Predictive power of nuclear mean-field theories for exotic-nuclei problem

par Karolina Rybak (Szczechowska)

Thèse de doctorat en Physique des particules élémentaires

Sous la direction de Jerzy Dudek.

Le président du jury était Benoît Gall.

Le jury était composé de Marianne Dufour, Marie-Geneviève Porquet.

Les rapporteurs étaient Andrzej Goźdź, Pieter van Isacker.

  • Titre traduit

    Pouvoir prédictif des théories de champ moyen nucléaire pour le problème des noyaux exotiques


  • Résumé

    Cette thèse de doctorat vise l’examen critique de certaines théories de champ moyen nucléaire phénoménologiques, en se focalisant sur la description fiable des niveaux de particules individuelles. L’approche suivie ici est nouvelle en ce sens que elle permet non seulement la prédiction des valeurs numériques obtenues avec ce formalisme, mais également une estimation des distributions de probabilités correspondant aux résultats expérimentaux. Nous introduisons le concept des ≪erreurs théoriques≫, visant estimer, dans un cadre mathématique bien établi, les incertitudes relatives aux modélisations théoriques. Il est également introduit une notion subjective de pouvoir prédictif des Hamiltoniens nucléaires, qui est analysé dans le contexte des spectres énergétiques de particules individuelles. Le concept mathématique du ≪Problème Inverse≫ est appliqué aux Hamiltoniens de champ moyen réalistes. Cette technique permet la prédiction de propriétés du système partir d’un nombre limité de données. Afin d'approfondir notre connaissance des Problèmes Inverses, nous focalisons notre attention sur un problème mathématique simple. Une fonction dépendant de quatre paramètres libres est introduite afin de reproduire des données ≪expérimentales≫. Nous étudions le comportement des paramètres ≪fittés≫, leur corrélation, ainsi que les erreurs associées. Cette étude nous aide comprendre la signification de la formulation correcte du problème en question. Il nous montre également l'importance d'inclure les erreurs expérimentales et théoriques dans la solution.


  • Résumé

    This thesis is a critical examination of phenomenological nuclear mean field theories, focusing on reliable description of levels of individual particles. The approach presented here is new in the sense that it not only allows to predict the numerical values obtained with this formalism, but also yields an estimate of the probability distributions corresponding to the experimental results. We introduce the concept of ‘theoretical errors’ to estimate uncertainties in theoreticalmodels. We also introduce a subjective notion of ‘Predictive Power’ of nuclear Hamiltonians, which is analyzed in the context of the energy spectra of individual particles. The mathematical concept of ‘Inverse Problem’ is applied to a realistic mean-field Hamiltonian. This technique allows to predict the properties of a system from a limited number of data. To deepen our understanding of Inverse Problems, we focus on a simple mathematical problem. A function dependent on four free parameters is introduced in order to reproduce ‘experimental’ data. We study the behavior of the ‘fitted’ parameters, their correlation and the associated errors. This study helps us understand the importance of the correct formulation of the problem. It also shows the importance of including theoretical and experimental errors in the solution.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Strasbourg. Service commun de la documentation. Bibliothèque électronique 063.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.