, for the main peak (the
red rectangle) and the difference becomes larger for the values obtained from
the secondary peak (15%).
As we have seen, the magnetic parameters of the thin films obtained using the
propagating spin wave spectroscopy technique are consistent with the param-
eters obtained from the standard FMR measurements to within an acceptable
experimental error. It indicates also that the magnetic properties of our films
are not altered significantly during the lithographical processes and the propa-
gating spin wave spectroscopy technique can be regarded as a suitable inductive
broadband technique to study the magnetization oscillation modes with k ̸= 0.
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Figure 4.14: The measured and the calculated field independent parameter as
a function of the product of the wavevector and the thickness. The inset shows
the percentage difference between the measured and the expected values of the
main and the secondary peak.

4.2.4 Interpretation of the measured linewidth

In FMR measurements, the linewidth is related to the relaxation process of the
oscillations of the magnetization. However, when the excitation of the magneti-
zation is performed using an antenna with a finite extension, an additional con-
tribution to the linewidth is due to a non-monochromatic excitation of the spin
waves. This extrinsic contribution to the line width is equal to ∆ωext = vg∆k,
where vg is the group velocity and ∆k is the width of the distribution of the
wave-vector. In the magnetostatic surface wave configuration the intrinsic contri-
bution ∆ωint and the extrinsic contribution to the line width ∆ωext are obtained
writing the products equation ∂ω

∂H∆H and ∂ω
∂k∆k respectively, they write:

∆ωint = α(ωH + 1
2ωM ),

∆ωext =
ω2

M

4ω t∆k.
(4.7)

The total linewidth is a combination of the intrinsic and the extrinsic linewidth.
If the 2 contributions give rise to Lorentzian peaks then the overall peak is also
Lorentzian and its linewidth is written as:

∆ωtot = ∆ωint +∆ωext.

If the two contribution give rise to Gaussian peaks then the overall peak is
Gaussian and its linewidth is written as:

∆ωtot = (∆ω2
int +∆ω2

ext)
1
2 .
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An example of the measured linewidth is plotted in figure-4.15 for the w=
8 µm-t=10 nm device. Figure-4.15 shows the intrinsic and the extrinsic con-
tribution, and their Lorentzian and Gaussian combination. We notice that the
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Figure 4.15: The variation of the linewidth as a function of the frequency. The
measured linewidth is for the device (t=10 nm, w= 8µm). We use the damping
coefficient α =0.0084 and the ∆k= 0.75 µm−1.

measured values fall between the two convolutions. The measured linewidth is
therefore consistent with the damping value chosen here (α = 0.0084 as deduced
from the FMR study). However, it would not be possible to extract precisely
the damping coefficient from the measured linewidth since the extrinsic contri-
bution is large and varies significantly with the frequency. This is in contrast
with the magnetostatic forward volume wave configuration, where the group
velocity does not vary significantly with the frequency and one can follow the
variation of the linewidth with the frequency to extract the damping coefficient
as in [112].
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4.3 Transmission measurements

In this section, we will analyze the transmission signal of the spin wave propa-
gation in the magnetostatic surface wave configuration. This is not a trivial task
because of the relatively high attenuation of the wave signal in a metallic film
such as permalloy. A good understanding of the propagating characteristics of
the spin wave in a Permalloy stripe will be essential for extracting accurately
the Doppler shift in the next chapter.

4.3.1 Mutual inductance spectra

One of the advantages of the propagating spin wave spectroscopy technique
is that one can measure the propagation characteristics of the spin waves in
the magnetic material between the 2 antennas. The signals carrying this infor-
mation are the two mutual inductance signals ∆Lij . We perform 2 successive
measurements: in the first measurement the spin waves are excited with the
antenna connected to the port 1 of the VNA and the propagating waves are de-
tected with the antenna connected to the port 2 of the VNA, this measurement
corresponds to the mutual inductance signal ∆L21. The second subsequent mea-
surement corresponds to the reverse measurements where the excitation is done
by the antenna connected to port 2 and the detection is done by the antenna
connected to port 1 of the vector network analyzer which corresponds to the
mutual inductance signal ∆L12.
Figure-4.16 shows a typical measurement of the mutual inductance signals ∆L12

and the ∆L21 for the device (w=8 µm, t=10 nm). The top panel shows the real
and the imaginary parts of the ∆L12. We observe two distinct wavepackets cen-
tered on different frequencies (f1 and f2). The real and the imaginary parts show
an oscillation behavior with a 90◦ phase shift. The blue line on the bottom panel
shows the amplitude of the ∆L12. One recognizes two peaks. Those two peaks
are centered on the absorption peaks apparent on the ∆L11 signals (green lines).
The two wavepackets are due to the excitation of the spin wave with different
wavevectors (k1 and k2) corresponding to the main and the secondary excitation
peaks. The middle panel shows the real and the imaginary parts of the ∆L21,
the signal is quite similar to the ∆L12, except a global decrease in the amplitude,
which is also apparent on the bottom panel. The difference in the amplitude of
the 2 signals reflects the non-reciprocity character of the magnetostatic surface
wave, which will be discussed in the next section.
The oscillations seen on both ∆L12 and ∆L21 are attributed to the accumula-
tion of the phase delay by the spin waves during their propagation. The phase
delay accumulated between the two antennas is given by Φ = kD where D is the
separation distance between the two antennas and k is the wavevector of the
wave. Since the excitation by the antennas is not monochromatic with a finite
width ∆k, the phase accumulation between the two antennae varies slightly as
a function of the frequency.

In figure-4.17, we compare the measured spectra for two devices (w=8 µm,
t=10 nm and w=2 µm, t=10 nm) under different applied fields. We notice that
the wavepackets corresponding to k1 and k2 are well separated at low field and
they interfere with each other to form one single wavepacket at a higher field.
We observe that the amplitude of the main peak is higher than the amplitude
of the secondary peak at low field, and they are of comparable amplitude at
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Figure 4.16: The typical mutual inductance signals for a device with the di-
mensions (t=10 nm, w=8 µm). We plot the real and the imaginary parts of
the mutual inductance signals ∆L12 (top panel) and ∆L21 (middle panel) and
also the amplitude of the 2 signals (bottom panel), in addition to the imaginary
part of the ∆Lii (bottom panel). The measurements were performed under an
external field of 28 mT with the microwave power of -10 dB. The signals are
obtained after 10 average with a bandwidth of 100 Hz.
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a higher field. This is justified since at higher frequency the amplitude of the
signal is more damped compared to the signal oscillating at the lower frequency.
Now let us see how the information on the propagation of the spin waves can
be extracted from the measured waveforms.
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Figure 4.17: The mutual inductance signals for two devices: (w=8 µm, t=10
nm) and (w=2 µm, t=10 nm). In each panel we plot the real and the imaginary
parts of the mutual inductance signals ∆L12 and ∆L21 and their amplitude. We
also indicate the applied field on each panel. The measurements were performed
at a power of -10 dB and with a bandwidth of 100 Hz. We average the signals
10 times.
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4.3.2 Extraction and interpretation of the group velocity

The group velocity describes the transmission velocity of the envelop for a group
of propagating waves at different frequencies. As an example, let us consider 2
spin waves having the same amplitude and oscillating with very close frequencies
and phase constants:

m1 = m0[e
i(ω0+∆ω)t−(k0+∆k)x]

m2 = m0[e
i(ω0−∆ω)t−(k0−∆k)x]

(4.8)

We write the sum of the two oscillations m = m1 +m2 as:

m = 2m0e
i(ω0t−k0x) cos(∆ωt−∆kx), (4.9)

The factor ei(ω0t−k0x) describes the propagation of the wave group along the x-
axis, and the factor cos(∆ωt−∆kx) describes a change of the amplitude along
the x-axis. The envelop moves along the x-axis such as

(∆ωt−∆kx) = constant. (4.10)

The group velocity vg is then:

vg =
∂x

∂t
=
∂ω

∂k
. (4.11)

We deduce the group velocity of the magnetostatic surface waves by differenti-
ating the MSSW dispersion 1.47 relation with respect to the wavevector and we
obtain:

vg =
ω2
M t

4ω
e−2kt. (4.12)

Experimentally, we measure the period of the oscillations fp which is related to
the time delay td as td = 1

fp
. We deduce the group velocity using vg = Dfp. For

a given propagation direction, we measure the difference in frequency between
the maximum of the real and the maximum of the imaginary part as shown in
the inset of the figure-4.18. The measured frequency difference ∆f corresponds
to a quarter of the period fp (fp = 4∆f). At each field we measure ∆f and
we deduce the group velocity. In the main panel of the figure-4.18 we display
the experimental and the theoretical values of the group velocity for a device
(w=8 µm, t=10 nm). The group velocity decreases with the frequency, however
one can notice a significant difference between the measured and the theoretical
values. Such difference was observed for all devices as explained in the appendix
B.

The difference originates from the determination of the distance traveled
by the wave between the first and the second antenna. We assume the dis-
tance D to be from the center to the center of the antennas, which is certainly
overestimated. Indeed, since the spin wave propagating below the antenna are
attenuated, the propagation signals might be dominated by the signals gener-
ated near the edge of the first antenna and detected near the edge of the second
antenna. The uncertainty on the propagating distance of the wave reflects also
on an uncertainty over the attenuation length as we will see in the next section.
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Figure 4.18: The inset shows the frequency difference between the real and the
imaginary part at a field of 28 mT. The main panel displays the variation of the
group velocity with the frequency for the measured and the theoretical value.

4.3.3 Extraction and interpretation of the attenuation length
In a dissipative medium the amplitude of an oscillating wave spatially decays
with the distance. In a metallic ferromagnet with a significant damping coeffi-
cient the amplitude of the propagating spin wave between the 2 antennas will
decrease with the distance due to the attenuation of the wave. The decay can be
written as: m = m0e

−x/Lattei(ωt−kx) where Latt is the attenuation length over
which the amplitude of the precession decays as 1/e. Experimentally, we de-
termine the attenuation length by comparing the transmitted (∆L12 or ∆L21)
signals to the reflected signal (∆L11 or ∆L22). The ∆L′

iis are related to the
power pumped from the excitation signal to the spin waves, and the ∆L′

ijs are
related to the power transmitted via the spin waves. In a non reciprocal config-
uration, the transfer of power into spin waves propagation in the positive and
the negative directions is different. Therefore, we define a ratio of the sum of
the amplitudes of the two transmission signals to the amplitude of the reflec-
tion signal. This ratio is related to the attenuation length Latt and the antenna
distance D:

| ∆Lij | + | ∆Lji |
| ∆Lii |

= e−D/Latt . (4.13)

Theoretically, we determine the attenuation length from the group velocity
(equation 4.12) and the relaxation time of the magnetization T2 as:

Latt = vgT2 =
ω2
M t

4ω
e−2kt 1

α(ω0 +
ωM

2 )
, (4.14)

Figure-4.19 shows the variation of the attenuation length with the applied
field for the the device (w=8 µm, t=10 nm). We notice the attenuation length
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decreases as we increase the applied field. We notice a significant discrepancy
between measured and theoretical values of the Latt. As explained in the 4.3.2,
we attribute this discrepancy to the inaccurate determination of the effective
distance between the two antennas. The measured attenuation length is roughly
< 5 µm which is comparable to the lateral extension of the antenna and smaller
than the center to center distance. This observation suggests that the effective
distance is close to the distance between the extremity edges of the antennas.

0.00 0.05 0.10 0.15 0.20 0.25
0

10

20

30

 

 

L at
t (

m
)

(T)

 Latt (measured)
 Latt (theoretical)

Figure 4.19: The variation of the attenuation length with the applied magnetic
field. The measured Latt is calculated using equation 4.13. The theoretical Latt

is calculated from 4.14
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4.4 Non-reciprocity

For wave propagation, reciprocity means that the waves propagating in oppo-
site directions have the same properties. In specific cases, non-reciprocity may
happen i.e the propagation in the 2 opposite directions occurs with a differ-
ent amplitude and at a different frequency. As we have seen in the first chapter,
the magnetostatic surface wave MSSW has such non-reciprocity properties. The
non-reciprocity character of the magnetostatic surface waves was reported first
in the yttrium iron garnet (YIG) films [17] and discussed by Mills in semi-finite
ferromagnets [76] . Recently, the non-reciprocity in amplitude [28] [93][94] and
in frequency [2] were reported in ferromagnetic metal thin films.
In the following we describe the amplitude and frequency non reciprocity in
our devices. To address this issue we perform 2 successive measurements of the
propagating spin waves. In the first measurement the spin waves are excited by
the antenna (1) and detected by the antenna (2), this wave corresponds to the
mutual inductance signal ∆L21 which define the positive propagation (k > 0)
and in the second measurement the spin waves are excited by the antenna (2)
and detected by the antenna (1), which corresponds to the mutual inductance
signal ∆L12 which defines the negative propagation (k < 0).

4.4.1 Amplitude non-reciprocity

As already noticed when comparing the mutual inductance signals ∆L12 and
∆L21, the amplitude of the spin wave propagating in one of the direction is
strongly decreased. We notice that the negative propagation ∆L12 has a higher
signal amplitude than the positive propagation ∆L21 for the measurements per-
formed with a positive direction of the magnetization. For the example given in
the top panel of figure-4.20, the ratio of the amplitude of the negative propaga-
tion A(−k) to the amplitude of the positive propagation A(+k) is roughly 2.5.
As we reverse the direction of the static magnetization from +M to the −M
direction, we observe the +k propagation direction has the higher amplitude
instead of the −k direction with the same factor of the amplitude between the 2
signals (bottom panel of figure-4.20). This behavior is confirmed in figure-4.21,
where we plot the variation in the amplitude of the ∆L12 and ∆L21 signals
measured as a function of the field.

The amplitude non-reciprocity is due to the coupling of the excitation with
the oscillating spin waves. The microwave current creates the oscillating mag-
netic field h which couples to the magnetization modes in the permalloy film.
The excitation field h lies in the xy plane perpendicular to the direction of the
static field. Both the x and the y components contribute to the excitation of the
precessional motion of the magnetization. The coupling of the excitation field
with the dynamical magnetization will be stronger for one propagation direction
than the other. Figure-4.22 shows the coupling of the excitation field with the
spin waves propagating in the k > 0 and k < 0 direction at the same direction
of the applied field H < 0. In both cases the x-component of the excitation field
is in phase with the x component of the magnetization oscillation, however the
y component of the excitation field is in-phase with that of the magnetization
oscillation only in the k < 0 case. Hence, the signal amplitude will be higher
for the k < 0 than the k > 0 direction. Consequently, the amplitude depends
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Figure 4.20: The mutual inductance signals for the device (w=8 µm, t=10 nm).
The amplitude difference of the ∆L12 and the ∆L21 signals indicate a strong
amplitude non reciprocity character of the MSSW. The measurements were
performed under an applied field of (+28 mT) and (-30 mT).
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Figure 4.21: The variation of the amplitude for the ∆L12 and the ∆L21 signals
with the four combination of the magnetization and the wavevector directions.

Figure 4.22: An illustration cartoon for the coupling between the excitation
field and the dynamical magnetization for the k > 0 and k < 0 propagation, the
static is oriented in a negative field.



4.4. NON-RECIPROCITY 107

on the relative polarity of the dynamical magnetization and the excitation field.
The polarity of the dynamical magnetization is influenced both by the propaga-
tion or by the magnetization directions, which explains the dependence of the
amplitude on the (k) and (M) directions.

4.4.2 Frequency non-reciprocity
According to the dispersion relation of the magnetostatic surface wave we expect
that the two opposite propagation should have the same resonance frequency.
However, under certain conditions the dispersion relation depends on the propa-
gation direction of the spin wave. Such case was reported already in the YIG film
[103], in the ferrite films [73], and recently in permalloy thin films [2]. In these
studies a metallic ground close to the ferromagnetic films causes the dispersion
relation to depend on the propagation direction. In the measured devices the
ferromagnetic films are capped with a dielectric (Al2O3) on the 2 surfaces.
We compare the frequencies of the mutual inductance signals ∆L12 and ∆L21

and we notice a frequency shift of the order of ten MHz. For the measurements
shown in the figure 4.23, we observe the k > 0 propagation lags behind the
k < 0 propagation for the positive field. Again, the lag is reversed as we reverse
the direction of the static magnetization. In this example, the frequency shift
between the 2 signals is about 17 MHz.

Device k µm−1 40 nm 20 nm 14 nm 10 nm 6 nm
8 µm 3.86 29 29 X 15 11
8 µm 1.55 X 11 X 6 X

3 µm down 3.87 31 X X 13 X
3 µm down 1.4 12 X X 6 X
3 µm up 7.8 36 X 32 X X
3 µm up 3.14 27 X 10 X X

2 µm 7.84 X X X 21 X
2 µm 2.8 X X X 11 X

Table 4.4: The frequency non reciprocity (in MHz) measured for different devices
for the main and the secondary peak at a field of 28 mT.

A magnetostatic surface wave is more localized near one surface (top or
bottom, depending on its propagation direction), and hence it is sensitive to
any difference between the the upper and the lower surface. We might assume
that in our samples, the top and the bottom interfaces have different surface
anisotropy Ks1 and Ks2. Consequently, the wave having more amplitude on the
top surface is expected to oscillate at a slightly different frequency compared
to the wave propagating on the bottom surface. The frequency shifts between
the 2 signals is given in the table 4.4 for different devices. The quantitative
understanding of this frequency shift is left for future work.
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Figure 4.23: The frequency non-reciprocity measured between the k>0 and k<0
signals for the film (t=10 nm, w= 8 µm).
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Conclusion
In the first part of this chapter, we have used the propagating spin wave spec-
troscopy to extract the magnetic properties of the thin film as if it were a FMR
technique with k ̸= 0. The extracted magnetic parameters are in reasonable
agreement with the ones measured by standard FMR given in the previous
chapter 3. It indicates that the magnetic characteristics of the films are not
altered after the fabrication processes.
In the second part, we have analyzed the propagation characteristics of the spin
wave, and a qualitative picture of the propagating wave characteristics is drawn
(velocity, attenuation length). However, a more quantitive extraction of these
parameters would require an extra work. The analysis of the transmission sig-
nal (oscillation, period,..) provides us with sufficient background to extract the
current induced Doppler shift when the DC current is turned on.
In the last part, we have discussed a crucial property of the magnetostatic sur-
face waves which is the non reciprocity character. A non-reciprocity in amplitude
and in frequency is observed in our thin films. Understanding the propagation
characteristics and the non reciprocity peculiarity is a prerequisite for analyzing
the current induced spin wave Doppler shift when the DC current is injected
through the ferromagnetic stripe as we will see in the next chapter.
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Chapter 5

Film thickness dependence of
the current-induced spin wave
Doppler shift

The electrical transport properties of the transition metals (Fe, Co, Ni) and
their alloys are conveniently described within the two-current model [43]. The
spin-dependent resistivity associated to the impurities and to the phonons could
be extracted using binary and ternary alloys measurements. Recently, a new
method based on the current induced spin wave Doppler shift [111], has been
proposed by our group to measure directly the degree of the spin polarization of
the electrical current in ferromagnetic thin films. A thickness dependence study
was performed in the frame of this thesis work in order to understand the role
of the surface in the spin dependent transport and to identify the contribution
of the surface scattering to the spin up and spin down resistivities.

The remaining of this chapter explains how we have extracted this infor-
mation. It is divided in four sections. In the section-§5.1, the current induced
spin wave Doppler shift technique is presented. In the section-§5.2, a complete
analysis of the mutual inductance signal in the presence of an electrical cur-
rent is given together with the exact procedure used for extracting the current
induced spin wave Doppler shift. Section-§5.3 presents the main result of this
manuscript, i.e the film thickness dependence of the degree of the spin polar-
ization extracted from the Doppler shift measurements. In the last section-§5.4
we try to interpret the results in the frame of the two current model with and
without spin-flip scattering.
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5.1 The current-induced spin wave Doppler shift
experiment

The current induced spin wave Doppler shift (CISWDS) experiment is a recent
technique allowing one to measure directly spin current or equivalently the de-
gree of the spin polarization of the electrical current (see §2.4.3).
It can be measured using a modified version of the propagating spin wave spec-
troscopy in which a DC current is allowed to flow along the ferromagnetic stripe.
In this section we will present the experimental setup of the current induced spin
wave Doppler shift technique and we will discuss the expected Doppler symme-
try.

5.1.1 The experimental setup
To observe the Doppler effect, the ferromagnetic stripe is connected to four DC
pads for the electrical current, in addition to the antennas for the propagating
spin wave spectroscopy as we already mentioned in the sample fabrication sec-
tion (§4.1). Four needle-like tungsten probes are in contact with the DC pads
and are connected to a sourcemeter (Keithley 2600). Two of the probes are used
to source the DC current along the ferromagnetic stripe and the other two are
used to measure the voltage as we perform four point resistivity measurements.
The probes are mounted on micropositioners and the alignment of the probers
over the DC pads is done using a microscope. A scheme of the setup is shown
in the figure 5.1.
The effect of the DC current is to induce a Doppler shift in the frequency of the
propagating spin wave. For example as shown in the figure-5.1, the frequency of
a spin wave propagating from the antenna 1 to the antenna 2 decreases as the
dc current passes in the same sense as the wave and it increases for the wave
propagating from the antenna 2 to the antenna 1.
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Figure 5.1: a) Picture of the experimental setup for the CISWDS, b) a zoom in
to show the needles, c) image of a fabricated device used in the current induced
spin wave Doppler shift measurements. It shows the direction of the current
flowing through the magnetic stripe.
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5.1.2 The expected Doppler symmetry
As we have seen before, the DC current exerts a torque on the spin waves
leading to a Doppler frequency shift. To illustrate how the Doppler shift shows
up, we show in figure-5.2 examples of a propagating spin wave spectra under
a DC current. In panel (a) (k > 0) we see that a positive current +I (blue
curve) decreases the spin wave frequency compared to the same wave with an
opposite current polarity (red curve). The effect is reversed for k < 0 (panel b):
i.e the negative current polarity -I (red curve) decreases the spin wave frequency
compared to the same wave with +I current polarity (blue curve).
As we reverse the direction of the magnetic field from +H to -H as shown in the
figure 5.2 c and d the symmetry of the effect is the same.
These observations are consistent with the symmetry expected for the Doppler
shift. We will now discuss in more details the magnitude of the observed shifts.

5.2 The mutual inductance measurements in pres-
ence of a DC current

In the original work of the current induced spin wave Doppler shift the measure-
ments were done using the magnetostatic forward volume wave. In this config-
uration it was sufficient to take the frequency difference between two opposite
propagating wave at the same current to extract the CISWDS frequency [111].
In the present work the spin waves are excited with the so-called magnetostatic
surface wave configuration. The advantage is that the signals are bigger and
easier to measure. However, due to the non-reciprocity the simple extraction
procedure of the CISWDS becomes invalid. In this section, we will show how we
extract the current induced spin wave Doppler shift from the measured mutual
inductance signals.

5.2.1 Current induced frequency shift and frequency non-
reciprocity

In the magnetostatic surface wave configuration, we measure a frequency non-
reciprocity between ∆L21 (k > 0) and ∆L12 (k < 0) propagations even in the
absence of a dc current (I = 0) as we have seen in section 4.4. As we introduce a
dc current ±I through the permalloy stripe, the Doppler shift effect will add a
frequency shift ∓∆fdoppler for the frequency of the ∆L21 signal and ±∆fdoppler
for the frequency of the ∆L12 signal. The frequency difference between the ∆L12

and ∆L21 signals at a given current will be a combination of the frequency
non reciprocity and the current induced spin wave Doppler shift. Figure-5.3
shows the data of figure 5.2-a, b plotted on the same graph and zoomed in.
To estimate the frequency shift we measure the frequencies at which the curves
cross the x-axis. The frequency difference between the ∆L12(+I) and ∆L21(+I)
is about 20.4 MHz, whereas it is about 11 MHz between the ∆L12(−I) and
∆L21(−I). The explanation of this difference is related to how the frequency
non reciprocity and the Doppler shift are combined together. The frequency
shift between ∆L12(±I) and ∆L21(±I) are given as:

∆f(+I) = f12(+H,+I)− f21(+H,+I) = δfNR + 2δfdop
∆f(−I) = f12(+H,−I)− f21(+H,−I) = δfNR − 2δfdop,

(5.1)
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Figure 5.2: The imaginary parts of the mutual inductance signals measured
for different directions of I, k, H. The measurements were done under a DC
current of 7.5 mA, for the device with t= 10 nm, and w= 8 µm.(a) ∆L21 signals
measured for I=+7.5 mA and I=-7.5 mA (blue and red curve respectively) under
a field of +28 mT. (b) same for ∆L12 signals. (c)-(d) same as (a) and (b) for a
field of -28 mT.
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Figure 5.3: The inset panel display the imaginary parts of the mutual inductance
signals. The main panel is a zoom in to show the frequency shift measured
between the imaginary parts of the mutual inductance signals for ∆L21 and
∆L12. We perform 2 measurement: the first measurement is performed with a
positive dc current and the second measurement with a negative current through
the ferromagnetic stripe. The measurements were done with an applied field of
28 mT and a dc current of 7.5 mA, for the device of t= 10 nm, and w= 8 µm.
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where fij(±H,±I) is the frequency for which the imaginary part of the signal
∆Lij crosses zero.
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5.2.2 The symmetry analysis
To avoid the complication of the frequency non reciprocity, we measure the
Doppler shift for a given propagating direction, by comparing the two direc-
tions of the dc current ±I.
The top and bottom panels of the figure-5.4 show a zoom of the spectra Im(∆L21)
and Im(∆L12) respectively. Clearly, one could notice that the +I and -I signals
are shifted according to the expected symmetry of the Doppler effect as dis-
cussed earlier (see §5.1.2). However the magnitude of the frequency shift is not
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Figure 5.4: Estimate of the frequency shift between the imaginary part of the
mutual inductance signals at + I and -I current for ∆L21 and ∆L12 in the top
and bottom panel respectively. The measurements were done with an applied
field of 28 mT and a dc current of 7.5 mA, for the device of t= 10 nm, and w=
8 µm.

the same for the two directions, it is 6 MHz for k < 0 and 3 MHz for k > 0.
Basically, if the frequency shift were only due to the current induced spin wave
Doppler shift, it should be the same for the two directions of the current. Conse-
quently, we expect the measured frequency shift is not only due to the CISWDS.
Apparently, the Doppler shift is combined with another current induced effect.
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To investigate the nature of this additional frequency shift, we perform a
symmetry analysis by measuring the frequency shifts ∆fij = fij(+I)− fij(−I)
for the two direction of the field +H and -H. In the figure-5.5 the results of
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Figure 5.5: The frequency shift measured between the imaginary part of the
∆Lij(+I)−∆Lij(−I) as a function of the dc current for H > 0 and H < 0 for
+k and -k propagations. The measurements were done with an applied field of
±28 mT for the device of t= 10 nm, and w= 8 µm.

the symmetry analysis are presented. One can clearly notice that for a given
propagation direction k the frequency shift for the positive field +H is different
than the frequency shift of the negative field -H. Moreover, one can notice that
the frequency difference between H > 0 and H < 0 is the same for k > 0 and for
the k < 0 directions. Apparently, the additional frequency shift coupled with
the Doppler effect changes sign as we change the field direction from +H to
-H. We attribute the additional frequency shift to be due to the Oersted field
contribution as described below.

5.2.3 Oersted field contribution to the CISWDS

When a DC current flows across a conductor it generates a magnetic field named
the Oersted field. This field modifies slightly the applied field. The combination
of the Oersted field and the applied field depends on the relative sign between
the direction of the field and the direction of the current. It depends on the
location with respect to the axis of the stripe. In a perfectly symmetric conduc-
tor, the contributions of the Oersted field of the top and bottom halves of the
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films cancel out, and hence no additional frequency shift should be observed.
However, if the top and the bottom parts of the ferromagnetic stripe are not
equivalent, the Oersted field could contribute to the frequency shift, with the
symmetry observed in figure-5.5. The difference between the top and the bot-

Figure 5.6: A schematic drawing illustrating a possible origin of the current
induced frequency shift due to the Oersted field contribution. In a medium
where the top and the bottom surfaces have different surface anisotropy the Oe
field contribute to the an additional shift of the applied field and hence to the
frequency shift.

tom parts of the films may be attributed to different surface anisotropies of each
surface (Ks1 and Ks2) as shown in the figure-5.6. Another origin may be some
inhomogeneity in the films properties over the thickness.
At this point we differentiate between three sources for the frequency shift in
the presence of a dc current and one can determine the contribution of each by
following the corresponding symmetry. We summarize the symmetry of each fre-
quency contribution in the table 5.1. The way those three contributions combine
together is sketched on the level diagram shown in figure-5.7.

frequency H k I
fNR odd odd X
fdop X odd odd
fOe odd X odd

Table 5.1: The symmetry for the different sources of the frequency shift contri-
butions in the thin films.
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Figure 5.7: Combined effects of the frequency non-reciprocity, Oersted field and
the Doppler shift.

5.2.4 A way to extract the Doppler shift

After we identify the different frequency shifts which contribute in the exper-
iment, a reproducible and accurate enough process is needed to extract the
current induced spin wave Doppler shift. The process we have chosen consists
in extracting the phase change from the mutual inductance signals.
To understand this process, let us first define a function accounting for the shape
of the observed oscillatory mutual inductance signals. A good fit is obtained by
taking the product between an oscillatory function and a Gaussian peak. The
form of the signal (S) can be reproduced with the function:

S =
A

w
√

π
2

exp(
−2(f − fc)

2

w2
) exp(j2π(f − fref )/fper), (5.2)

where A,w, fc are the area, linewidth at half maximum, and the center frequency
of the gaussian envelop and fref , fper are the parameters of the oscillatory func-
tion. (fref is the reference frequency for which the imaginary part is zero and
the real part is maximum, and fper is the period of the oscillation).
Figure-5.8 displays an example of a fit for the real and the imaginary parts of
the mutual inductance signals ∆Lij with the proposed form of the signals. One
can notice the congruence between the measured data and the proposed func-
tion.

Let us now examine how the function S is expected to change in the presence
of a current. Two effects are expected: a frequency shift δ and a relative change
in the amplitude ε. The function S is slightly modified to the form S+ and S−
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Figure 5.8: The form of the mutual inductance signal is perfectly reproduced
with the function S defined in equation 5.2. The parameter of the signals are
shown in the table for the +k and -k directions. The measurements were done
with an applied field of 28 mT and a dc current of 2.5 mA, for the device of t=
10 nm, and w= 8 µm.
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for the positive and the negative current direction as:

S+ = (1 + ε) A

w
√

π
2

exp(−2(f−fc−δ)2

w2 ) exp(j2π(jk(f − fref − δ)/fper))

S− = (1− ε) A

w
√

π
2

exp(−2(f−fc+δ)2

w2 ) exp(j2π(jk(f − fref + δ)/fper)).
(5.3)

Developing equation-5.3 at first order in ε and δ one gets
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Figure 5.9: The real and the imaginary parts of the Rij function for the +k and
-k propagation. The measurements were done with an applied field of 28 mT
and a dc current of 7.5 mA, for the device of t= 10 nm, and w= 8 µm.

Re(S
+−S−

S++S− ) = ε− 4δ f−fc
w2 ,

Im(S
+−S−

S++S− ) = − 2πδ
fp

(5.4)

This suggests how to combine the ∆Lij(+I) and ∆Lij(−I) signals to extract a
quantity directly proportional to the CISWDS. We define the function Rij as:

Rij =
∆Lij(+I)−∆Lij(−I)
∆Lij(+I) + ∆Lij(−I)

, (5.5)

The real and the imaginary parts of theRij signals are shown in the figure 5.9. As
indicated by equation-5.4 the imaginary part of the Rij signals is proportional
to the δij :

Im(Rij) =
−2πδij
fp

, (5.6)

The fp is obtained from the fit of the ∆Lij signals. Using this method, one has
a direct access to the current induced frequency shift.
In a similar way the real part of the Rij depends on the relative change of the
amplitude εij :

Re(Rij) = εij − 4δij
f − fc
w2

, (5.7)
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In the coming discussion we deal mainly with the imaginary parts of the signals
since in this manuscript we focus on measuring the current induced frequency
shift.
How do we proceed with the data?
First, the frequency at the maximum amplitude of mutual inductance as shown
in the inset of the figure-5.10 is noted, then we read the magnitude of the
Im(Rij) signal at that position as indicated in the main panel of the figure-
5.10. And, from equation-5.6 the shift in the frequency δij is extracted.

6,00 6,05 6,10 6,15 6,20
-0,04

0,00

0,04

0,08

5,9 6,0 6,1 6,2 6,3

-2

0

2
max(Amp21)

max(Amp12)

 

 

L ij(p
H

)

f(GHz)

 Amp12
 Amp21

 

 

Y =-0,5213+0,0955 X

Y =0,0887-0,0180 X

Im
(R

ij) 
(r

ad
)

f(GHz)

 im12
 im21
 linear fit

Figure 5.10: The inset shows the frequency position of the maximum of the
amplitude of the ∆Lij spectra. The main panel shows that the corresponding
frequency shift δij are extracted from the imaginary parts of the Rij signals
(same condition as figure-5.10).

Once the δij are determined one can extract the Doppler shift and Oersted field
contributions as follows:

fdop = (δ21 − δ12)/2,
fOe = (δ21 + δ12)/2

(5.8)

5.3 Spin polarization in permalloy thin films
The major idea of this research work is to study the spin dependent surface
scattering and to specify its contribution to the spin dependent resistivities of
the conduction electrons in an itinerant ferromagnet such as the permalloy thin
films. This study requires essentially the determination of the spin polarization
for a series of thin films with different thicknesses. This section is dedicated to
explain how we extract the spin polarization from the measured Doppler shift
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frequency and to present the results of the degree of the spin polarization of the
electrical current for a series of permalloy thin films.

5.3.1 The variation of the frequency shift with the DC
current

As explained earlier in (§2.4.3) the current induced spin wave Doppler shift is a
direct consequence of the adiabatic spin transfer torque exerted by the current.
The corresponding expression of this frequency shift is:

δfdop
k

=
µ0µB

2eπ

P

µ0Mst

I

w
(5.9)

where µ0µB

eπ is a constant equal to 23 × 10−12 m3.T.A−1.s−1, Ms is the satu-
ration magnetization, δfdop is the current induced Doppler shift frequency, k
is the wave vector of the spin wave w and t are the width and the thickness
of the ferromagnetic metal strip. Now, following the variation of the Doppler
shift as a function of the dc current will provide us with the degree of the spin
polarization (P).
We carry out the CISWDS measurements for several current values and at
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Figure 5.11: The variation of the imaginary part of the Rij signals with the
applied current. The measurements are done for a device of 10 nm thickness
and a width of 8 µm under a applied field H=28 mT.

different applied magnetic fields. Normally we perform four measurements for
the CISWDS at a low field (± H1) and at a high field (± H2) values. We follow
the extraction procedure which is mentioned in the section 5.2.4 to deduce the
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absolute current induced spin wave Doppler shift frequency, that is only related
to the spin polarization of the electrical current.
As an example, the imaginary parts of the Rij signals for different values of
the current are shown in the figure-5.11 for a field of 28 mT. As expected at a
zero dc current Im(Rij) is zero for the two directions. As we increase the dc
current Im(R21) increases in the positive direction and Im(R12) increases in the
negative sense. One can extract the Doppler and the Oersted field contributions
using the equation-5.8 already mentioned in the section-(5.2.4).
Before showing the results of the Doppler shift, we will briefly describe the fre-
quency shift contribution arising from the Oersted field effect. The frequency
shift due to the Oersted field as a function of the dc current is shown in the
figure-5.12 for a positive and negative magnetic field. One can notice that the
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Figure 5.12: The Oersted field contribution to the frequency shift as a function
of the dc current for ±H.

slope of the Oersted field frequency shift is positive for a positive field (+H)
and negative for a negative field (-H). The change of sign is expected from the
symmetry analysis discussed in 5.2.3. This observation is the signature of the
Oersted field effect.

Let us now focus on the current induced spin wave Doppler shift. Figure-5.13
shows the current dependence of the Doppler shift extracted from the Im(Rij)
using the method described in §5.2.4. As expected the frequency shift varies
linearly with the DC current. The slope of the line will be used to extract the
degree of spin polarization using equation-(5.9).

To extract the degree of the spin polarization the parameters entering equation-
5.9 are needed, mainly the width and the thickness of the stripe and the sat-
uration magnetization of each device. The width of the ferromagnetic stripe
is determined precisely from the SEM images for each device, and the product
µ0Mst is deduced from the SQUID measurements. The measurements condition
and the stability of the experiments allow us to measure precisely the δij with an
error less than 2%. The larger uncertainty we have is over the product of µ0Mst.

In figure-5.13 an example of the experimental data is shown for two devices
of (w= 8µm- t= 10 nm) and (w= 2µm- t=10 nm) the data was taken both
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Figure 5.13: The variation of the ∆f
k as a function of the dc current for the

devices (w=8 µm-t= 10nm) and (w=2 µm-t= 10nm) at ± 28 mT and ± 102
mT.
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for a low and a high field as noted on the graphs. We measure different values
of the polarization for the low field and for the high field (P=0.63 and P=0.59
respectively for the 8 µm device with k=3.86 µm−1). This slight difference in
the values of the measured polarization between a high and a low field value is
systematically observed for different devices. The polarization is always higher
for the lower field values. This could be due to inhomogeneity across the cross
section of the strip (width/ thickness): as the field is modified the transverse
profile of the spin-wave could be modified, resulting in a change of the coupling
of the spin wave to the spin current. In the next section 5.3.2 we will use the
low field values of the polarization which are easier to measure and more re-
producible. Indeed one could notice on figure-5.13 that the measured value of
the polarization at positive and negative low field are almost equal, which is a
strong indication of the reproducibility of the measurements.
Surprisingly, as the wavevector increases to 7.8 µm−1, the polarization decreases
to (P= 0.53) as one notices for the 2 µm stripe. This difference in the polarization
value is larger than the error bar expected from the measurements, which indi-
cates that the degree of the spin polarization depends also on the wavevector. It
might also be explained by the presence of the magnetic inhomogeneity, because
the transverse profile of the spin wave might also depend on the wavevector.
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5.3.2 Thickness dependence of the degree of the spin po-
larization

We carry out the current induced spin wave Doppler shift measurement for the
devices of different thicknesses. For each device, the measurements of the degree
of the spin polarization are performed with the same procedure and the same
analysis as mentioned in the paragraph-5.3.1. A summary of the results is given
in the table-5.2. Several comments can be made on the results:

Device k µm−1 40 nm 20 nm 14 nm 10 nm 6 nm
8 µm 3.86 0.48 0.71 X 0.63 0.46
8 µm 1.55 X X X X X

3 µm down 3.87 0.45 X X 0.63 X
3 µm down 1.4 0.79 X X 0.75 X
3 µm up 7.8 -0.25 X 0.62 X X
3 µm up 3.14 0.57 X X X X

2 µm 7.84 X 0.59 X 0.53 X
2 µm 2.8 X X X 0.58 X

Table 5.2: The measured values of the polarization for different samples. The
measurements were done at µ0H0 =28 mT. The second line for each device
refers to the measurements performed on the secondary peak of the spin-wave
spectra.

• Reproducibility / stripe width dependence
Comparing two devices having same thickness and same k, we find very
similar values (0.63 for 8 µm- 10nm vs 0.63 for 3 µm-10 nm, 0.48 for 8
µm- 40 nm vs 0.45 for 3 µm-40 nm). Apparently, the measurement is re-
producible and there is no dependence of the effect on the stripe width.

• Primary vs secondary wavevectors
The measurement of the polarization for the same device done at the
wavevector of the primary and the secondary peaks show that the mea-
sured polarization is slightly higher for the secondary peak such as the
results of the measurement of the devices (3 µm down and 2 µm) of the
10 nm. This difference is explained due to an uncertainty over the wavevec-
tor of the secondary peaks. On the Fourier transformation displayed on
figure 4.3 it is apparent that the secondary peak is broad and it has a
lower amplitude, so that a small contribution from other excitations with
a different wavevector could shift the effective wavevector of the secondary
peaks toward a higher values.

• High vs Low k
As we already pointed in the section 5.3.1, the polarization of the devices
with a different wavevector of the primary peaks as the devices 8 µm and
3 µm down of the 10 nm film are different. In the following, to study the
thickness dependence of the polarization, we have chosen to compare the
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polarization of the devices having the same wavevector (k=3.86 µm−1).

• 40 nm film
One could also remark that very different values of the spin polarization are
measured for the 40 nm film devices. The polarization takes very different
values from device to device and changes even sign for one measurement (3
µm up, main peak). The peculiarity of these measurements are discussed
in the next section 5.3.3. They are related to the interplay between the
Oersted field and the localization non-reciprocity of the MSSW which re-
sults in an apparent Doppler effect in the thick film limit. This is currently
under investigation in collaboration with M. Kostylev (UWA). Then one
could forget the results of the 40 nm for the moment in the discussion of
the spin polarization versus the thickness of the film.

The variation of the degree of the spin polarization as a function of the inverse
of the thickness is displayed in the figure-5.14. The values of the polarization
are obtained for the devices of a wavevector k= 3.86 µm−1. The degree of the
spin polarization decreases from 0.71 for the 20 nm film to 0.46 for the 6 nm
film. The strong reduction of the spin polarization with the film thickness which
is observed indicates there is an influence of the surfaces on the spin polarized
flow. It seems that the surfaces contribute to an additional scattering of the spin
polarized current which depolarizes the current.
One could notice a similar trend of the polarization with the thickness on the

result of V. Vlaminck [110] although our measurements indicate higher value
of the spin polarization. He measured a polarization of the permalloy thin film
of 0.43 and 0.51 for the 10 and 20 nm thin films respectively using the current
induced spin wave Doppler shift in the MSFVW configuration.
Other studies measured the degree of the spin polarization in permalloy films
using the CISWDS in the MSSW configuration: Zhu et al. [118] have measured
P= 0.75 at low temperature and P= 0.58 at room temperature for a 20 nm film.
Sekiguchi et al.[92] measured P=0.6 for a 35 nm thin film. Thomas et al. [106]
have measured P= 0.71 for a 30 nm film. The difference between the measured
values in this study and the values found in the literature could be attributed
to a difference in the quality of the films and in the extraction of the current
induced spin wave Doppler shift.
By extrapolating the result to the bulk, we obtain a degree of spin polarization
of 0.80. The deviation of the bulk resistivity of the binary and ternary alloys
from the Mathiessen rule suggests the asymmetry coefficient α =

ρ↓
ρ↑

is between
10 and 20 for the iron impurities in a bulk Ni which indicates a polarization
P = α−1

α+1 between 0.8-0.9 [19]. A value P = 0.65 ± 0.1 was extracted from
CPP-GMR measurements [47] [102]. These values are comparable to the value
we deduce from the extrapolation.
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Figure 5.14: The variation of the polarization as a function of the thickness for
the measured devices having k=3.86 µm−1 (black squares). The open symbols
are obtained from other studies as indicated in the text.

5.3.3 Problem of the 40 nm thin film

In section §5.2.3, we have seen that an asymmetry across the film might lead
to a current-induced frequency shift associated with the Oersted field. Another
source of asymmetry across the film thickness is the magnetization profile of the
spin wave itself, which is more localized on the top or bottom surfaces depending
on the sign of k and M (see 1.3.4.2). This might couple to the Oersted field to
generate a current induced frequency shift. This shift is expected to have the
same symmetry as the Doppler shift, which makes it impossible to differentiate
between the two contributions from the experiments. To account for this effect,
a simulation was performed by M. Kostylev (UWA).
The simulations calculate the magnetization profile and the eigenfrequency of
the magnetostatic surface wave in the presence of the DC current. The results
support the contribution of such an effect to the measured frequency shift. The
effect is calculated to be negligible for thinner films (20 and 10 nm). On the other
hand its value becomes critical for the devices of the 40 nm film. M. Kostylev
has calculated a frequency shift about 9 MHz for the 40 nm device with w=3.75
µm−1 and k = 7.8µm−1 under an applied field of 28 mT and a DC current of
10 mA. The frequency shift has a sign opposite to the expected Doppler shift.
By combining this simulated value with the measured frequency shift one can
estimate the degree of the spin polarization for the 40 nm film to be about 0.8.
This effect is explained due to interplay between the Oersted field and the
localization of the MSSW profile. Importantly, when the exchange interaction
is considered the fundamental mode is localized at the surface opposite to the
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surface of localization of the magnetostatic surface wave in the pure dipolar
regime [61].

5.4 Spin polarized transport in Permalloy thin
films

This section is devoted to the interpretation of the thickness dependence of the
polarization within the two current model.

5.4.1 The two current model
In the frame of the two current model in its basic form (without spin flip), the
spin dependent resistivities can be extracted for the total resistivity (ρ) and
to the degree of the spin polarization P. The spin-up ρ↑ and the spin-down ρ↓
resistivities are written as [Equ. 2.1-2.2]:

ρ↑ = 2ρ
1+P ,

ρ↓ = 2ρ
1−P .

(5.10)

During the measurements of the polarization for each film thickness P(t),simultaneous
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Figure 5.15: The variation of the resistivity as a function of the thickness for
the some of devices having k=3.86 µm−1.

four point measurements for the resistivity of the film were done. The results
ρ(t) are shown in the figure-5.15. The measured resistivity increases as the film
decreases as already noted in section 3.3. The values of the ρ↑ and ρ↓ calculated
for each film thickness using equation 5.10 and the data of figures 5.14 and 5.15
are shown in the figure-5.16.

The resistivity of the spin-up channel increases as the film thickness de-
creases, whereas the resistivity of the spin-down channel decreases with the
thickness. The variation of the resistivity of the spin-up channel is consistent
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Figure 5.16: The variation of the spin dependent resistivities for the majority
and the minority electrons as a function of the inverse of the thickness.

with the Fuchs-Sondheimer description of the surface electron scattering. How-
ever, the behavior of the spin-down channel appears unphysical. Consequently,
one may suspect the basic two current model is oversimplified as already men-
tioned in section 2.1, and one should account for spin flip scattering events in
the two current model as discussed in the following section.
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5.4.2 The two current model with spin flip scattering

If spin flip scattering mechanisms are considered to be active in the permalloy
thin films, the simple two current model is not valid any more. In the presence
of the spin flip scattering the total resistivity and the degree of the polarization
can be calculated by solving the Boltzmann equation in the relaxation time
approximation [36]. The results of P and ρ are written as:

ρ =
ρ↑ρ↓+ρ↑↓(ρ↑+ρ↓)

ρ↑+ρ↓+4ρ↑↓

P =
(ρ↓−ρ↑)

ρ↑+ρ↓+4ρ↑↓

(5.11)

where ρ↑ and ρ↓ are the spin dependent resistivity and ρ↑↓ is the spin flip
effective resistivity. To account for a probable surface scattering contribution, we
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Figure 5.17: The spin polarization (left axis) and the resistivity (right axis) as
a function of the film thickness obtained from of the experimental results, and
the theoretical values from the two current model with and without spin-flip
scattering.

assume that the three spin dependent resistivities (ρ↑, ρ↓, ρ↑↓) have a thickness
dependence behavior of the form ρi = Ai + Bi/t. We adjust the parameters of
each resistivity channel Ai and Bi to reproduce the measured ρ and P using the
equations-5.11. After many trials the most convenient parameters are noted in
the table-5.3.
The black symbol on figure-5.17 show the measured values of P and ρ (including
an extrapolate to infinite thickness). The red symbol show the best fit for P and
ρ in the absence of the spin-flip scattering. And the green symbols show the best
fit for P and ρ accounting for spin-flip scattering. With this set of parameters
one could notice the impact of the spin-flip scattering. It is obvious that the
results from the two current model without spin flip is far from the experimental
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resistivity Ai Bi

ρ↑ 25 25
ρ↓ 200 50
ρ↑↓ 4 200

Table 5.3: The best fit of the Ai and Bi parameters of the 3 scattering resistiv-
ities.

data, however when the spin flip scattering is included it approaches better the
measurements. Figure-5.18 displays the spin dependent resistivities from the
two current model including spin-flip scattering.

0,00 0,05 0,10 0,15 0,20
0

50

100

150

200

250

300

 

 

 (
.c

m
)

t-1
mag(nm-1)

 up
 down
 up down

Figure 5.18: The spin dependent resistivity obtained from the two current model
including spin-flip scattering.

We could justify the thickness dependence of the spin-flip scattering due
to one of the following possible mechanisms. First, since the measurements are
performed at room temperature, one expects spin-flip scattering due to the col-
lision of the electrons with thermal magnons as was indicated in the analysis of
the temperature dependence of the spin dependent resistivity [118]. This con-
tribution to the spin-flip resistivity might be enhanced at small thickness, for
example if surface thermal magnons are present. Second, one could expect an
enhanced spin orbit coupling of the atoms located near to the interfaces, which
will lead to an enhanced mixing between the two spin population.Third, the spin
flip scattering could be due to the presence of magnetic impurities close to the
interfaces (for example the impurities responsible of the slow relaxers behavior
discussed in chapter 3).
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Conclusion
The film thickness dependence of the current induced spin wave Doppler shift
was measured in order to study the effect of surface electron scattering on the
spin polarized transport. Combining propagating spin wave spectroscopy signals
taken for different polarities of H, k and I, we could separate the Doppler con-
tribution from other current induced effects. Our results show that the surfaces
depolarize the electrical current. The extrapolated bulk value of the spin polar-
ization (0.8) is found to be comparable to the values deduced from the residual
resistivity of bulk alloys [19] and from CPP-GMR [47] [102]. The strong de-
crease of the spin-polarization measured at small thickness could be explained
by surface induced spin-flip scattering.



Conclusion

The main aim of this thesis was to study the effects of the surfaces on the spin
dependent transport. The technique of the current induced spin wave Doppler
shift was used to measure the degree of spin-polarization of the electrical current.
In order to extract the contribution of surface electron scattering, the degree of
spin-polarization was measured for different film thicknesses.

To carry out this study a precise knowledge of the film characteristics is
required. Accordingly, standard characterization techniques have been used to
investigate the magnetic and electrical properties of the permalloy thin films as
described in the third chapter. The main result of this study is the following:

• A 1/t dependence law was measured both for the resistivity, the effec-
tive magnetization and the damping coefficient. This dependence was at-
tributed to the influence of the surfaces (surface electron scattering, surface
anisotropy, and surface relaxation processes respectively).

At the end of this step, we had a better knowledge of the characteristics of our
films.
In a second step, propagating spin wave spectroscopy measurements have been
performed in the absence of the electrical current. The spin waves have been
measured in the magnetostatic surface wave configuration (MSSW). The char-
acteristics of this wave are quite special and one has to identify them carefully
to be able to extract the Doppler frequency shift accurately enough in the pres-
ence of the DC current. This work is presented in the fourth chapter. Its main
results are:

• The reflection signals have been used to extract the magnetic properties
of the film which are found to be in good agreement with those deduced
from standard FMR measurements.

• A qualitative understanding of the transmission signals (amplitude and
phase) is provided.

• The peculiarities of the magnetostatic surface waves were investigated.
The non-reciprocity in amplitude and in frequency of these waves were
discussed.

At this point, we were ready to perform an accurate film thickness dependence
study using the current induced spin wave Doppler shift experiment. The results
of this study are presented in the fifth chapter:
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• The current induced frequency shifts observed in the magnetostatic surface
wave configuration were described and interpreted, which allows one to
extract accurately the Doppler shift.

• The spin polarization extracted from the CISWDS was found to decrease
strongly as the film thickness decreases. This observation is the main find-
ing of this study.

• These results were discussed in the context of the two current model. It
was necessary to include a spin-flip effective resistivity with a sizeable
surface contribution to account for the measurements.

This work addressed the question of the variation of the degree of spin polar-
ization of the electrical current as a function of the thickness. It is therefore
of direct interest for a fundamental understanding of the effects of surfaces on
the spin polarized transport. In addition the results of this study might be
useful for technological developments. First, some spin transfer devices, such
as racetrack memories, rely on spin current flowing along very thin nanowires
[86]. To optimize these devices, it is necessary to understand the degree of the
spin polarization of the electrical current (P), the non-adiabatic spin transfer
torque coefficient (β) and the magnetization relaxation parameter described by
the Gilbert damping coefficient (α). Our study shows the importance of the size
effect (surface electron scattering) for P and α. Propagating spin wave spec-
troscopy under DC current might also be used to extract the information on
β [92]. Second, the study of the propagating characteristics of the spin wave
is crucial for the development of logical circuits using spin waves as described
by [45], [58], and in magnonic crystal on the nanoscale [83]. Our study shows
how surface effects influence these propagation characteristics. It also shows the
strengths and the limitation of the PSWS technique in the form used up to now.



Perspectives

During this study many fundamental and experimental questions arose which
should be addressed in future works. Among the challenges to address, one can
mention:

• The extraction of the propagation characteristics of the spin waves from
the propagating spin wave spectroscopy signals could be made quantita-
tive.

• The origin of the frequency non reciprocity in our magnetostatic surface
wave measurement could be further studied.

• In this work, we assume the magnetic film is a homogeneous single layer
model. However, we have some indications of inhomogeneities over the
thickness (preliminary neutron measurements). The system would prob-
ably be better described as a composite film. Although the single layer
model probably capture most of the thickness dependance, both experi-
mental and theoretical investigations would be required to understand the
spin polarized transport and the propagation of the spin waves in such
composite films.

• The measurements of the degree of the spin polarization could be extended
also to low temperature, in order to extract the phonon contribution.

• Measuring precisely the current induced changes in the amplitude of the
signals should allow one to extract the non adiabatic spin transfer torque.
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Appendix A

Magnetostatic surface waves
in the presence of an out of
plane uniaxial anisotropy

To account for the effect of a uniaxial out of plane anisotropy on the dispersion
relation of the magnetostatic surface wave, we have adapted the formalism de-
scribed in section 1.3.4. Consider the direction of the uniaxial anisotropy (Ku) to
be along the film thickness (y-axis). The dynamical component of the anisotropy
field is written as:

hku =
2Kumy(t)

µ0M2
s

êy. (A.1)

In the presence of the uniaxial anisotropy, the Polder susceptibility tensor is
written as:

χ =
ωM

D

(
ω0 − ωk −iω
iω ω0

)
(A.2)

where ωk = γ 2Ku

µ0M2
s
. D is defined as:

D =
[(ω0)(ω0 − ωk)− ω2]

ωM

Notice that the diagonal components of the susceptibility tensor are not equal.
Consequently, the permeability tensor equation writes:

µ̄ = µ0(Ī + χ) = µ0

 1 + χxx − iω
D 0

iω
D 1 + χyy 0
0 0 1

 (A.3)

Now, solving the equation (1.28) of the scalar potential in the magnetic layer
by writing the trial solution as:

ΨII = eiνkxx[Ψ0+e
kyy +Ψ0−e

−kyy],

One obtains kx and ky as:

k2y = −( 1+χxx

1+χyy
)k2x

ky = iαkx
where
α =

√
( 1+χxx

1+χyy
)

(A.4)
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The scalar potential has a propagation characteristic across the x-axis, and it is
decaying exponential along the film thickness. In contrary to the section 1.3.4.2,
kx and ky have a different magnitude. The scalar potential in the magnetic film
is written as:

Ψ = eikx[Ψ0+e
αky +Ψ0−e

−αky]. (A.5)

Applying the boundary condition between the dielectric and the magnetic layer,
and solving the system of equation for Ψ0+ and Ψ0− we derive an implicit
formula for dispersion relation written as:

e2αkd =
[ω +

√
(D + ω0 − ωk)(D + ω0)−D][−ω +

√
(D + ω0 − ωk)(D + ω0)−D]

[ω −
√

(D + ω0 − ωk)(D + ω0)−D][−ω −
√
(D + ω0 − ωk)(D + ω0)−D]

,

(A.6)
Performing an expansion of the implicit equation-A.6 to the second order in
(kd) we obtain a simpler analytical formula for the dispersion relation:

ω =

√
[ω0(ω0 − ωk) + ω0ωM +

1

2
ω2
M (kd− (kd)2)− 1

2
ωkωM (kd+ (kd)2)]

(A.7)
Another approximate formula is obtained by replacing the saturation magneti-
zation Ms by the effective magnetization Meff and M2

s by MsMeff in formula
1.47:

ω2 = (γµ0)
2(H0(H0 +Meff ) +MsMeff (

1− e−2kd

4
)) (A.8)

Figure-A.1 shows a comparison between the exact solution of equation A.6
(black curve), the analytical equation A.7 (red curve), and the equation A.8
(blue curve). The three formulas are in agreement for low wavevector k. For-
mula A.8 appears to be a very good approximation of the exact solution also at
higher wave-vectors.
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Figure A.1: Plot of the dipersion relations for the exact and the analytical
equtions mentioned above. The parameters are t =10 nm, and µ0H0=30 mT,
µ0Ms=0.9 T, µ0Hk=50 mT and γ/2π =29.2 GHz/T.





Appendix B

Propagating spin wave
spectroscopy parameters for
reflection and transmission
signals

This appendix gives in tabular form all the parameters extracted from the anal-
ysis of the propagating spin wave spectroscopy signals.

B.1 Reflection signals: A, B, C parameters

Device k µm−1 40 nm 20 nm 14 nm 10 nm 6 nm
7 µm 3.86 27.4 ± 1.8 29.9 ± 0.59 X 30.2 ± 1.39 30.4 ± 4.2

3 µm down 3.87 29.5 ± 4.6 X X 32.45 ± 2.42 X
3 µm up 7.8 28.7 ± 7.2 X 27.5 ± 1.5 X X

2 µm 7.84 X 29.25 ± 1.2 X 32.3 ± 2.6 X

Table B.1: A summary of the gyromagnetic ratio γ
2π (in GHz/T) of all measured

devices extracted from the reflection signals of the propagating spin wave spec-
troscopy (PSWS) experiment. As we have seen in the 4.2.3 the gyromagnetic
γ
2π is obtained from the correspondence of the quadratic term from the fit and
the quadratic term of the dispersion relation of the magnetostatic surface wave.
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Device k µm−1 40 nm 20 nm 14 nm 10 nm 6 nm
7 µm 3.86 869.2 ± 9.9 837 ± 4.8 X 803.4 ± 9.3 767 ± 26.06

3 µmdown 3.87 820.7 ± 29.6 X X 748.1 ± 14.07 X
3 µmup 7.8 843.4 ± 43 X 844.8 ± 7.9 X X
2 µm 7.84 X 845.8 ± 9.2 X 753.02 ± 15.5 X

Table B.2: The ( γ
2π )

2Meff (in GHz2/T ) values of all the measured devices
extracted from the reflection signals parameters of the propagating spin wave
spectroscopy experiment. As we have seen in the 4.2.3 ( γ

2π )
2Meff is obtained

from the correspondence of the linear term (B) from the fit and the linear term
of the expected dispersion relation of the magnetostatic surface wave.

Device k µm−1 40 nm 20 nm 14 nm 10 nm 6 nm
7 µm 3.86 53.5 ± 0.33 28.02 ± 0.22 X 13.8 ± 0.32 7.68 ± 0.78

3µmdown 3.87 50.8 ± 1.2 X X 13.04 ± 0.39 X
3 µmup 7.8 90 ± 1.75 X 36.1 ± 0.25 X X

2µm 7.84 X 47.2 ± 0.42 X 26.8 ± 0.4 X

Table B.3: The obtained values of the zero field frequency parameter (in GHz2)
for the measured devices by the propagating spin wave spectroscopy. These
values are the constant terms (C) of the fits of the square of the resonance
frequency as a function of the applied field.

B.2 Transmission signals: group velocity and the
attenuation length

The group velocity
In the table-B.4 and in the table-B.5 we note the measured and the theo-

retical value for the 3 devices of the 10 nm and the 40 nm films respectively.
The propagating spin waves in the 8 µm and in the 3 µm devices for the 10

Sample 8 µm 3 µm-down 2 µm
µ0Hext[mT ] 28 28 28

D [µm] 8.8 14.5 7.7
δfϕ=π

2
[MHz] 79 ± 1.8 70± 1.4 79 ± 1.8

vg)measure[m.s
−1] 2780.8 ± 63.36 4060 ± 81.2 2433.2 ± 55.4

f [GHz] 6.12 5.95 7.01
k [µm−1] 3.86 3.87 7.84

vg)theo[m.s
−1] 1970.7 2027.03 1720.5

Table B.4: The measured and the calculated values of the group velocity for the
10 nm film of different devices. The theoretical group velocity were obtained
from the formula 4.12 with the parameter (µ0Ms = 0.96T, γ

2π = 30GHz/T ).
The measured values were obtained from the main peak of the antennas.



B.2. GROUP VELOCITY AND THE ATTENUATION LENGTH 147

Sample 8 µm 3 µm-down 3 µm-up
µ0Hext[mT ] 28 28 28

D [µm] 8.8 14.5 5.5
δfϕ=π

2
[MHz] 130 ± 1.04 100.5±1.2 150 ± 2.25

vg)measure[m.s
−1] 4576 ± 36.6 5829 ±69.6 3300 ± 49.5

f [GHz] 8.917 8.637 10.81
k [µm−1] 3.86 3.87 7.8

vg)theo[m.s
−1] 4291.7 4427.3 2583.1

Table B.5: The measured and the calculated values of the group velocity for
different devices of the 40 nm film. The theoretical group velocity were obtained
from the formula 4.12 with the parameter (µ0Ms = 0.96T, γ

2π = 30GHz/T ). The
measured values were obtained from the main peak of the excitation.

nm and the 40 nm film theoretically have the same propagation characteristics.
Experimentally, they are excited with the same antenna and they are oscillating
at the same frequency. However, we measure different group velocity for these
devices.

In table-B.6, we compare the group velocity measured at the same frequency
in the 10 and the 40 nm films. Theoretically, we expect the group velocity to be 3
times faster in the 40 nm than in the 10 nm films. We measure the group velocity
in the 40 nm higher than that of the 10 nm by a factor of 2. This indicates that
the spin wave propagating in the 40 nm are propagating over a larger distance
compared to the 10 nm. This is mainly due to the larger amplitude of the signal
in the 40 nm film and the smaller damping compared with the 10 nm film.

40nm 40nm 10 nm 10 nm
Sample 8 µm 3 µm-down 8 µm-down 3 µm-down

µ0Hext[mT ] 28 28 60 80
D [µm] 8.8 14.5 8.8 14.5

δfϕ=π
2
[MHz] 130 ± 1.04 100.5±1.2 68 ± 1.5 60 ±1.2

vg)measure[m.s
−1] 4576 ± 36.6 5829 ±69.6 2396.6 ±52.8 3480 ± 69.6

f [GHz] 8.917 8.637 8.673 9.02
k [µm−1] 3.86 3.87 3.86 3.87

vg)theo[m.s
−1] 4291.7 4427.3 1390.6 1336.8

Table B.6: A comparison of the group velocity for spin waves oscillating at
similar frequencies in the 10 and 40 nm film devices. The theoretical group
velocity were obtained from the formula 4.12 with the parameter (µ0Ms =
0.96T, γ

2π = 30GHz/T ). The measured vales were obtained from the main peak
of the excitation.
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Attenuation length

Sample 8 µm
µ0Hext[mT ] 28 60 80 160

D [µm] 8.8 8.8 8.8 8.8
∆Lii[pH] 16.9 15.02 13.7 11.1
∆L12[pH] 2.46 1.31 0.93 0.26
∆L21[pH] 1.013 0.43 0.307 0.057

Latt)mea[µm] 5.56 4.08 3.66 2.47
f [GHz] 6.127 8.673 9.21 12.815

k [µm−1] 3.86 3.86 3.86 3.86
vg)theo[m.s

−1] 1968.4 1390.6 1309.5 941.14
Latt)theo[µm] 15.3 10.2 9.2 5.8

Table B.7: The variation of the attenuation length with the applied field for
the device of (t= 10 nm, w =8 µm). The theoretical values of the attenuation
length were obtained from the formula 4.14 with the parameters (µ0Ms=0.96
T, α =0.0084, γ

2π=30 GHz/T). The measured values were obtained for the main
peak of the excitation.

In the tables B.8 and B.9 we show the attenuation length for different devices
of the 10 and 40 nm films at a given applied field. The similar devices 8 µm and
3 µm down have similar attenuation length of the Latt about 5.5 µm in the 10
nm, and about 17.1 µm in the 40 nm film.

Sample 8 µm 3 µmdown 2 µm
µ0Hext[mT ] 28 28 28

D [µm] 8.8 14.5 7.7
∆Lii[pH] 16.9 14.9 3.82

Latt)mea[µm] 5.55 5.54 3.6
f [GHz] 6.127 5.94 7.015

k [µm−1] 3.86 3.87 7.84
vg)theo[m.s

−1] 1968.4 2030 1587.7
Latt)theo[µm] 15.3 15.8 12.3

Table B.8: The attenuation length for different devices of the t= 10 nm film. The
theoretical values of the attenuation length were obtained from the formula 4.14
with the parameter (µ0Ms=0.96 T, α =0.0084, γ

2π=30 GHz/T). The measured
values were obtained for the main peak of the excitation.

In the table B.10 we compare the attenuation length for the 10 and 40 nm
films for similar devices at similar frequencies. We notice that the attenuation
length is longer in the 40 nm (∼ 17 µm) than the 10 nm (∼ 5.5 µm) film.
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Sample 8 µm 3 µmdown 3 µm up
µ0Hext[mT ] 28 28 28

D [µm] 8.8 14.5 5.5
∆Lii[pH] 18.16 17.92 2.4
∆L12[pH] 8.48 6.58 0.996
∆L21[pH] 2.38 2.04 0.19

Latt)mea[µm] 17.11 19.8 7.8
f [GHz] 8.891 8.6 10.81

k [µm−1] 3.86 3.87 7.8
vg)theo[m.s

−1] 4304.3 4446.4 2583.1
Latt)theo[µm] 37.6 38.9 22.5

Table B.9: The attenuation length for different devices of the t=40 nm film. The
theoretical values of the attenuation length were obtained from the formula 4.14
with the parameter (µ0Ms=0.96 T, α =0.0075, γ

2π=30 GHz/T). The measured
values were obtained for the main peak of the excitation.

thickness 40 40 10 10
device 8 µm 3 µmdown 8 µm 3 µm down

µ0Hext[mT ] 28 28 60 80
D [µm] 8.8 14.5 8.8 14.5
∆Lii[pH] 18.16 17.92 15.03 11.53
∆L12[pH] 8.48 6.58 1.32 0.271
∆L21[pH] 2.38 2.04 0.43 0.14

Latt)mea[µm] 17.11 19.8 4.09 4.35
f [GHz] 8.891 8.6 8.673 9.02

k [µm−1] 3.86 3.87 3.86 3.87
vg)theo[m.s

−1] 4304.3 4446.4 1390.6 1336.8
Latt)theo[µm] 37.6 38.9 10.1 9.4

Table B.10: The attenuation length for different devices of the t=40 nm and t=
10 nm film. The theoretical values of the attenuation length were obtained from
the formula 4.14 with the parameters mentioned in the previous tables B.9 and
B.8. The measured vales were obtained for the main peak of the excitation.





Appendix C

Rôle des surfaces dans la
dynamique d’aimantation et
le transport polarisé en spin:
une étude d’ondes de spin

Résumé en français

Introduction

L’émergence de l’électronique de spin dans les technologies de stockage des don-
nées a ouvert la voie à une nouvelle génération de dispositifs. Bien que le spin de
l’électron soit connu depuis longtemps, il n’avait pas été utilisé de façon intensive
pour transporter l’information, jusqu’à la découverte de la magnétorésistance
géante (GMR pour giant magnetoresistance) en 1988. L’effet de GMR montre
l’interdépendance entre le courant électrique et la configuration de l’aimantation
dans des empilements de couches ferromagnétiques. L’intérêt de l’industrie pour
l’électronique de spin a émergé quand des héterostructures GMR sont apparues
dans les têtes de lecture des disques durs [20].

En parallèle, le phénomène du couple de transfert de spin (STT pour spin
transfer torque) a été découvert comme un outil prometteur pour manipuler
l’orientation de l’aimantation d’une couche magnétique avec un courant élec-
trique. Le couple de transfert de spin a été observé dans une série d’expériences :
renversement d’aimantation induit par un courant[1] [66], oscillation d’aimantation
entretenue par transfert de spin [48][107], déplacement de parois de domaine in-
duit par un courant [116] et, plus récemment, décalage Doppler d’ondes de spin
induit par un courant [111]. J. Katine de Hitachi et E. Fullerton du centre
de recherche sur l’enregistrement magnétique [91] ont déclaré que la nouvelle
génération de mémoires magnétiques sera basée sur les dispositifs de transfert
de spin dans un avenir proche. Avec cette multiplication très rapide des dis-
positifs d’électronique de spin,une compréhension fondamentale du transport
polarisé en spin est nécessaire.

151



152 APPENDIX C. SUMMARY IN FRENCH

La physique de base de l’électronique de spin est connue depuis le début du
siècle dernier. Sa pierre angulaire est le modèle à deux courants proposé par
Mott [79] pour décrire le transport électrique dans les métaux ferromagnétiques
(Fe, Co, Ni). Dans ce modèle, on distingue deux populations d’électrons selon
que leur moment magnétique de spin est aligné parallèlement (spins majori-
taires) ou antiparallèlement (spins minoritaires) à l’aimantation du matériau.
Ces deux populations d’électrons forment deux canaux de conduction avec des
conductivité différentes.

Différentes sources de diffusion des électrons (phonons, impuretés [19], sur-
faces, joints de grains [68]) sont susceptibles de contribuer à la résistivité de
chacun des deux canaux. Un certain nombre d’études ont été réalisées dans les
années 1970 pour évaluer certaines de ces contributions. Ainsi, des mesures de
résistivité dans des alliages binaires et ternaires réalisées à différentes tempéra-
tures, ont donné indirectement accès aux résistivités dépendantes du spin asso-
ciées aux impuretés et aux phonons. A l’échelle du nanomètre on s’attend à ce
que les surfaces jouent un rôle déterminant [85]. Jusqu’à présent, l’impact de la
diffusion des électrons par les surfaces n’a pas pu être abordé, sauf pour certaines
études GMR où la présence de plusieurs couches de métal rend l’interprétation
particulièrement compliquée. La principale difficulté est l’absence d’une expéri-
ence appropriée pour accéder directement au degré de polarisation en spin qui
mesure l’asymétrie entre les courant transportés par les électrons majoritaires
et minoritaires.

Figure C.1: Un scénario possible pour rendre compte du transport polarisé en
spin dans un film mince fait d’un alliage ferromagnétique métallique

Récemment, une nouvelle méthode fondée sur le décalage Doppler d’ondes de
spin induit par un courant [111], a été proposée par notre groupe pour mesurer
directement le degré de la polarisation en spin du courant électrique dans un
film de métal ferromagnétique.

A l’aide de cette nouvelle technique, nous avons décidé de sonder les pro-
priétés de transport polarisé en spin dans des films minces de permalloy (Ni80Fe20).
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Un modèle de circuit électrique représentant le transport polarisé en spin dans
ce type de films est esquissé dans la figure-C.1. Ce scénario est basé sur le mod-
èle à deux courants et il considère que les électrons de chaque canal sont diffusés
par plusieurs sources : le désordre d’alliage, les phonons, les surfaces et les joints
de grain. Dans ce scénario, des diffusions avec retournement de spin (spin-flip)
sont également possibles (influence des magnons thermiques ou de l’interaction
spin-orbite). Dans une première étape pour valider/invalider ce scénario, une
étude de la dépendance en épaisseur de film du décalage Doppler d’ondes de
spin induit par un courant a été effectuée dans le cadre de cette thèse afin de
comprendre le rôle des diffusions par les surfaces dans le transport polarisé en
spin.

Contenu du manuscrit

Les chapitres 1 et 2 de ce manuscrit présentent les notions de base nécessaires
pour comprendre les expériences réalisées.

Dans le premier chapitre, nous présentons les notions de résonance ferromag-
nétique et d’onde de spin. Nous commençons tout d’abord par écrire l’expression
de l’énergie magnétique dans une couche mince ferromagnétique. Nous intro-
duisons ensuite l’équation du mouvement de l’aimantation appelée équation de
Landau-Lifschitz. A l’aide de cette dernière, nous obtenons la condition de ré-
sonance ferromagnétique pour une couche mince. Cette expression contient des
paramètres matériaux importants tels que l’aimantation effective et l’anisotropie
de surface. Puis, nous décrivons les propriétés des ondes de spin se propageant
dans des couches minces. Les relations de dispersion sont données pour dif-
férentes géométries (orientations relatives du vecteur d’onde de propagation, de
l’aimantation et de la normale au film). Une attention particulèire est accordée à
la configuration d’onde magnétostatique de surface (MSSW pour magnetostatic
surface wave) que nous avons utilisée dans les mesures. Ce premier chapitre se
termine par une description générale des processus de relaxation de la précession
de l’aimantation dans les métaux ferromagnétiques.

Dans le deuxième chapitre, nous introduisons des aspects indispensables à
l’analyse des résultats expérimentaux. Tout d’abord, nous décrivons le trans-
port polarisé en spin dans les métaux ferromagnétiques. Après avoir introduit
le modéle à deux courants, nous montrons comment il peut être amélioré en
introduisant les diffusions avec renversement de spin. La diffusion des électrons
par les surfaces est ensuite introduite à partir du modèle de Fuchs-Sondheimer
(FS). Finalement, le phénomène de couple de transfert de spin est décrit ainsi
que plusieurs de ses manifestations expérimentales, pour des vannes de spin,
pour des parois de domaine et enfin pour des ondes de spin (décalage Doppler).

Les chapitres 3, 4, 5 contiennent les résultats experimentaux que nous avons
obtenus.

Dans le troisième chapitre, nous décrivons le dépôt et la caractérisation
des films minces de permalloy. Plusieurs séries de films de permalloy entourés
de deux couches d’Al2O3 et/ou de SiO2 ont été déposés par pulvérisation
cathodique. Sur ces films, nous avons effectué une étude de caractérisation struc-
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turale, électrique et magnétique. Des images de microscopie électronique à trans-
mission montrent que l’interface entre le permalloy et l’alumine est plate. Des
mesures d’aimantation (SQUID) menées en fonction de l’épaisseur montrent
une couche magnétiquement morte d’environ 1nm. Ensuite, nous avons utilisé
la méthode du Van der Pauw (VdP) pour mesurer la résistivité en fonction de
l’épaisseur des films. On constate que la resistivité augmente quand l’épaisseur
diminue, ce qui est interprété dans le cadre du modèle de Fuchs-Sondheimer
comme une conséquence de la diffusion des électrons par les surfaces. Puis, des
mesures de résonance ferromagnetique (FMR pour ferromagnetic resonance)
ont été réalisés en utilisant un spectromètre en cavité standard. En suivant
l’évolution de la raie de résonance en fonction de l’épaisseur t du film de permal-
loy, nous avons mesuré une dépendance en 1/t pour l’aimantation effective et le
coefficient d’amortissement de Gilbert.

Dans le quatrième chapitre, nous présentons une étude expérimentale de la
propagation des ondes de spin dans ces films dans la géométrie MSSW. Cette
étude est réalisée en utilisant une technique de mesure inductive : l’excitation et
la détection des ondes de spin se fait par l’intermédiaire d’une paire d’antennes
intégrées au-dessus d’un ruban fabriqué à partir du film ferromagnétique. Tout
d’abord, nous décrivons le protocole de nanofabrication utilisé pour fabriquer
les rubans, les antennes et les contacts électriques. Ensuite, nous décrivons des
mesures d’auto-inductance (obtenues à partir du signal hyperfréquence réfléchi
par une antenne) servant à la caractérisation magnétique des rubans. Les car-
actéristiques obtenues sont en accord avec celles déduites des mesures FMR, ce
qui indique que les films ne sont pas altérés par le protocole de nano-fabrication.
Nous présentons ensuite des mesures d’inductance mutuelle (obtenues à partir
du signal hyperfréquence transmis d’une antenne à l’autre). La forme des sig-
naux observés est interprétée de manière qualitative. Une attention particulière
est donnée au phénomène de non-réciprocité, typique de la configuration MSSW
: les signaux observés pour des directions de propagation opposés sont différents,
à la fois en amplitude et en fréquence.

Une fois que les films étaient caractérisés et que les signaux d’ondes de spin
étaient compris, nous avons pu nous intéresser à la modification des signaux
d’ondes de spin sous l’effet d’un courant électrique, ce qui est décrit dans le
cinquième chapitre. La première conséquence de l’application d’un courant élec-
trique est la génération d’un champ magnétique (le champ d’Oersted) suscep-
tible de modifier la fréquence des ondes de spin. Nous montrons que l’on peut
séparer cette contribution du décalage de fréquence associé à l’effet Doppler
en combinant des mesures effectuées pour les deux polarités du vecteur d’onde
des ondes de spin, du champ magnétique extérieur et du courant. En utilisant
l’expression du couple adiabatique de transfert de spin, nous pouvons extraire
du décalage Doppler mesuré le degré de la polarisation en spin du courant. En
répétant cette mesure pour des échantillons réalisés à partir de films d’épaisseurs
différentes, nous obtenons la dépendance en épaisseur du degré de polarisation
en spin représentée sur la figure C.2. On constate clairement que la polarisation
en spin diminue quand l’épaisseur diminue. Ces résultats sont discutés dans le
cadre du modèle à deux courants. Pour en rendre compte, nous pensons qu’il
est nécessaire d’introduire une contribution significative liée à des diffusions par
les surfaces avec renversement du spin.
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Figure C.2: Variation du degré de polarisation en spin du courant électrique en
fonction de l’épaisseur de permalloy.

Conclusion
Ce travail a abordé la question de la variation du degré de polarisation en spin
du courant électrique en fonction de l’épaisseur. Il est donc d’un intérêt direct
pour une compréhension fondamentale de l’effet des surfaces sur le transport
polarisé en spin. En outre, les résultats de cette étude pourraient être utiles
pour les développements technologiques.

Premièrement, certains dispositifs fondés sur le transfert de spin, tels que les
"racetrack memories" utilisent de très minces nanopistes métalliques [86]. Pour
optimiser ces dispositifs, il est nécessaire de comprendre le degré de polarisation
en spin du courant électrique (P ), le coefficient adiabatique du couple de trans-
fert de spin (β) et le paramètre d’amortissement de Gilbert (α). Notre étude
montre l’importance de l’effet de taille (diffusion électronique par les surfaces)
pour P et α. Des mesures de propagation d’ ondes de spin sous courant élec-
trique pourraient également être utilisées pour extraire β [92]. Deuxièmement,
l’étude de la propagation des ondes de spin est cruciale pour le développement de
circuits logiques utilisant des ondes de spin ("magnonique"[45, 58, 83]). Notre
étude montre comment les surface peuvent influencer ces caractéristiques de
propagation. Elle montre également les puissances et les limitations des mesures
inductives de propagation d’ondes de spin sous la forme utilisée jusqu’à présent.
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Résumé

Dans cette thèse, nous proposons d’explorer la relation entre transport élec-
tronique et dynamique d’aimantation afin de mieux comprendre certaines pro-
priétés des films minces de métaux ferromagnétiques. Afin d’extraire l’influence
de la diffusion des électrons par les surfaces sur les résistivités dépendantes du
spin, des séries d’épaisseur de films de permalloy (Ni80Fe20) ont été déposées
et étudiées. En plus de mesures électriques et magnétiques conventionnelles,
nous avons réalisé une étude détaillée de la propagation des ondes de spin
dans ces films. La technique du décalage Doppler d’ondes de spin induit par
un courant électrique a été utilisée pour extraire le degré de polarisation en spin
du courant électrique. Nous avons observé que ce degré de polarisation décroît
lorsque l’épaisseur du film décroît, ce qui suggère que les surfaces contribuent
aux résistivités dépendantes du spin et qu’elles ont tendance à dépolariser le
courant électrique.

Mots-clés : transport polarisé en spin, diffusion des électrons par les surfaces,
dynamique de spin, ondes de spin

Abstract

In this thesis, the interplay between electron transport and magnetization
dynamics is explored in order to access to fundamental properties of ferromag-
netic metal thin films. With the aim of extracting the influence of the electron
surface scattering on the spin-dependent resistivities, thickness series of permal-
loy (Ni80Fe20) films were grown and studied. In addition to standard electrical
and magnetic measurements, a detailed study of the propagation of spin waves
along these films was performed. Resorting to the current-induced spin-wave
Doppler shift technique, the degree of spin-polarization of the electrical current
was extracted. This degree of spin-polarization was found to decrease when the
film thickness decreases, which suggests that the film surfaces contribute to the
spin dependent resistivities and tend to depolarize the electrical current.

Keywords: spin polarized transport, surface electron scattering, spin dynam-
ics, spin wave


