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bibliothécaires qui facilitent grandement les recherches documentaires.
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0.1 Marches aléatoires et graphes dirigés . . . . . . . . . . . . . . . . . . . . . v
0.2 Graphes contraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

0.2.1 Sous-graphe contraint du graphe de Cayley de Z2 . . . . . . . . . . viii
0.2.2 Sous-graphes contraints du graphe de Cayley de ZN par la méthode
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Résumé en français

Dans son article original [Tur38] de 1937, A. Turing formalise les notions de calculabilité
et complexité en définissant ce qu’on nomme aujourd’hui machine de Turing. Après ce
travail de Turing, des généralisations de la machine de Turing ont été données si bien
que l’on peut distinguer quatre types de machines de Turing : les machines déterministes,
non déterministes, probabilistes et quantiques (voir les définitions de la section 1.1). En
terme de complexité temporelle, on peut montrer qu’une machine de Turing probabiliste
calcule au moins autant de fonctions partielles qu’une machine de Turing déterministes (i.e.
P ⊂ BPP) alors que la relation avec les machines non déterministes n’est pas claire. D’un
point de vue mathématique, une machine de Turing probabiliste est une marche aléatoire
sur un graphe dirigé localement fini (section 1.3).

0.1 Marches aléatoires et graphes dirigés

Un graphe dirigé est la donnée d’un quadruplet G = (G0,G1, r, s) où

• G0 est un ensemble dénombrable qui représente les points ou noeuds du graphe ;

• G1 est un ensemble dénombrable représentant les arêtes du graphe ;

• r, s : G1 → G0 sont deux applications, appelées respectivement cible et source.

En général, nous nous restreindrons aux graphes dits simples, c’est à dire les graphes
dirigés sans arêtes multiples — si α, β ∈ G1 sont telles que s(α) = s(β) et r(α) = r(β)
alors α = β. L’absence d’arêtes multiples implique en particulier que l’application (r, s) :
G1 → G0 ×G0 : α 7→ (r(α), s(α)) est injective de sorte que l’ensemble des arêtes G1 peut
être vu comme un sous-ensemble de G0×G0. Dans ce contexte les applications r et s sont
superflues — r et s sont alors respectivement les projections canoniques sur la seconde et
première coordonnées. Les boucles — i.e. les arêtes α telles que s(α) = r(α) — seront en
général proscrites.

Il sera également supposé que les graphes considérés sont localement finis, i.e. pour
x ∈ G0, le degré sortant et entrant

deg−(x) = card {α ∈ G1 : s(α) = x} <∞ et deg+(x) <∞.

v



vi RÉSUMÉ EN FRANÇAIS

Un graphe simple est non dirigé si et seulement si l’ensemble G1 est symétrique — i.e.
(x, y) ∈ G1 ⇐⇒ (y, x) ∈ G1. Dans ce cas, le degré sortant et le degré entrant sont égaux
et on note alors

deg(x) = deg−(x) = deg+(x)

le degré de x.
Dans ce contexte, une marche aléatoire sur un graphe G est une châıne de Markov

adaptée à la structure de graphe, c’est à dire une suite de variables aléatoires (Mn)n≥0 à
valeurs dans G0 telles que pour n ≥ 1

P(Mn = y|Mn−1 = x) = P(M1 = y|M0 = x) > 0 si et seulement si (x, y) ∈ G1.

En particulier, la marche aléatoire simple sur G satisfait

P(Mn = y|Mn−1 = x) =
1

deg−(x)
.

D’une manière très générale, l’étude des marches aléatoires sur des graphes consiste à
établir des connexions entre des propriétés de nature combinatoire ou algébrique et des
propriétés stochastiques.

Si Γ est un groupe de type fini et S un ensemble de générateurs symétrique (c’est à
dire, s ∈ S ⇐⇒ s−1 ∈ S), le graphe de Cayley de Γ par rapport à S, noté Cayley(Γ,S) est
le graphe non dirigé simple G dont l’ensemble des points G0 = Γ et l’ensemble des arêtes
G1 est défini par

G1 = {(x, y) ∈ G0 ×G0 : x−1y ∈ S}.
Étudier une marche aléatoire sur un graphe de Cayley d’un groupe revient à se donner une
probabilité µ de support S et d’étudier la châıne de Markov (Mn)n≥0 à valeurs dans Γ de
transition

P(Mn = y|Mn−1 = x) = µ(x−1y).

On parle alors de marches aléatoires sur un groupe1. La littérature regorge de résultats
établissant des connexions entre propriétés purement algébriques et propriétés stochas-
tiques.

L’un des premiers exemples illustrant ce type de liens est dû à Pólya qui a considéré
des marches aléatoires sur le groupe ZN ([Pól21]). Ce résultat établit en particulier que la
marche aléatoire est récurrente ou transiente selon que N ≤ 2 ou N ≥ 3. Plus surprenant,
il existe une sorte de réciproque à ce théorème qui a été montré dans [Var86] en s’appuyant
sur des résultats plus anciens tels [Bas72, Gui73, Gui70].

Théorème 0.1.1 ([Woe00]). Soient Γ un groupe infini de type fini. Alors, il existe une
mesure de probabilité µ sur Γ telle que la marche aléatoire associée est récurrente si et
seulement si Γ contient un sous-groupe d’indice fini isomorphe à Z ou Z2.

1On adopte ici sans le dire la convention de marche aléatoire à droite. Une marche aléatoire à gauche
satisfait la propriété P(Mn+1 = y|Mn = x) = µ(yx−1).
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Malheureusement, si les groupes de type fini donnent de nombreux exemples de graphes
non dirigés, il serait appréciable d’établir de tels résultats de rigidité pour des graphes
plus généraux. L’un des angles d’attaque consiste à remarquer qu’on peut associer à un
graphe dirigé — resp. non dirigé — une structure de semi-groupoide — resp. groupoide —
qui généralise la notion de groupe de sorte qu’une marche aléatoire sur de tels graphes se
traduit en une marche aléatoire sur un semi-groupoide ou un groupoide. Cette identification
est développée dans le chapitre 4.

0.2 Graphes contraints

Si le cadre théorique est assez bien établi, il existe assez peu de résultats sur les marches
aléatoires sur des groupoides ou des semi-groupoides. C’est pourquoi, il était naturel de
s’intéresser à des exemples. L’une des notions centrales dans les pages suivantes est celle
de graphe contraint.

Considérons à nouveau un groupe de type fini Γ et donnons nous un ensemble de
générateurs S que l’on suppose symétrique. Une contrainte est une fonction f : Γ × S →
{0, 1}. A cette contrainte, il est possible d’associer un graphe contraint (qui n’est pas
nécessairement canonique). Soit g0 ∈ Γ un germe, on note G0

0 = {g0}, puis on définit G1
1

par

G1
1 =

⋃
s∈S
{(g, gs) : g ∈ G0

0, f(g, s) = 1},

et G0
1 par

G0
1 = G0

0 ∪
[⋃
s∈S
{gs : g ∈ G0

0, f(g, s) = 1}
]
.

On peut alors définir, bien que ce ne soit essentiel puisque l’on est en train de construire un
graphe intrinsèquement simple, les applications cible et source partielles r(1), s(1) : G1

1 →
G0

1 : pour un élément (g, h) ∈ G1
1, l’application source est définie par s(1)((g, h)) = g et

la cible par r(1)((g, h)) = h. Ainsi, le quadruplet (G0
1,G1

1, r
(1), s(1)) est le graphe partiel

contraint d’ordre 1. Pour les graphes partiels contraints d’ordre supérieur, on procède par
induction. Soit n ≥ 1, on définit G1

n+1 by

G1
n+1 =

⋃
s∈S
{(g, gs) : g ∈ G0

n, f(g, s) = 1},

et G0
n+1 par

G0
n+1 = G0

n ∪
[⋃
s∈S
{gs : g ∈ G0

n, f(g, s) = 1}
]
.

Enfin, les fonctions r(n+1), s(n+1) : G1
n+1 → G0

n+1 sont données pour (g, h) ∈ G1
n+1 par

r(n+1)((g, h)) = h et s(n+1)((g, h)) = g.
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Par conséquent, cette procédure définit une famille de graphes contraints partiels

{(G0
n,G1

n, r
(n), s(n))}n≥1

qui dépend du germe choisi. On définit alors le graphe contraint complet par

• G0 = limn→∞G0
n =

⋃
n≥1 G0

n,

• G1 = limn→∞G1
n =

⋃
n≥1 G1

n, et

• les applications r, s : G1 → G0 sont définies de sorte que leurs restrictions à chaque
ensemble G1

n coincident avec les applications r(n) et s(n) respectivement.

Remarquons que le graphe de Cayley, Cayley(Γ,S), est le graphe contraint de contrainte
f constante égale à 1. D’autre part, si la procédure ci-dessus assure la connexité du graphe
contraint, il se peut que celui-ci soit fini. Quoiqu’il en soit, cette procédure fournit un
grand nombre d’exemples et l’objectif sera de comprendre comment les propriétés stochas-
tiques des marches aléatoires sur le groupe Γ s’étendent ou ne s’étendent pas aux marches
aléatoires sur le graphe contraint.

0.2.1 Sous-graphe contraint du graphe de Cayley de Z2

Le premier exemple considéré est donné par un sous-graphe contraint du graphe de Cayley
de Z2 — par rapport aux générateurs standards. Autrement dit, avec les notations de la
précédente section, Γ = Z2, l’ensemble des générateurs S = {±εi : i = 1, 2} les générateurs
standard de Z2 et la contrainte f : Z2 × S → {0, 1} est donnée pour (z, s) ∈ Z2 × S par

f(z, s) =


1 si s = ±ε2, ou s = ε1 et 〈z, ε2〉 > 0, ou s = −ε1 et 〈z, ε2〉 < 0

0 sinon,

où 〈·, ·〉 est le produit scalaire usuel de R2 dans la base canonique {ε1, ε2}. Ce graphe est
représenté sur la figure 1.

Comme tout graphe dirigé, l’ensemble des chemins de longueur finie peut-être muni
d’une structure de semi-groupoide. D’autre part, cet exemple de graphe est moins artificiel
qu’il ne parâıt de prime abord puisqu’un graphe similaire a été étudié dans [MDM80] pour
modéliser des diffusions en milieu poreux.

La marche aléatoire simple sur cet exemple de graphe est transiente (voir [CP03]). Une
question naturelle est de se demander si il existe des fonctions harmoniques — positives ou
bornées — non constantes. Cela amène à étudier ce qu’on appelle les frontières de Martin
et de Poisson.

La notion de frontière de Martin trouve son origine dans un article de Martin [Mar41]
et est étroitement liée à la notion de fonction harmonique positive du fait de l’exis-
tence d’un isomorphisme entre l’espace des fonctions harmoniques positives et la frontière
de Martin (voir chapitre 2, paragraphe 2.1). Considérant le noyau de Green défini par
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Figure 1: Le graphe contraint avec deux demi-plans orientés.

G(x, y) =
∑

n≥0 P(Mn = y|M0 = x), on peut remarquer que la fonction x → G(x, y) est
surharmonique et même harmonique sauf au point y. Intuitivement, si on fait tendre y vers
un point ξ à l’infini, en un sens à définir, la fonction de Green devient harmonique. Dans
ce contexte, on travaille généralement avec une renormalisation de la fonction de Green
appelée noyau de Martin et défini par

K(x, y) =
G(x, y)

G(o, y)
,

pour x, y ∈ G0 et où o ∈ G0 est un point base fixé une fois pour toute. La compactification
de Martin consiste à étendre l’espace d’états G0 en un espace compact Ĝ0, dont G0 est un
sous-ensemble discret et dense, de sorte que chaque fonction G0 3 y → K(x, y) ∈ R s’étende

par continuité en une unique fonction, encore notée K(x, ·) et définie pour ξ ∈ Ĝ0 \G0 par

K(x, ξ) = lim
y→ξ

K(x, y),

où y → ξ est relative à la topologie de Ĝ0. De plus cette compactification est maximale,
en ce sens que si ξ 6= η, alors les fonctions K(·, ξ) et K(·, η) sont distinctes. La frontière

de Martin est l’espace topologique ∂G0 = Ĝ0 \G0. Enfin, au moins dans le cas localement
fini, les fonctions x→ K(x, ξ) sont harmoniques positives pour tout ξ ∈ ∂G0.

La frontière de Poisson, quant à elle, a été historiquement définie comme sous espace me-
surable de la frontière de Martin et caractérise l’espace des fonctions harmoniques bornées.
En effet, la compactification de Martin, en définissant une topologie, permet d’établir un
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théorème de convergence presque sûre de la marche aléatoire vers une variable aléatoire à
valeurs dans la frontière de Martin ∂G0. Très grossièrement, le support de cette variable
aléatoire limite est la frontière de Poisson.

Cependant, la frontière de Poisson peut-être également définie, de manière indépendante,
comme un objet de la catégorie des espaces mesurés (voir [Kai92]). Dans l’annexe B, on
montre que la frontière de Poisson est un quotient de la frontière queue qui, elle-même,
est une limite inductive dans la catégorie des espaces mesurés. Aussi, la frontière queue
peut-être vue, en un certain sens, comme l’espace dual à l’espace des trajectoires qui, dans
le langage des catégories, est la limite projective d’un système projectif d’espaces mesurés.

Dans le contexte des marches aléatoires sur des groupes — ou sur des espaces homogènes
— il existe un certain nombre de critères pour décider de la trivialité de la frontière de
Poisson (voir par exemple [Aze70, Bab06, KV83, KW02, Kai00, Mar66]). La description
de la frontière de Martin est souvent un problème délicat. D’une manière générale, cela
demande d’estimer finement la fonction de Green. Ces estimés peuvent provenir de la
géométrie du graphe sous-jacent (pour les arbres homogènes, une frontière géométrique
naturelle existe, voir [Woe95]), ou de théorèmes limites locaux (c’est la méthode employée
pour la détermination de la frontière de Martin des marches aléatoires sur ZN , voir [NS66,
Uch98]), ou encore d’une action de groupe laissant invariant le noyau de Martin (voir par
exemple [Ras10, KR11] où sont considérées des marches aléatoires sur un quart de plan),
et même de principe de grandes déviations (voir [IMS94, IR08]).

Dans la suite, on note (Mn)n≥0 la marche aléatoire simple sur le graphe G, en particulier
c’est une châıne de Markov à valeurs dans G0. On définit alors par récurrence la suite de
temps d’arrêts (τn)n≥0 par τ0 = 0 et pour n ≥ 0

τn+1 = inf{t ≥ τn + 1 : M (2)
n = 0}

où Mn = (M
(1)
n ,M

(2)
n ). Il est alors facile de voir que P(τn < ∞|M0 = x) = 1 pour tout

n ≥ 0 et x ∈ G0. La suite de variables aléatoires (Mτn)n≥0 est elle-même une châıne de
Markov. Celle-ci reste confinée dans l’équateur — i.e. l’ensemble Z × {0} ⊂ G0 — sauf
peut-être au temps 0. Il est aussi assez clair, du fait des symétries de G, que les variables
aléatoires (Zn)n≥1 à valeurs entières définies par Zn = M

(1)
τn+1 −M (1)

τn sont indépendantes et

identiquement distribuées, autrement dit le processus (M
(1)
τn )n≥1 est une marche aléatoire

sur Z. Par ailleurs, pour les mêmes raisons de symétrie du graphe G, les variables aléatoires
Zn sont symétriques, c’est à dire, Zn et −Zn sont de même loi. Ainsi, (M

(1)
τn )n≥1 est une

marche aléatoire symétrique. En fait, il est montré dans [CP03] que c’est une marche
aléatoire à sauts non-bornés. Ensuite, la transformée de Fourier de la loi de saut est calculée
et il est déduit par un argument standard la transience de cette marche aléatoire. De fait, la
marche initiale est également transiente. La marche aléatoire (Mn)n≥ sera appelée marche
initiale et la marche (Mτn)n≥0, marche induite.

Dans ce manuscrit, il est montré que la frontière de Martin de la marche aléatoire sur
le graphe contraint avec deux demi-plans orienté (cf. figure 1) est triviale. Ce résultat a
fait l’objet d’une note aux Comptes Rendus de l’académie des sciences — cf. [dL11] — et
les détails sa démonstration sont présentés dans l’annexe A. On rappelle ici l’énoncé du
résultat.
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Théorème 0.2.1. Les frontières de Martin de la marche induite et de la marche originale
sont triviales, en particulier, toutes les fonctions harmoniques positives sont constantes.

Ce théorème repose sur des estimations fines du noyau de Green. Plus précisément, si
on note ηs,t(y) le temps local de (Mn)n≥0 en y ∈ G0, i.e.

ηs,t(y) =
t−1∑
n=s

1y(Mn),

avec la convention
∑
∅ = 0, on montre que le noyau de Martin se décompose comme suit :

K(x, y) =


G(x,y)
G(0,y)

si x, y ∈ Z× {0}

E(η0,τ1 (y)|M0=x)

G(0,y)
+
∑

z∈Z×{0} νx(z)K(z, y) sinon,

où νx(z) = P(Mτ1 = z|M0 = x).
Le théorème central dans la preuve de la trivialité de la frontière de Martin est le

suivant.

Théorème 0.2.2. Soient z = (z1, 0) ∈ Z× {0} et y = (y1, y2) ∈ G0. Alors la fonction de
Green est donnée par

G(z, y) = (2π)−1

∫ π

−π
eit(y1−z1) g(r(t))|y2|

1− φ(t)
dt,

où

r(t) = 1
3−2eit

, g(x) = 1−
√

1−x2

x
, et φ(t) = Re r(t)−1g(r(t)).

De plus, pour tout λ ∈ R ∪ {±∞}, il existe une constante s(λ) > 0 telle que

1. G(z, y) ∼ s(±∞)|y1 − z1|−1/2, lorsque y1y
−2
2 → ±∞,

2. G(z, y) ∼ s(λ)|y2|−1, lorsque y1y
−2
2 → λ.

L’une des conséquences de la trivialité de la frontière de Martin est qu’il n’est pas
possible de discriminer le comportement asymptotique des trajectoires de la marche. En
réalité, par un argument de type Borel-Cantelli, on peut montrer que la marche induite est
infiniment souvent à droite et à gauche de 0, aussi, il n’y a pas de directions priviligiées.
Dans le cadre des marches aléatoires sur ZN on peut montrer que la trivialité de la frontière
de Martin dépend du drift2. En effet, si celui-ci est nul, alors la frontière est triviale.
Cependant, si le drift n’est pas nul, la frontière de Martin est homéomorphe à la sphère
de dimension N − 1. Il est fort probable que ce changement régime ait aussi lieu lorsqu’on
considère des marches aléatoires sur G plus générales, cependant, il est difficile d’avoir une
idée de la forme de la frontière de Martin (est-ce un cercle ?). Ces marches plus générales
n’ont pas été considérées du point de vue difficile de la frontière de Martin. Il est cependant
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Figure 2: Le graphe contraint avec deux demi-plans orientés et un drift non constant.

souvent plus facile d’étudier la frontière de Poisson. Dans le cas de la marche aléatoire
simple sur G la trivialité de la frontière de Poisson peut-être montrée de manière directe
(cf. paragraphe 2.2.2 du chapitre 2).

Plus précisément, si on se donne (py)y∈Z une suite de réels de [0, 1) et (qy)y∈Z une autre
suite de réels strictement positifs tels que qy < 1− py pour tout y ∈ Z ; alors, sur le graphe
G on peut considérer la marche aléatoire dont la probabilité, partant du point (x, y) ∈ G0,
de se déplacer vers le haut est qy, vers le bas est ry = 1− py − qy et horizontalement est py
— cf. la figure 2.

Proposition 0.2.3. La frontière de Poisson de la marche aléatoire sur G dont les transi-
tions sont définies au paragraphe précédant est isomorphe (en tant qu’espace mesuré) à la
frontière de Poisson de la marche aléatoire sur Z dont les probabilitées de transition sont
données pour u, v ∈ Z par

P (u, v) =


pu si u = v,
qu si v = u+ 1,
1− pu − qu si v = u− 1,
0 sinon.

2Il faut ajouter, en toute rigueur, une condition sur les moments de la loi de saut, cf. 2.1.3
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Figure 3: Le troisième pavage de Penrose avec deux prototuiles, figure tirée de [Wik12].

0.2.2 Sous-graphes contraints du graphe de Cayley de ZN par la
méthode de coupe et projection

Dans un second temps, nous considérons une famille d’exemples de graphes non dirigés
et apériodiques obtenus grâce à la méthode de coupe et projection — voir par exemple
[ODK88, KD86]. Le célèbre troisième pavage de Penrose (cf. la figure 3), défini au début
des années 70, est un des premiers exemples de telles structures apériodiques. Depuis
les années 1980 et la découverte des quasi-crystaux, les structures apériodiques ont été
largement étudiées dans la littérature.

Les graphes considérés ici sont obtenus en pavant l’espace vectoriel réel Rd à l’aide
de la méthode de coupe et projection. Plus précisément, on considère E un sous-espace
vectoriel de RN de dimension d appelé espace réel, puis on note Eint = E⊥ le supplémentaire
orthogonal de E, appelé espace interne. Soit K le cube unité de ZN ⊂ RN . Une arête du
graphe de Cayley de ZN — selon l’ensemble des générateurs usuels S — est acceptée et
projetée orthogonalement sur E si elle peut être translatée par un vecteur de E dans le
cube K+t, t ∈ Eint fixé. Sous certaines hypothèses que l’on ne précise pas ici (mais qui sont
toutefois génériques), cette méthode permet de construire un pavage Tt de l’espace E dont
les tuiles sont les projections des faces d-dimensionelles du cube unité N -dimensionel. De
plus, en fonction des espaces E et Eint, ces pavages sont périodiques, quasi-périodiques ou
apériodiques — le groupe de translation du pavage est donné par E ∩ZN . De tels pavages
définissent naturellement des graphes que l’on appellera graphes de coupe et projection dont
les points et les arêtes sont respectivement les sommets et les côtés des tuiles définissant
le pavage. Ce type de graphe est ainsi un sous-graphe contraint du graphe de Cayley
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de ZN — par rapport aux générateurs usuels. La contrainte dans ce cas est la fonction
ft : ZN × S → {0, 1} donnée par

ft(z, s) = 1Kt×Kt(z, z + s) for (z, s) ∈ ZN × S,

où Kt est l’ensemble K + E + t appelé, pour des raisons évidentes, bande de sélection.
Enfin, par construction, le graphe induit par un pavage est connexe, localement fini, non
dirigé, simple et sans boucles.

Le troisième pavage de Penrose a été initialement défini à l’aide de règles d’assem-
blages des tuiles (voir le paragraphe 3.1.1 du chapitre 3). Ces règles d’assemblages assurent
l’existence et la quasi-périodicité du pavage. Cependant, ce pavage peut être également
construit par la méthode de coupe et projection (cf. [ODK88]) en considérant l’espace
E ⊂ R5 engendré par les vecteurs v1 et v2 suivants

v1 = (1, cos(2π/5),− cos(π/5),− cos(π/5), cos(2π/5)),

et,

v2 = (0, sin(2π/5), sin(π/5),− sin(π/5),− sin(2π/5)).

Le pavage icosahédral de R3 est un autre exemple intéressant de pavages apériodiques
du fait de son lien étroit avec les quasi-crystaux. Les quasi-crystaux ont été découverts
expérimentalement par Shechtman en 1982 en étudiant les motifs de diffraction d’un alliage
de Al-Mn. Ces motifs présentaient en effet une symétrie d’ordre 10 qui va à l’encontre de la
théorie de la crystallographie. La description théorique de ce phénomène a été précisée dans
l’article original [SBGC84] de D. Shechtman, I. Blech et J.W. Cahn. En outre, Shechtman
s’est vu récompensé de ce travail par le prix Nobel de Chimie en 2011. En ce qui nous
concerne, il se trouve que le pavage icosahédral de R3 modélise parfaitement cet alliage (cf.
aussi [KD86]).

Le pavage icosahédral de R3 est obtenu à l’aide de la méthode de coupe et projection
en considérant l’espace vectoriel E ⊂ R6 de dimension 3 défini comme étant l’image de la
projection π donnée par sa matrice dans la base canonique de R6 par

π =
1

2
√

5



√
5 1 −1 −1 1 1

1
√

5 1 −1 −1 1

−1 1
√

5 1 −1 1

−1 −1 1
√

5 1 1

−1 −1 −1 1
√

5 1

1 1 1 1 1
√

5


,

Sous certaines conditions techniques génériques qui seront précisées en temps voulu, on
montre le théorème suivant (cf. le théorème 3.1.4 du paragraphe 3.1.4 au chapitre 3) :

Théorème 0.2.4. Génériquement, la marche aléatoire simple sur le graphe de coupe et
projection est récurrent si dim E ≤ 2 et transiente si dim E ≥ 3.
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Ce résultat est très similaire au théorème de Pólya, cependant, contrairement aux
marches aléatoires sur ZN , le calcul des probabilités de retour à l’origine n’est plus expli-
cite. Ainsi, la preuve de la transience requiert l’établissement d’inégalités isopérimétriques
d-dimensionelles (établies, cependant, non pas sur le graphe initial, mais sur une puissance
assez grande de celui-ci), alors que la récurrence est obtenue à l’aide d’estimées sur la borne
inférieure de la probabilité de retour à l’origine. Cependant, l’établissement d’inégalités
isopérimétriques est plus fort que l’application d’un critère de type Nash-Williams puis-
qu’on obtient en plus des estimées de la décroissance du noyau de la chaleur. Enfin, notons
que ce théorème ne se limite pas aux marches aléatoires simples et peut être généralisé à
des marches réversibles plus générales par des arguments standards — voir [Anc90] par
exemple.

0.2.3 Groupoides et semi-groupoides

Comme cela a déjà été évoqué, une marche aléatoire sur un graphe dirigé — respective-
ment non dirigé — peut-être vue comme une marche aléatoire sur un semi-groupoide —
respectivement un groupoide — de la même façon qu’une marche aléatoire sur le graphe
de Cayley d’un groupe est vue comme une marche aléatoire sur un groupe. Les marches
aléatoires sur les groupoides et semi-groupoides sont cependant assez peu considérées dans
la littérature — cf. [Kai05, Ren80] pour les quelques références dont on dispose.

À la lumière des exemples considérés, on peut espérer qu’un certain nombre de pro-
priétés valables dans le contexte des groupes se transfèrent dans le contexte des groupoides
alors que dans le cas des semi-groupoides l’étude des marches aléatoires semblent plutôt
difficile. L’une des raisons à cette différence est que dans le cadre des marches aléatoires
sur un groupoide, on peut souvent espérer que celles-ci soient réversibles — en particulier,
une marche aléatoire simple sur un graphe non dirigé, simple et localement fini est tou-
jours réversible. Nous avons alors à disposition toutes les techniques de l’analyse fonction-
nelle dans les espaces de Hilbert. C’est en particulier ce qui est employé dans le théorème
énoncé dans le paragraphe précédant. Dans le cadre des graphes intrinsèquement dirigés,
les marches aléatoires ne sont plus des châınes de Markov réversibles.

Dans le chapitre 4, outre l’introduction des notions de groupoide et de semi-groupoide,
il est aussi introduit cette notion de châıne de Markov réversible. En particulier, la preuve
du théorème 1 de [Var85] est reproduite ce qui permet de mettre en exergue le lien étroit
entre l’opérateur de Laplace-Beltrami et l’opérateur de Markov ainsi que les propriétés
puissantes qui en découlent.
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Chapter 1

Turing machines, Markov chains,
directed graphs

In this chapter, we start with the introduction of the notion of Turing machines. Then,
before connecting random walks on directed graphs and Turing machines, we give notation
and definitions related to Markov chains and directed graphs.

1.1 Definition of Turing machine

In this section, we define the notion of Turing machines. Turing machines were introduced
in [Tur38] in 1937 by Alan Turing. Generally speaking, Turing machines provide with
a theoretical model of computations so that we can define notions of decidability and
computability — Does there exist an algorithm which solves a given problem in finite time
or in finitely many computations ? — or as complexity — how many computations are
needed to solve a given problem ?

We can distinguish four classes of Turing machines :

• deterministic Turing machines (DTM),

• non deterministic Turing machines (NTM),

• probabilistic Turing machines (PTM),

• quantum Turing machines (QTM).

We could not omit the latter class of quantum Turing machines in this introductive
chapter since they have a priviliged place in the literature during the last decades. However,
quantum Turing machines will not be discussed in details in the following work. For a
description of QTM in terms of notions introduced here see [Pé11].

1
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1.1.1 Deterministic Turing machine and the P class

There are several variants of deterministic Turing machines; all of them are equivalent in
the sense that a problem is solvable by one variant if and only if it is solvable by any other
variant within essentially the same amount of time. We suggest the following.

Definition 1.1.1. A deterministic Turing machine is a quadruple (A, S, u, s0) where

1. A is a finite, non empty set of symbols, called alphabet, containing a particular symbol
called the blank symbol and denoted by ] ; we set A[ = A \ {]},

2. S is a finite non empty set of states ; we assume that S is partitioned into two non
empty sets Si and Sf called respectively internal states and final states,

3. D = {L,R} ≡ {−1, 1} is the displacement set,

4. u : A× S 7→ A× S ×D is the transition function, and

5. s0 ∈ Si the initial state of the machine.

Let M0 = (A, S, u, s0) be a deterministic Turing machine with A = {0, 1, ]}, S = Si∪Sf
where Si = {go}, Sf = {halt}, and transition function u(a, s) = (a′, s′, d) defined by the
following table :

a s a’ s’ d
0 go 0 go L
1 go 1 go L
] go ] halt R

If the program, described by this Turing machine, starts with the head over any non-blank
symbol of the input string, it ends with the head over the leftmost non-blank symbol while
the string of symbols remains unchanged.

If W is a finite set, we denote by W ∗ =
⋃
n≥0W

n the set of words of finite length on the
alphabet W — W 0 = {ε} and the element ε ∈ W 0 is called the empty word. If w ∈ W ∗,
then by definition there exists n ≥ 0 such that w ∈ W n. We denote by |w| the length of w
and |w| = n.

For α ∈ A∗[ , we denote by ᾱ ∈ A∞ the completion of the work α by blanks, namely
ᾱ = (α1, · · · , α|α|, ], ], · · · ).

Deterministic Turing machine as a dynamical system

Considering the example of Turing machine M0, we can, without loss of generality, always
assume that the machine starts at the first symbol of the input string α ∈ A∗[ . Starting
from (α, s0, h0 = 1), successive applications of the transition function u induce a dynamical
system on X := A∗ × S × Z. A configuration is an instantaneous description of the word
written on the tape, the internal state of the machine and the position of the head, i.e. an
element of X.
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Let τα = inf{n ≥ 1 : sn ∈ Sf}. The program starting from initial configuration
(α, s0, h0 = 1) stops running if τα < ∞, it never halts when τα = ∞. While 1 ≤ n < τα,
the sequence (α(n), sn, hn)n<τα is defined by updates of single characters; if, for 0 ≤ n < τα,

we have u(α
(n)
hn
, sn) = (a′, s′, d), then (α(n+1), sn+1, hn+1) is defined by

sn+1 = s′

hn+1 = hn + d

α(n+1) = (α
(n)
1 , · · · , α(n)

hn−1
, a′, α(n)

hn+1
, · · · , α(n)

|α(n)|).

If the machine halts at some finite instant, the output is obtained by reading the tape from
the leftmost non blank character to right until the first blank character. The sequence of
words (α(n))n is termed a computational path or computational history starting from α.

Computable functions and decidable predicates

Every deterministic Turing machine M computes a specific partial function φM : A∗[ → A∗[ .
Since the value of φM(α) remains undetermined when the machine M does not halt, the
function φM is termed partial, in general the domain Dom(φM) of φM is a strict subset of
A∗[ .

Definition 1.1.2 (Computable function). A partial function f : A∗[ → A∗[ is called com-
putable if there exists a deterministic Turing machine M such that φM = f . In such a
case, the function f is said to be computed by the machine M .

An application of the Cantor’s diagonalisation yields the existence of non-computable
functions.

Definition 1.1.3 (Predicate, Language). A predicate P is a function taking Boolean
values 0 or 1. A language L over an alphabet A is a subset of A∗[ .

Thus, for predicates P with Dom(P) = A∗[ , the set {α ∈ A∗[ : P(α) = 1} is a language.
Hence, predicates are in bijection with languages.

Definition 1.1.4 (Decidability). A predicate P : A∗[ → {0, 1} is decidable if the function
P is computable.

Let P be a predicate and L the corresponding language. The predicate is decidable if
there exists a deterministic Turing machine such that for every word α, the machine halts
after a finite number of steps and

• if α ∈ L , then the machine halts returning 1, and

• if α /∈ L , then the machine halts returning 0.
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Complexity classes of a DTM

Definition 1.1.5 (Space and time complexity). Let M be a deterministic Turing machine
and sM , tM : N → R+ be given functions. If for every α ∈ A∗[ , the machine stops after
visiting at most s(|α|) cells, we say that it works in computational space sM . We say it
works in computational time tM if τα ≤ tM(|α|).

Computability of a function does not mean effective computability since the computing
algorithm can require too much time or space. We say that r : N → R+ is of polynomial
growth if there exist constants C, κ > 0 such that r(n) ≤ Cnκ, for large n. We write
symbolically r(n) = poly(n).

Definition 1.1.6 (P class). The complexity class P consists of all languages L whose
predicates P are decidable in polynomial time, i.e. for every L in the class, there exist a
deterministic Turing machine M such that φM = P and tM(|α|) = poly(|α|) for all α ∈ A∗[ .

Similarly, we can define the class PSPACE of languages whose predicates are decidable
in polynomial space.

Remark 1.1.7. We choose to define P and PSPACE as classes of complexity of languages,
but it is obvious that the same can be done for partial functions although it can be shown
that the obtained classes do not define a new notion of complexity. That is why, they will
be still denoted by P and PSPACE.

It is obvious that P ⊂ PSPACE because in a polynomial time, we can only visit a
polynomial number of cells. Note that it is conjectured that P 6= PSPACE which shows
that this theory is far from being completely understood.

1.1.2 Non-deterministic Turing machine and the NP class

Definition 1.1.8. A non-deterministic Turing machine is a quadruple (A, S, u, s0) where
A, S, and s0 are defined as in definition 1.1.1 and u is now a multivalued function, i.e.
there are r different branches ui for i = 1, · · · , r and ui : A× S 7→ A× S ×D. For every
pair (a, s) ∈ A× S there are different possible outputs (a

′
i, s
′
i, di)i=1,··· ,r and the choice of a

particular branch can be done in a non-deterministic way.

The NP class

A computational path for a non deterministic Turing machine is determined by a choice of
one legal transition at every step. Different steps are possible for the same input. Notice
that NTM do not serve as models of practical devices but rather as logical tools for the
formulation of problems. As we have done for the deterministic Turing machines, we give
the class of languages which are computed by NTMs.

Definition 1.1.9 (NP class). A language L (or its predicate P) belongs to the NP class
if there exists a non deterministic Turing machine such that
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• if α ∈ L for some α ∈ A∗[ , then there exists a computational path with τα ≤ poly(|α|)
returning 1,

• if α /∈ L for some α ∈ A∗[ , then there exists no computational path with this property.

Remark 1.1.10. The definition of the NPSPACE class is obvious.

Remark 1.1.11. Note the specificity of non deterministic machine; with this kind of ma-
chine, we can not decide if a given word is not in the language. In terms of formal language
theory, such a language is said to be recursive. A language L ∈ NP such that L { ∈ NP
is termed recursively enumerable.

Remark 1.1.12 (which can not be avoided). We see immediately that P ⊂ NP, but a
famous problem consists in deciding whether P = NP or P 6= NP.

1.1.3 Probabilistic Turing machine and the BPP class

We denote by R̃ the set of real numbers computable by a deterministic Turing machine
within accuracy 2−n in poly(n) time.

Definition 1.1.13. A probabilistic Turing machine is a quintuple (A, S, u,p, s0) where
A, S, u, and s0 are as in definition 1.1.8 while p = (p1, · · · , pr) ∈ R̃+, with

∑r
i=1 pi = 1 is

a probability vector on the set of branches of u. All branches correspond to legal actions ;
at each step, the branch i is chosen with probability pi, independently of previous choices.

The BPP class

Each α ∈ A∗[ generates a family of computational paths. The local probability structure
on the transition functions induces a natural probability structure on the computational
path space. The evolution of the machine is a Markov process (see section 1.3) with the
state space A∗[ ×S×Z and stochastic evolution kernel determined by the local probability
structure p. Hence any input gives a set of possible outputs each of them being assigned
a probability of occurrence.

Definition 1.1.14 (BPP class). Let ε ∈ (0, 1/2). A predicate P (hence a language L )
belongs to the BPP class if there exists a probabilistic Turing machine M such that for
any α ∈ A∗[ , τα ≤ poly(|α|) and

• if α ∈ L , then P(P(α) = 1) ≥ 1− ε, and

• if α /∈ L , then P(P(α) = 1) ≤ ε.

Remark 1.1.15. Repeating the computation of the machine M on the same input α, it can
be shown that the definition of the class BPP does not depend on the specific chosen ε.
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1.2 Directed graphs and random walks

In the next section we will show how a probabilistic Turing machine can be connected
to a random walk on a directed graph. The main purpose of this section is to introduce
notation and definitions related to directed graphs and Markov chains.

1.2.1 Directed graphs

A directed graph (or di-graph for short) G = (G0,G1, r, s) is the quadruple of a denumerable
set G0 of vertices, a denumerable set G1 of directed edges and a pair of range and source
functions, denoted respectively r and s, i.e. mappings r, s : G1 → G0. In the sequel, we only
consider graphs without loops (i.e. not containing edges α ∈ G1 such that r(α) = s(α))
and without multiple edges (i.e if α and β are edges verifying simultaneously s(α) = s(β)
and r(α) = r(β) then α = β, in other words, the compound map (s, r) : G1 → G0 ×G0 is
injective). With these restrictions in force, G1 can be identified with a particular subset
of G0 × G0 and the functions r and s become superfluous because they are trivial i.e
s((x, y)) = x and r((x, y)) = y. The corresponding directed graph is then termed simple.

Remark 1.2.1. Although often used interchangeably in common language, directedness and
orientation denote distinct notions in graph theory : directedness is a property encoded
into the set G1 of allowed edges; orientation is an assignment of plus or minus sign to every
edge (viewed as the set — not the ordered pair — of its endpoints). On defining a map
ι : G1 → G0 × G0 by G1 3 α = (x, y) 7→ ι(α) = (y, x) ∈ G0 × G0 (this map reverts the
orientation of an edge), we observe that for an oriented but undirected graph, the range of
ι is G1; for a directed graph, the range of ι can contain elements in G0 ×G0 \G1. In both
cases, the map ι is involutive. An undirected graph can be viewed as a directed one such
that if α := (x, y) ∈ G1 then ι(α) = (y, x) ∈ G1, i.e. the set of edges G1 is a symmetric
subset of the Cartesian product G0 ×G0.

We also define, for each vertex y ∈ G0, its inwards degree by

deg+(y) = card{α ∈ G1 : r(α) = y},

and its outwards degree by

deg−(y) = card{α ∈ G1 : s(α) = y}.

If the graph is undirected, then deg+(y) = deg−(y) = deg(y) and we simply say the degree
of y.

The graph G is said to be connected — or transitive — if for any vertices x, y ∈ G0 there
exists a finite sequence α = (α1, · · · , αk) of composable edges αi ∈ G1, for i = 1, · · · , k, k ∈
N, with s(α1) = x and r(αk) = y, such that r(αi) = s(αi+1) ∈ G0, for all i = 1, · · · , k − 1.
The above sequence α is called a path of length k = |α| from x to y, the set of all paths of
length k is denoted by Gk.

Remark 1.2.2. Notice that Gk is the set of paths composed from k composable edges, in
general strictly contained into the Cartesian product ×kl=1G1.
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We will always suppose the graphs to be connected. A graph will be said to be genuinely
directed if there exist vertices x, y ∈ G0 such that (x, y) ∈ G1 but (y, x) /∈ G1.

A directed graph is said to be locally finite if for all y ∈ G0 the inwards and outwards
degree are finite :

deg+(y) <∞ and deg−(y) <∞ for all y ∈ G0.

It is said to have bounded geometry if it is uniformly locally finite, namely

sup
y∈G0

deg+(y) <∞ and sup
y∈G0

deg−(y) <∞.

From a combinatorial point of view, a directed graph with unbounded geometry can be
considered as a pathological object in the sense that it does not describe the dynamics of
any Turing machine.

In chapter 4, we explain in details how a directed graph (resp. undirected) is naturally
endowed with a semi-groupoid (resp. groupoid) structure.

1.2.2 Markov chain : notation and definitions

Markov operator, transition matrix and canonical path space

Let X be a denumerable set. We denote by `∞(X) the space of real bounded functions on
X.

Definition 1.2.3. A linear operator P : `∞(X)→ `∞(X) is called Markov if

• Pf ≥ 0 whenever f ≥ 0, and

• P1 = 1 where 1 is the constant function equal to 1.

We denote by P n the nth power of operator P with the convention P 0 = id. We can
also denote for all n ≥ 0 and x, y ∈ X

P n(x, y) = P n1{y}(x).

Formally, P = (P (x, y))x,y∈X is also called a transition matrix. Obviously, we have

Pf(x) =
∑
y∈X

P (x, y)f(y) for all x ∈ X.

A non-negative operator P which satisfies the condition P1 = 1 is termed stochastic. Some
authors consider sub-stochastic transition matrices, i.e. those satisfying

∑
y∈X P (x, y) ≤ 1,

but such a transition matrix can be easily extended (by extending the space X) to a
stochastic one. If not explicitly specified, the transition matrices will always be assumed
to be stochastic.

If µ is a probability measure on X we will use the standard notation µP for the prob-
ability measure on X defined by the relation

µP (y) =
∑
x∈X

µ(x)P (x, y).



8 CHAPTER 1. TURING MACHINES, MARKOV CHAINS, DIRECTED GRAPHS

Definition 1.2.4 (Markov chain). A triple (X,P, θ), where P is a Markov operator acting
on `∞(X), and θ a probability measure on X, is called a Markov chain on the state space
X with transition operator P and initial distribution θ.

In the sequel, we will often choose a specific point o ∈ X and set θ = δo where δo denote
the Dirac mass at point o. Then, the notation (X,P, θ) is often abbreviated as (X,P ).

Denoting by

• X∞ the path space, i.e. the set defined as X∞ := {(yn)n≥0 : yn ∈ X}, and

• X∞ the σ-algebra generated by cylinders,

we endow the pair (X∞,X∞) with the canonical probability measure Pθ induced by the
Markov operator P and the initial distribution θ. If θ = δx we write Px instead of Pδx .
We will denote by (Mn)n≥0 the X-valued sequence of random variables of law Pθ.

Basic assumptions on Markov chains

A Markov chain (X,P, θ) is irreducible if for all x, y ∈ X there exists n ≥ 0 such that
P n(x, y) > 0. Without loss of generality, we will always assume that the Markov chain is
irreducible.

We denote by c0(X) the subspace of `∞(X) of functions that are finitely supported.
A Markov operator is said to have finite range if Pf ∈ c0(X) whenever f ∈ c0(X). This
assumption will be usually satisfied, however, sometimes it can be a restriction so that it
will be specified when needed.

General properties of a Markov chain

Suppose that (X,P, θ) is irreducible, then (X,P, θ) is said to be recurrent if and only if
for some — hence for all — x ∈ X, Px(∃n ≥ 0 : Mn = x) = 1. A Markov chain is said to
be transient if and only if for some — hence for all — x ∈ X, Px(∃n ≥ 0 : Mn = x) < 1.
By definition, an irreducible Markov chain is either recurrent or transient. The property
of being recurrent or transient is termed the type of the Markov chain.

We denote by G the Green function defined for x, y ∈ X by

G(x, y) =
∑
n≥0

P n(x, y).

A well known criterion related to the type of an irreducible Markov chain in terms of
Green function is given by

1. G(x, y) =∞ for all (for some) x, y ∈ X ⇐⇒ (X,P, θ) recurrent,

2. G(x, y) <∞ for all (for some) x, y ∈ X ⇐⇒ (X,P, θ) transient.
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1.2.3 Markov chain adapted to a graph structure

In this section, we aim at describing the relationship between the combinatorial notion of
graph and the stochastic notion of Markov chain.

Let G = (G0,G1, r, s) be a connected locally finite directed graph. A simple way to
define a Markov chain (X,P ) adapted to G is to set X = G0 and define

P (x, y) =

{ 1
deg−(x)

if (x, y) ∈ G1,

0 otherwise.

This Markov chain is called the simple random walk on the graph G. The graph being
locally finite and connected, such a Markov operator is irreducible and has finite range.

More generally, we can consider a Markov operator P such that for each x ∈ G0{
P (x, y) ∈ (0, 1] if (x, y) ∈ G1,
P (x, y) = 0 otherwise,

with the additional property
∑

y∈G0 P (x, y) = 1. Such a Markov chain is then called a
random walk on the graph G. The properties of irreducibility and having finite range are
still satisfied.

Conversely, if we are given a Markov chain on a denumerable set X, we can construct
a directed graph for which the Markov chain is adapted. More specifically, we set G0 = X
and G1 is the subset of G0 × G0 such that G1 3 α := (x, y) if and only if P (x, y) > 0. If
the Markov operator P is irreducible and has finite range, then the corresponding graph,
denoted by G(P ), is connected and locally finite.

1.3 Random walks on di-graphs induced by a PTM

Contrary to the traditional questions arising from the computation theory, we are merely
interested in the dynamics of a Turing machine and the amount of the specific information
produced by them. Therefore, we suppose that the set of final states is empty so that such
a Turing machine never halt.

We only show how, with a probabilistic Turing machine, we associate a random walk
on a directed graph (the dynamical system induced by a deterministic Turing machine is
a slight adaption of the one introduced in section 1.1.1).

Let G0 = A∗[ ×S×Z be the set of vertices. The set of edges G1 is defined as a subset of
G0 ×G0 by the condition (x, y) ∈ G1, where G0 3 x := (α, s, d) and G0 3 y := (α′, s′, d′),
is an edge if and only if there exists i ∈ {1, · · · , r} such that ui(αd, s) = (ã, s̃, d̃) and

s′ = s̃

d′ = d+ d̃
α′ = (α1, · · · , αd−1, ã, αd+1, · · · , α|α|).

We can define the range and source functions r, s : G1 → G0 by r((x, y)) = y and s((x, y)) =
x for all (x, y) ∈ G1. Finally, the directed graph, denoted by G(M) = (G0,G1, r, s), is
termed the directed graph induced by the probabilistic Turing machine.
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The graph G(M) is connected if r ≥ 1, i.e. the transition function consists of at least
one branch, and is locally finite because the transition function has a finite number of
branches.

The local probability structure on the transition functions gives rise to a Markov oper-
ator. More precisely, P (x, y) = pi if the branch i can be chosen with probability pi.

As a conclusion, we can study probabilistic Turing machines from the point of view of
random walks on directed graphs.



Chapter 2

Martin boundary of a directed graph

The following chapter is devoted to the determination of the boundaries associated with
random walks on an example of directed graph. This directed graph can be regarded as
a constrained subgraph of the Cayley graph of Z2. In a first part, we define the Martin
and the Poisson boundaries and recall some well known examples for which the boundaries
are completely described. In a second part, the main result of this chapter is presented
without the details of computations which are postponed to appendix A.

2.1 Boundaries of a Markov operator

The Poisson and Martin boundaries are intimately related. The first can be defined as
a pure measure theoretical object, many criteria exist to decide of its triviality (see for
example [KV83, KW02] in the case of random walks on groups or homogeneous spaces and
[Kai92] for more general criteria).

The Martin boundary is defined with the help of a compactification (see for instance
[Saw97]), and that is why the latter is a more geometric construction. Alternatively, the
Poisson boundary can be seen as a measure subspace of the Martin boundary. Thus, in case
the Poisson boundary is not trivial, the Martin boundary gives an interesting geometric
insight (see [Saw97]).

2.1.1 Martin boundary

Geometry of the space of surperharmonic functions

In this section we always do the usual assumption of irreducibility of the Markov chain
(X,P ).

A function f ∈ `∞(X) is superharmonic if Pf ≤ f and harmonic if Pf = f . We
denote by S+ the set of non-negative superharmonic functions and by H+ the subset of
non-negative harmonic functions. It is well known that S+ is a convex cone with vertex
0, i.e. it is convex and if u ∈ S+ \ {0}, then the whole half-line {au : a ≥ 0} is contained
in S+.

11
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A base of a cone with vertex v̄ is a subset B such that each element of the cone different
from v̄ can be uniquely written as v̄ + a(u − v̄) with a > 0 and u ∈ B. Let us fix a base
point o ∈ X, then the set

B = {u ∈ S+ : u(o) = 1}
is a base of the cone S+.

Finally, the set S+ can be endowed with the topology of pointwise convergence as a
subset of the space of all real functions.

Theorem 2.1.1. Let (X,P ) be an irreducible Markov chain. Then,

1. S+ is closed and B is compact in the topology of pointwise convergence.

2. If P has finite range, then H+ is closed.

The hypothesis of finite range is sufficient but not necessary. Nevertheless, note that
the subsetH∞+ of bounded positive harmonic functions is always closed in S+ by dominated
convergence.

Since B is a base of the cone S+, a description of the base yields a description of
the cone. Moreover, the base considered is convex and compact so that we only need to
describe the set ext(B) of extremal points of B. Recall that extremal points are elements
of B which cannot be written as a convex combination au1 + (1− a)u2 with 0 < a < 1 of
distinct elements u1 and u2 of B.

It is easy to check that the function x 7→ G(x, y) is positive superharmonic for all y
and strictly superharmonic at the point y∑

z∈X
P (x, z)G(z, y) =

∑
n≥0

∑
z∈X

P (x, z)P n(z, y)

=
∑
n≥0

P n+1(x, y)

= G(x, y)− δx(y) ≤ G(x, y)

However, there is no reason for the function x 7→ G(x, y) to belong to B. Hence, we
normalize it.

Definition 2.1.2. 1. The Martin kernel is defined by

K(x, y) =
G(x, y)

G(o, y)

for x, y ∈ X.

2. A function h ∈ H+ is called minimal if

• h(o) = 1, and

• if h1 ∈ H+ and h ≥ h1 in each point, then h1

h
is constant.
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Theorem 2.1.3. If (X,P ) is transient, then the extremal elements of B are the Martin
kernels and the minimal harmonic functions :

ext(B) = {K(·, y) : y ∈ X} ∪ {h ∈ H+ : h is minimal }

Let us give two criteria to better understand the notion of minimal harmonic function.
Let h be a positive, non-zero superharmonic function. We can define the so-called Doob’s
h-process (see [Doo59]), it is the Markov chain with transition operator Ph defined by

Ph(x, y) =
P (x, y)h(y)

h(x)
.

The following simple properties can be easily checked.

1. The operator Ph is stochastic if and only if h is a positive, non-zero harmonic function;

2. a function u is superharmonic — resp. harmonic — with respect to P if and only if
ū = u/h is superharmonic — resp. harmonic — with respect to Ph.

We recall that H∞ = H∞(X,P ) denote the space of bounded harmonic functions.

Lemma 2.1.4. The space H∞ is trivial — contains only constant functions — if and only
if the constant harmonic function 1 is minimal.

The following corollary provides with a characterization of minimal harmonic functions
in terms of bounded harmonic functions of the Doob’s h-process.

Corollary 2.1.5. A function h ∈ B+ is minimal if and only if the space of bounded
harmonic functions with respect to Ph is trivial.

According to Choquet representation theory, if x ∈ K, where K is a metrizable compact
convex subset of a topological locally convex vector space, then there exists a probability
measure ν on the set ext(K) of extremal points such that

x =

∫
ext(K)

cν(dc).

Nevertheless, the measure ν is not unique in general if K is not a simplex — see for example
[Phe66]. Therefore, we would need to prove that a certain subset of the base B is a simplex
and we would obtain an integral representation of non negative superharmonic functions.
However, in this approach, the stochastic meaning of the Martin boundary is missed. That
is why many authors usually prefer to prove the integral representation theorem in terms
of Martin compactification which yields an extra result related to the convergence of the
Markov chain to the boundary.
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The Martin compactification

Given the countably infinite set X, by a compactification of X we mean a compact topo-
logical Haussdorff space X̂ containing X such that

• the set X is dense in X̂, and

• the induced topology on X is discrete in X̂.

The set ∂X = X̂ \ X is called the boundary. The set X can be compactified in many
equivalent ways. Let us give one of them.

Theorem 2.1.6. Let F be a denumerable family of real bounded functions on X. Then
there exists a unique, up to homeomorphism, compactification X̂ = XF of X such that

1. every function f ∈ F extends to a continuous function on X̂, and

2. the family F separates the boundary points : if ξ, η ∈ X̂ \X are distinct, then there
exists a function f ∈ F with f(ξ) 6= f(η).

The proof of this well known theorem is of general interest, that is why we will give its
main steps.

Proof. First, let us prove the existence of such a compactification. For x ∈ X, we write 1x
for the indicator function of the point x. We add all those indicator functions to F , setting

F∗ = F ∪ {1x : x ∈ X}

For each f ∈ F∗, there is a constant Cf such that |f(x)| ≤ Cf for all x ∈ X. Consider the
topological product space

ΠF =
∏
f∈F∗

[−Cf , Cf ] = {φ : F∗ 7→ R : φ(f) ∈ [−Cf , Cf ] for all f ∈ F∗}

The natural topology is the one of pointwise convergence. A neighborhood base at φ ∈ ΠF
is given by finite intersections of sets of the form {ψ ∈ ΠF : |ψ(f)− φ(f)| < ε}, as f ∈ F∗
and ε > 0 vary.

We can embed X into ΠF via the map

X 3 x 7→ i(x) = φx ∈ ΠF , where φx(f) = f(x) for f ∈ F∗.

If x, y are two distinct points of X, then φx(1x) = 1 6= 0 = φy(1x). Therefore, i is injective.
Moreover, the neighborhood {ψ ∈ ΠF : |ψ(1x) − φx(1x)| < 1} of i(x) = φx contains none
of the functions φy for y 6= x. This means that i(X), endowed with the induced topology,
is a discrete subset of ΠF . Thus we may identify X with i(X).

Now we define X̂ = XF as the closure of X in the compact topological space ΠF .
Hence, X is a dense discrete subset of X̂ which is the type of compactification we were
looking for.



2.1. BOUNDARIES OF A MARKOV OPERATOR 15

Each ξ ∈ X̂ \ X = ∂X is a function F∗ 7→ R with |ξ(f)| ≤ Cf . By the construction

of X̂, there must be a sequence (xn) of distinct points in X that converges to ξ, that is,
f(xn) = φxn(f) → ξ(f) for every f ∈ F∗. Let us define f(ξ) = ξ(f). Observe that since
φxn(1x) = 0 when xn 6= x, then we have 1x(ξ) = ξ(1x) = 0 for every x.

If (xn) is an arbitrary sequence in X which converges to ξ in the topology of X̂, then
for each f ∈ F one has

f(xn) = φxn(f)→ ξ(f) = f(ξ)

thus, f becomes a continuous function on X̂. Finally, F separates the points of ∂X : if
ξ, η ∈ ∂X, then they are also distinct in their original definition as functions on F∗. Hence
there is f ∈ F∗ such that ξ(f) 6= η(f). Since ξ(1x) = η(1x) = 0 for every x, we must have
f ∈ F . Thus, f(ξ) 6= f(η).

The uniqueness part of the proof is classical and can be found in [Woe09]. The identity
τ : X 7→ X extends continuously to a map from X̂ 7→ X̃, and we have to check that τ is
actually an homeomorphism.

A different usual construction of the Martin compactification is given by the completion
with respect to a certain metric which depends on the family F∗ — see [Saw97] or again
[Woe09].

Definition 2.1.7 (Martin compactification). Let (X,P ) be an irreducible Markov chain.
The Martin compactification of X with respect to P is defined as X̂(P ) = X̂F , where F is
the family of functions

F = {K(x, ·) : x ∈ X}

The Martin boundary ∂X = X̂(P ) \X is the boundary of the compactification.

Lemma 2.1.8. If (X,P ) is transient and ξ ∈ ∂X, then K(·, ξ) is a positive superharmonic
function. Moreover, if P has finite range, then the function K(·, ξ) is harmonic.

Proof. We say that a sequence (yn) tends to infinity if for all finite subset A ⊂ X, there
exists an integer N ≥ 0 such that for all n ≥ N , yn /∈ A. By construction, there ex-
ists a sequence (yn) in X, tending to ∞ such that K(·, yn) → K(·, ξ) pointwise in X.
Thus, K(·, ξ) is the pointwise limit of superharmonic functions K(·, yn) and consequently
a superharmonic function.

Now, in the case where P is of finite range

PK(x, yn) =
∑

y:P (x,y)>0

P (x, y)K(y, yn) = K(x, yn)− δx(yn)

K(o, yn)

If the summation is finite, it can be exchanged with the limit as n→∞. Since, yn 6= x for
all but finitely many n, we get that PK(x, ξ) = K(x, ξ).
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Convergence to the boundary

The interesting meaning of the Martin boundary is contained in the following theorem.
As a compact metric space, X̂(P ) carries a natural σ-algebra, namely the Borel σ-algebra.
Speaking of a X̂(P )-valued random variable, we mean a measurable function from the path
space (X∞,X∞,Pθ) to X̂(P ).

Theorem 2.1.9 (Convergence to boundary). If (Zn)n≥0 is a X-valued transient Markov
chain, with Markov operator P , then there exists a random variable Z∞ taking its values
in ∂X such that for each x ∈ X,

Px( lim
n→∞

Zn = Z∞) = 1,

where the limit has to be understood as a limit in the topology of X̂(P ).

The Poisson-Martin integral representation theorem

From the convergence theorem, we can construct a probability measure on the boundary
∂X. For all measurable subsets B of X̂ we define

νx(B) = Px(Z∞ ∈ B).

Thus, by definition, if f : X̂ → R is a νx-integrable function, then

Ex(f(Z∞)) =

∫
X̂

f(ξ)νx(dξ).

Actually, we have the following finer result.

Theorem 2.1.10. The measure νx is absolutely continuous with respect to νo and (a ver-
sion of) its Radon-Nikodym derivative is given by dνx

dvo
= K(x, ·). Namely, if B ⊂ X̂ is a

Borel set then,

νx(B) =

∫
B

K(x, ξ)νo(dξ).

We have now arrived at the point where we can give the second main theorem of the
Martin boundary theory, after the one dealing with the convergence to the boundary.

Theorem 2.1.11 (Poisson-Martin representation formula). Let (X,P ) be irreducible and
transient, with Martin compactification X̂ and Martin boundary ∂X. Then for all h ∈
S+(X,P ) there exists a Borel measure νh on X̂ such that

h(x) =

∫
X̂

K(x, ξ)νh(dξ) for every x ∈ X.

If h is harmonic then supp(νh) ⊂ ∂X.
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We refer the reader to [Woe09] for a proof of this fact. Nonetheless, let us say that in
the proof of this theorem a natural choice for the measure νh in the integral representation
appears : for a Borel set B ⊂ X̂

νh(B) = h(o)Po
h(Z∞ ∈ B) (2.1)

where Po
h is the probability measure on the path space induced by the h-process.

Theorem 2.1.12. Let h be a minimal harmonic function. Then there is a point ξ ∈ ∂X
such that the unique measure ν on X̂ which gives rise to an integral representation h =∫
X̂
K(·, η)ν(dη) is the Dirac mass ν = δξ.

We define the minimal Martin boundary ∂Xmin as the set of all ξ ∈ ∂X such that
K(·, ξ) is a minimal harmonic function. From theorem 2.1.12, we know that every minimal
harmonic function arises in this way. It can be shown that the minimal Martin boundary is
a Borel set of X̂. By now, we can give an integral representation theorem with uniqueness
of the representative measure.

Theorem 2.1.13. If h ∈ S+, then the unique measure ν on X̂ such that

ν(∂X \ ∂Xmin) = 0

and

h(x) =

∫
X̂

K(x, ξ)ν(dξ) for all x ∈ X

is given by ν = νh defined by equation (2.1).

2.1.2 Poisson boundary

We give in this section the definition of the Poisson boundary regarded as a measurable
subspace of the Martin boundary. The Poisson boundary is a theoretical measure ob-
ject and it can be constructed without the help of the Martin boundary (see [Kai92] for
example). In appendix B, the Poisson boundary will be defined as the space of ergodic
components of a dynamical system on a measure space arising as an inductive limit of
measure spaces.

Poisson transform

If ν is a Borel measure on ∂X, then

h =

∫
∂X

K(·, ξ)ν(dξ)

defines a non-negative harmonic function. This relies on the monotone convergence theorem
and the fact that K(·, ξ) is harmonic. Moreover, by theorem 2.1.11, if u ∈ S+, then we
have

u(x) =
∑
y∈X

K(x, y)νu(y) +

∫
∂Xmin

K(x, ξ)νu(dξ)
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Set g(x) =
∑

x∈Y K(x, y)νu(y) and h(x) =
∫
∂Xmin

K(x, ξ)νu(dξ). Then as we have just

observed, h is harmonic, and νh = νu|∂X by theorem 2.1.13.
It can be shown that g = Gf with f = u − Pu so that we obtain the so-called Riesz

decomposition of superharmonic function u = Gf + h with extra informations on the
harmonic part.

In the definition we gave of a Markov operator, it is said that P1 = 1. Hence, the
constant function 1 is harmonic. Setting B = X̂ in theorem 2.1.10, we see that the
measure on X̂ which gives rise to the integral representation of 1 in theorem 2.1.13, is the
measure νo.

We consider the space L1(∂X, νo) of νo-integrable functions on ∂X. Let φ ∈ L1(∂X, νo),
then the Poisson integral of φ is the function

h(x) =

∫
∂X

K(x, ξ)φ(ξ)νo(dξ) =

∫
∂X

φ(ξ)νx(dξ) = Ex(φ(Z∞)), x ∈ X.

It is easy to see that h is a bounded harmonic function if φ is supposed to be bounded.
Conversely, the following holds.

Theorem 2.1.14. Every bounded harmonic function is the Poisson integral of a bounded
measurable function on ∂X, in symbols

H∞ ∼= L∞(∂X, νo).

Convergence to the Poisson boundary

We finish this section with a convergence theorem which gives the stochastic meaning of
the Poisson boundary. This theorem has a more general version in terms of asymptotic
σ-algebra.

Theorem 2.1.15 (Probabilistic Fatou theorem). Let φ ∈ L∞(∂X, νo) and h be its Poisson
integral, then

lim
n→∞

h(Zn) = φ(Z∞), νo-almost surely.

2.1.3 Examples : the cases of ZN and free groups

An important part of the results related to boundaries has been given for random walks
on groups of finite type.

Random walks on the lattice ZN

One of the first example of computation of the Martin boundary concerns random walks
on the lattice ZN . In [NS66], Ney and Spitzer describe the Martin boundary in the case of
a Markov operator with a finite first moment condition. Also, they assume that the drift
is non zero.
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Let µ be a probability measure on ZN , we can define for all x, y ∈ ZN the transition
operator by P (x, y) = µ(y−x). In the sequel we assume that P is irreducible. If µ satisfies∑

x∈ZN
|x|µ(x) =

∑
x∈ZN

|x|P (0, x) <∞,

where |x| denotes the Euclidean distance of x from the origin, we can define the drift by

v =
∑
x∈ZN

xµ(x) ∈ ZN .

Finally, we define on ZN a real function φ by

φ(u) =
∑
x∈ZN

P (0, x)e〈x,u〉,

where 〈·, ·〉 denotes the usual scalar product. We define the two following sets

D = {u ∈ ZN : φ(u) ≤ 1} and ∂D = {u ∈ ZN : φ(u) = 1}.

For their proof, Ney and Spitzer need the additional assumption (♣); every point of ∂D
has a neighborhood in which φ is finite. Under this assumption, it can be shown that the
set D is compact and convex, the gradient

∇φ(u) =
∑
x∈ZN

xe〈u,x〉P (0, x)

exists everywhere on D and does not vanish on its boundary ∂D. Furthermore, the map

u→ ∇φ(u)

|∇φ(u)|

determines a homeomorphism between ∂D and ∂S, where ∂S is the (N − 1)-dimensional
unit sphere. More precisely, the mapping

x→ x

1 + |x|

maps ZN on a countable subset S of the N -dimensional unit ball, moreover ZN and S are
homeomorphic — for the discrete topology. We complete the set S with respect to the
Euclidean metric, and the lattice ZN with respect to the metric

ρ(x, y) =

∣∣∣∣ x

1 + |x| −
y

1 + |y|

∣∣∣∣ .
Then, the completion ZN = ZN ∪ ∂ZN is homeomorphic to S̄, and ∂ZN is homeomorphic
to ∂S. The main theorem of [NS66] is given below under the conditions of irreducibility,
non zero drift and (♣).



20 CHAPTER 2. MARTIN BOUNDARY OF A DIRECTED GRAPH

Theorem 2.1.16. For x ∈ ZN , define fx : ZN → R by
fx(y) = G(x,y)

G(0,y)
for y ∈ ZN , and

fx(ξ) = e〈α(ξ),x〉 for ξ ∈ ∂ZN ,

where α : ∂ZN → ∂D is the homeomorphism defined as the composition of the two homeo-
morphisms ∂ZN ↔ ∂S and ∂S ↔ ∂D defined in the above discussion. Then the function
f is continuous on ZN .

Moreover, the family of function {fx : x ∈ ZN} obviously separates the points of the
boundary ∂ZN . In other words, the Martin boundary of such a random walk is homeomor-
phic to a (N − 1)-dimensional Euclidean sphere. Furthermore, every point ξ ∈ ∂ZN are
clearly minimal, consequently, the minimal Martin boundary is equal to the whole Martin
boundary (and hence homeomorphic to the (N − 1)-dimensional spheres). In the proof
of this theorem, Ney and Spitzer establish a local limit theorem which gives rise to fine
estimates of the Green function.

For N = 3 and µ a probability measure with a finite second moment, the case of zero
drift is solved in [Spi76], part 26.1. In this case, the Martin boundary is trivial. The
generalisation for N ≥ 4 is immediate under the condition of a probability measure with
finite moment of even order 2m > N − 2. For N = 1 or N = 2, the Martin boundary is
obvious because the random walk is recurrent.

In [Uch98], precise estimates of the Green function are given. Those estimates depend
on the dimension and moment conditions.

Finally, the Poisson boundary is trivial in all cases, see for instance [CD60].

The free group

In the sequel, we denote by Fd the free group on d generators. In the context of free
groups the description of the Martin boundary is obvious. The more general situation of
homogeneous trees is studied in [Woe95]. The description of the Martin boundary of a
homogeneous tree T involves a transitive action of a closed subgroup Γ, namely the group
of all automorphisms (self-isometries) AUT(T ) of the metric space (T, d) with d the usual
graph metric on T . In this context, a random walk on T can be seen as the realisation of a
random walk on Γ. The description of the Martin boundary in the context of free groups
has the advantage to reveal the essential ideas without involving tedious details.

Let Fd = 〈a±1
1 , · · · , a±1

d 〉 be the free group with d generators. For every vertex x, y ∈ Fd,
there is a unique geodesic segment xy. We denote by d the usual graph metric. A ray is
an infinite reduced sequence R = (xi)i≥0 of successive neighbours. Two rays R and R′ are
said to be equivalent if they differ only by finitely many vertices. An end of the tree Fd

is an equivalent class of rays. We denote by E the set of ends, and we write F̂d = Fd ∪ E .
For every e ∈ E and x ∈ Fd, there exists a unique ray xe starting at x which represents e.

Let us fix a reference vertex o ∈ Fd. If ξ, η ∈ F̂d, then the confluent c = c(ξ, η) is the
last common vertex on oξ and oη, unless ξ = η ∈ E , in which case we set c(ξ, η) = ξ. We
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set

(ξ|η) =

{
d(o, c), if c ∈ Fd, and
∞, otherwise.

Noting that (ξ|η) ≥ min{(ξ|ζ), (ζ|η)} for all ξ, ζ, η ∈ F̂d, we define the metric ρ on F̂d by

ρ(ξ, η) =

{
e−(ξ|η), if ξ 6= η,
0, if ξ = η.

Thus F̂d becomes a totally disconnected compact space with Fd open, dense and discrete.
Let µ be a probability measure with a finite support generating Fd as a semigroup.

We can define the transition operator P by P (x, y) = µ(x−1y) for x, y ∈ Fd. We set
τy = inf{n ≥ 0 : Mn = y} and define Π(x, y) = Px(τy <∞), for x, y ∈ Fd, the probability
to hit y, starting from x, in finite time. For a group, the Martin kernel is given by

K(x, y) =
G(x, y)

G(o, y)
=

Π(x, y)

Π(o, y)
.

This equality is also available in the case of a transitive action of a group on a metric space
preserving the Markov operator.

Moreover, in the particular case of free groups, we observe that for any ξ ∈ E

Π(x, yn)

Π(o, yn)
=

Π(x, ξ)

Π(o, ξ)

Π(ξ, yn)

Π(ξ, yn)
.

This property comes from the 0-hyperbolicity of the free group Fd. As a consequence of
this formula, we have the following theorem.

Theorem 2.1.17. For all x ∈ Fd the function K(x, ·) extends continuously to a function on

F̂d. Moreover, for ξ 6= η ∈ E, i.e. such that ρ(ξ, η) > 0. there exists two points x1, x2 ∈ Fd

such that K(x1, ξ) 6= K(x2, η). In other word, the Martin boundary is homeomorphic to E.

In this example, we have seen how the group structure and the hyperbolicity simplify
the description of the Martin boundary. In the context of free groups, the Poisson boundary
is isomorphic to the Martin boundary. We refer the reader to [Kai00] for a general study
of the Poisson boundary in the case of the hyperbolic groups.

2.2 Boundaries of the simple random walk on a di-

graph

In [CP03], transience and recurrence are studied for the simple random walk on various
types of partially horizontally oriented regular lattices. In this paragraph we aim at going
further in the transient case by determining the Martin boundary of such a random walk.



22 CHAPTER 2. MARTIN BOUNDARY OF A DIRECTED GRAPH

2.2.1 Definition of the graph H
We consider two dimensional lattices, i.e G0 = Z2 and G1 is a subset of nearest neighbor-
hoods in Z2. We decompose G0 = G0

1 × G0
2 into horizontal and vertical directions. More

precisely, if v ∈ G0 = Z2, then v = (v1, v2) with vi ∈ G0
i the usual coordinates in Z2. Let

ε = (εy)y∈G0
2

be a {−1, 0, 1}-valued sequence of variables.

Definition 2.2.1. We call ε-horizontally oriented lattice G = (G, ε), the directed graph
with vertex set G0 = Z2 and edge set G1 with the condition α = (u,v) ∈ G1 if and only if
one of the following holds

1. either v1 = u1 and v2 = u2 ± 1

2. or v2 = u2 and v1 = u1 + εu2

Note that G is connected if and only if 1 and −1 are both in the range of ε.
Let ε be the sequence defined by ε0 = 0 and εy = sgn(y) where sgn is the sign function,

then, we denote by H the ε-graph induced.
This definition is due to [CP03], nevertheless we should replace this example in the

context of constrained subgraphs of the Cayley graph of Z2. Let S = {±ε1,±ε2} be the
canonical set of generators of Z2. Let f be a constraint of the Cayley graph of Z2, that is
a function f : Z2×S → {0, 1}. In the example considered here, the constraint f is defined
for (z, s) ∈ Z2 × S as follows

f(z, s) =


1 if s = ±ε2,

or s = ε1 and 〈z, ε2〉 > 0
or s = −ε1 and 〈z, ε2〉 < 0

0 otherwise,

where 〈·, ·〉 denotes the standard scalar product in R2 with respect to the canonical basis
(ε1, ε2). The constrained subgraph is the directed graph (G0,G1, r, s) where

• G0 = Z2,

• G1 = {(z, z′) ∈ G0 ×G0 : f(z, z′ − z) = 1},

• the source and range functions s, r : G1 → G0 are defined such that s((z, z′)) = z
and r((z, z′)) = z′ for all (z, z′) ∈ G1.

As a directed graph, the set of paths of finite lenght can be endowed with a semi-groupoid
structure (see chapter 4).

2.2.2 Poisson boundary

The case of the simple random walk

The proof of the following proposition is an adaptation of ideas involved in the proof of
the triviality of the Poisson boundary of random walks on Abelian group due to Choquet
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Figure 2.1: The half plane one-way lattice H

and Deny (see [CD60]) or more specifically we will adapt the proof of theorem T1, chapter
VI, in [Spi76].

Proposition 2.2.2. The Poisson boundary of the simple random walk on H is trivial, i.e
all bounded harmonic functions are constant.

Elementary proof. Let h be a bounded harmonic function and a = (α, 0) a vector of H.
We set g(x) = h(x)− h(x− a), then g is obviously harmonic

Pg(x) = h(x)−
∑
y∈H

P (x, y)h(y − a).

Thus, setting z = y−a, substituting in the sum, and noting that P (x, z+a) = P (x−a, z)
because P is invariant by horizontal translations, we get

Pg(x) = h(x)−
∑
z∈H

P (x− a, z)h(z) = h(x)− h(x− a) = g(x).

Now let supx∈H g(x) = M <∞, choose a sequence xn of points in H such that

lim
n→∞

g(xn) = M,

and let

gn(x) = g(x+ xn).
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Since g is bounded, one can select a subsequence x
(1)
n from the sequence xn such that, for

a certain x = x1

lim
n→∞

g(x1 + x(1)
n ) exists.

However, we can do better since the vertex set of H is an Abelian discrete group. We can
take a subsequence x

(2)
n of the sequence x

(1)
n such that g(x+x

(2)
n ) has a limit at x = x1 and

also at x = x2. This process can be continued. By the Cantor’s diagonalisation principle,
H being countable, there exists a subsequence nl of positive integers and a real function g∗

on H such that
lim
l→∞

gnl(x) = g∗(x)

for every x ∈ Z. Moreover, it is obvious that

g∗(0) = M, and g∗(x) ≤M for all x ∈ H.

Furthermore, the function g∗ is harmonic by dominated convergence.
Recall that the simple random walk on H is irreducible because the graph is connected.

Thus, applying the maximum principle to the harmonic function implies that g∗ ≡ g∗(0) =
M .

Let r be any positive integer and ε > 0, we can find an integer n large enough such
that

gn(a) > M − ε ; gn(2a) > M − ε ; · · · ; gn(ra) > M − ε.
Going back to the definition of gn and adding those r inequalities, we obtain

h(ra+ xn)− h(xn) > r(M − ε)

for n large enough. We can show that M can not be strictly positive. Indeed, if it was,
the integer r could have been chosen so large that r(M − ε) exceeds the least upper bound
of h. Therefore, it follows g(x) ≤ M ≤ 0 and h(x) ≤ h(x − a). Obviously, we can do the
same reasoning for −h and we would have h(x) ≥ h(x− a).

Setting h̃(y) = h(x0, y) for some x0, we show that the bounded harmonic function h̃ is
constant by the maximum principle.

Reducible random walk

In this paragraph, we give an example of reducible random walk for which the Poisson
boundary is not trivial. In this example, the state space is the upper half plane X = Z×Z+,
and we denote by (e1, e2) the canonical basis of Z2, i.e. e1 = (1, 0) and e2 = (0, 1). In
addition, we set X− = Z× {0}. Let x /∈ X−, the Markov operator is given for y ∈ X by

P (x, y) =


q if y = x+ e2,
p if y = x+ e1,
r if y = x− e2, and
0, otherwise,
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Figure 2.2: A reducible example with a non trivial Poisson boundary.

where p, q, r ∈ (0, 1) are such that p + q + r = 1. If x ∈ X− then we set P (x, x) = 1 and
P (x, y) = 0 for y 6= x. This is summarized in the figure 2.2.

Let h : X → R be of the form h(x) = e〈x,a〉 where a ∈ R2 and 〈·, ·〉 is the usual scalar
product induced by R2. We will show that we can find a ∈ R2 such that h is a bounded
harmonic function. Assuming x /∈ X−, we compute

Ph(x) = e〈x,a〉(qea2 + pea1 + re−a2)

if we set a = (a1, a2) ∈ R2. Notice that Ph(x) = h(x) for all function h and all x ∈ X−.
Consequently, h is harmonic if and only if qea2 +pea1 + re−a2 = 1. Moreover, h is supposed
to be bounded so that a1 is zero and a2 is non positive. Solving qe2a2 + (p− 1)ea2 + r = 0,
we find two solutions a2 = 0 or a2 = log r

q
. As a consequence, we have exhibited a family

of harmonic functions h(x) =
(
r
q

)x2

which are bounded if q > r and unbounded if q < r.

The case of random walk on H with a drift

Looking at the proof of proposition 2.2.2, we observe that the crucial property is the
translation invariance of the operator which allow to consider the simpler problem of the
determination of the bounded harmonic functions associated with a specific random walk
on Z.

Let (py)y∈Z be a sequence of real numbers in [0, 1) and let (qy)y∈Z be a sequence of
positive real numbers such that qy < 1− py for all y ∈ Z. We suppose that, for (x, y) ∈ H,
the random walk can move horizontally with probability py, move up with probability qy
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and move down with probability 1 − py − qy (figure 2.3). Bearing in mind what we have
noticed, the following theorem does not require a proof.

(0, 0)

(0, j)

(0,−j)

qj

rj

pj

qj

rj

pj

Figure 2.3: The half plane one-way lattice H with a non constant drift.

Theorem 2.2.3. The Poisson boundary of the random walk with transition probabilities
defined as above is isomorphic to the Poisson boundary of the random walk whose transition
operator is defined for x, y ∈ Z by

P (x, y) =


px if y=x,
qx if y=x+1,
1− px − qx = rx if y=x-1,
0 otherwise.

Consider the lattice H with the sequences of probabilities (py)y∈Z and (qy)y∈H such that
p0 = 0, py ≡ p for all y ∈ Z∗, q0 = 1/2, qy ≡ q > 1−p

2
for y > 0, and qy = 1 − p − q

for y < 0. A simple computation shows that the Poisson boundary of the corresponding
random walk on Z is trivial, hence, the Poisson boundary of the original Markov chain is
also trivial. Consequently, the non triviality in the half-plane example is essentially due to
the reducibility which artificially adds boundary points.

In our context, the orientation ε has been fixed once for all. However, it can be chosen
randomly. If ε = (εy)y∈Z is a sequence of independent random variables it is shown in
[CP03] that the corresponding simple random walk on (G, ε) is transient for almost all
ε. This result has been generalized in [GPLN08] for a random sequence ε for which εy is
equal to 1 with probability fy and -1 with probability 1 − fy where (fy)y∈Z is a sequence
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of stationary random variables satisfying E(f0(1 − f0))−1/2 < ∞. Finally, the case of a
stationary sequence ε with decorrelation conditions is considered in [Pèn09] and, also, the
corresponding simple random walk is shown to be transient. In those situations, the Poisson
boundary remains obviously trivial (for all orientations) since, for all y ∈ Z, qy ≡ py = 1

3

so that it defines a Markov operator on Z invariant by the natural Z action.

2.2.3 Triviality of the Martin boundary of H
This section is devoted to the study of the Martin boundary. In the case of the simple
random walk on H it is shown to be trivial.

Denote by (Mn)n≥0 the simple random walk on the directed graph G. Let (τn)n≥0 be a
sequence of stopping times defined inductively by τ0 = 0 and

τn+1 = inf{t ≥ τn + 1 : M
(2)
t = 0}

where Mn = (M
(1)
n ,M

(2)
n ), and we have for all x ∈ H, Px(τn <∞) = 1.

The sequence of random variables (Mτn)n≥1 is itself a Markov chain which can be seen
as a random walk on Z with an infinite range Markov operator. It will be referred to as
the induced Markov chain or the embedded Markov chain.

Theorem 2.2.4. The Martin boundary of the embedded and original Markov chain (Mn)n≥0

are trivial.

The details of the proofs of these theorems are postponed to the appendix A. However,
we give here their skeleton.

We denote by ηs,t(y), for s, t ≥ 0 and y ∈ H, the local time of (Mn)n≥0 in y, i.e.

ηs,t(y) =
t−1∑
n=s

1Mn=y,

with the convention
∑
∅ = 0. Then, the Martin kernel can be rewritten in

K(x, y) =


G(x,y)
G(0,y)

if x, y ∈ Z× {0};

Ex(η0,τ1 (y))

G(0,y)
+
∑

z∈Z×{0} νx(z)K(z, y) otherwise

(2.2)

where νx(z) = Px(Mτ1 = z).

Proposition 2.2.5. Let z = (z1, 0) ∈ Z × {0} and y = (y1, y2) ∈ H. Then the Green
function is given by the integral

G(z, y) = (2π)−1

∫ π

−π
eit(y1−z1) g(r(t))|y2|

1− φ(t)
dt

where

r(t) = 1
3−2eit

, g(x) = 1−
√

1−x2

x
, and φ(t) = Re r(t)−1g(r(t)).

Moreover, if we suppose that y1y
−2
2 converges to λ ∈ R ∪ {±∞}, then, for all λ, there

exists a constant s(λ) such that
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(i) G(z, y) ∼ s(±∞)|y1 − z1|−1/2 when y1y
−2
2 goes to ±∞ ;

(ii) G(z, y) ∼ s(λ)|y2|−1 when y1y
−2
2 converges to a real λ.

The first term of the second equation in 2.2 is shown to vanish whenever y ∈ H goes to
infinity and we can prove that we can take the limit under the sum. Hence, the proposition
2.2.5 also implies the theorem 2.2.4.



Chapter 3

Cut-and-project scheme

At the begining considered as a mathematical game, the Penrose tilings have proven to
be a very rich subject of study with many applications in different areas of mathematics
and physics. Our point of view is different, since, for us, the third Penrose tiling and more
generally those tilings obtained with the help of the cut-and-project sheme, provide with
examples of constrained subgraph of the Cayley graph of ZN .

3.1 Quasi-periodic tilings and random walks

In this section, we introduce concisely the Penrose tilings of the Euclidean plane. The
second part of the section consists of the reproduction of a submitted paper. In this paper,
the Penrose and icosahedral tilings are constructed with the help of the cut-and-project
scheme. Finally, it follows the statement related to the type of the simple random walk on
the cut-and-project graph with its proof.

3.1.1 The Penrose approach

A first example of aperiodic tiling

Historically, the first quasi-periodic tiling constructed by Penrose in 1974 consisted of six
prototiles

• 3 pentagons,

• 1 star,

• 1 boat, and

• 1 rhomb.

and a set of matching rules. These matching rules insure that the tiling is quasi-periodic
and distinguish the 3 pentagons (see figure 3.1).

29
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Figure 3.1: The first Penrose tiling with six prototiles : 3 pentagons, 1 star, 1 boat and 1
rhomb, figure from [Wik12].

The kite and dart tiling

Penrose’s second tiling uses two quadrilaterals called “kite” and “dart” which can be com-
bined to form a rhomb. However, the matching rules prohibit such a combination (see
figures 3.2a and 3.2b).

The tiling with rhombs

The most interesting Penrose tiling is the one consisting of two prototiles — a thin and a
thick rhombs — with matching rules given in figure 3.3. The thin rhombs has four corners
with two type of angles : the close one of measure 2π/5 and the wide one of measure 3π/5.
For the thick rhombs, the closer angle measures π/5 whereas the wider one is equal to
4π/5. This gives rise to a family of tilings whose one is given in figure 3.4. The Penrose’s
third tiling is fundamental because of its simplicity — only two prototiles — and can be
constructed with the help of the cut-and-project scheme we define in the next paragraph.

The end of this section is devoted to the cut-and-project scheme, the construction of
the third Penrose and icosahedral tilings with the help of this scheme and the statement
related to the type of the simple random walk on the cut-and-project graph induced by a
tiling. This part is the reproduction of a submitted paper.
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(a) The kite and the dart with matching rules. (b) The seven patterns defined by matching rules.

Figure 3.2: The kite and dart tiling, figures from [Wik12]

Figure 3.3: The two rhombs involved in the Penrose’s third tiling with their matching
rules, figure from [Wik12]
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Figure 3.4: The third Penrose tiling consists of only 2 types of rhombs, figure from [Wik12].

3.1.2 Introduction and motivations

Starting with the theorem of Pólya stating that the simple random walk on the integer
lattice Zd is recurrent if and only if d ≤ 2 — and transient otherwise — the case of random
walks on finitely generated groups has been intensively studied in the literature. However,
many questions are still open concerning random walks on weaker algebraic structures like
groupoids or semi-groupoids. Being less rigid than groups, there is no reason a priori
that those structures carry the same theory of random walks. For instance, in [CP03], the
simple random walk on an example of sub-semigroupoid on vertices of Z2 is shown to be
transient.

Roughly speaking, it is obvious that undirected graphs (resp. directed graphs) naturally
carry a groupoid structure (resp. a semi-groupoid structure). As important results on
the relationship between combinatorial (or algebraic) and stochastic properties, we might
probably cite a statement due to [Dod84] on triangulation of surfaces and another theorem
on circle packing which can be found in [Woe00]. The first one asserts that if, for the
triangulation of a surface, the degree deg(x) of each vertex is such that 7 ≤ deg(x) ≤M <
∞ for some integer M, then the simple random walk is transient. Actually, such a property
on the coordination of the vertices implies that, as a metric space, the considered graph
has negative curvature. Besides, for a circle packing of the plane, the dual graph — which
is a triangulation — carries a recurrent simple random walk if the coordination of each
vertex is lower than 6. The class of examples presented in this paper extend those results
in at least two ways. First, in the 2-dimensional case, a tiling is no longer a triangulation
but merely a quadrangulation. Secondly, it will be obvious in the next few lines that the



3.1. QUASI-PERIODIC TILINGS AND RANDOM WALKS 33

coordination of vertices can be made arbitrarily large by increasing the dimension of the
internal space without observing a transition in the type of the random walk.

The class of graphs (or groupoids) considered in this paper are obtained by tiling the
standard real vector space Rd with the help of the cut-and-project scheme. More precisely,
let E be a d-dimensional vector subspace of RN , named the real space, and set Eint = E⊥ the
orthogonal complement of E, called the internal space. Let K be the unit cube in ZN . An
edge in the Cayley graph of ZN is accepted and projected on E (orthogonally) if it can be
translated by a vector of E in the unit cube K+t, t ∈ Eint. Under suitable assumptions this
method gives rise to a family of tilings Tt of the space E whose prototiles are the projections
of the d-dimensional facets of the N -dimensional unit cube K. Moreover, depending on
the configurations of the space E and Eint those tilings will be periodic, quasi-periodic
or aperiodic — the group of translations is given by E ∩ ZN . Such a tiling naturally
defines a connected graph embedded in the space Rd, called the cut-and-project graph —
the vertex and edge sets are respectively the sets of vertices and sides defining the tiles.
An important example which can be constructed using the cut-and-project scheme (see
section 3.1.3 for the details or [ODK88] for the original statement) is the Penrose’s third
tiling of R2 with two type of rhombs — thin and thick — which has been initially defined
by Penrose using matching rules forcing the tiling to be aperiodic. Another interesting
example is the icosahedral tiling of R3 (see section 3.1.3 for its definition) because of its
connection with quasi-crystals. The quasi-crystals have been discovered by Shechtman in
1982 observing that the diffraction patterns of an alloy of Al-Mn has a 10-fold symmetry
which contradicts the classic theory of crystallography. The theoretical description of this
discovery can be found in the seminal paper [SBGC84] of D. Shechtman, I. Blech and J.
W. Cahn for which Shechtman has been awarded the Nobel prize in Chemistry in 2011.
The icosahedral tiling appears to be the mathematical description of this alloy (see also
[KD86]).

Avoiding technical assumptions, which are generic, the main theorem of this paper can
be written as follows (see theorem 3.1.4 in section 3.1.4 for further details).

Theorem 3.1.1. Generically, the simple random walk on the cut-and-project graph is
recurrent if dim E ≤ 2 and transient if dim E ≥ 3.

Given a tiling, we could also consider the dual graph; each tile is represented by a vertex
and there is an edge between two tiles if they share a side. This approach is developed
in [Tel10] for the Penrose tiling. In this example, the dual graph is shown to be quasi-
isometric to Z2. However, the quasi-isometry is only established for the specific Penrose
tiling and the result is not surprising since the vertex degree is constant (≡ 4). Actually,
the main result of Telcs is the establishment of an invariance principle for the so-called
Penrose lattice. The latter is almost the same as the dual graph except that vertices are
centers of rhombs of the Penrose tiling and the metric considered inherits the Euclidean
metric of R2. Starting with the results of Telcs, we can provide with an elementary proof
of recurrence on the dual graph of the Penrose tiling and the Penrose lattice. Instead, we
concentrate on direct lattices.
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The first section is devoted to the basic notation and definitions related to tilings and
the description of the cut-and-project method. In the second section, we state the main
result of this paper precising the assumptions hidden behind the term “generically”. In
the fourth section, we present the theorem of Schlottmann and comment on its application
to prove our main result. The main result of this paper and the proof are given in section
3.1.4 and 3.1.6 respectively.

3.1.3 Tilings and cut-and-project scheme

We start with the description of the cut-and-project scheme to tile the real line. We
consider the standard integer lattice Z2 of R2. Let E be an irrational line in R2, i.e.
satisfying E ∩ ZN = {0} and Eint be the line orthogonal to E. We denote by K the unit
square in R2. Thus, the translation of K along E defines a strip (see figure 3.5).

Eint

E

Figure 3.5: Quasi-periodic tiling of the real line within the cut-and-project scheme.

Consequently, we obtain a tiling of the space E with two types of segments (short and
long). The short and long segments correspond to the projections of vertical and horizontal
sides of the unit square which are entirely contained in the strip. Actually, it can be noticed
that there is an ambiguity in the example of the figure 3.5 since two opposite sides of a the
same unit square are completely contained in the strip so that we have to choose which
one we project. However, the strip (or the square K) can be translated by a vector t ∈ Eint

in such a way that there is no ambiguity. And since the projection of the lattice Z2 on
the internal space is countable, there is no ambiguity for all but countably many t ∈ Eint.
Such a non-ambiguous t ∈ Eint will be called generic for obvious reasons.

Finally, in a non-ambiguous case, we observe that there is a unique broken line which
is completely contained in the strip. This is the theorem of [ODK88], recalled at the end
of this section, for the case of dimension 1.

Definition 3.1.2. A subset F of Rd is termed regular — for the usual topology of Rd

— if it is bounded, has a non-empty interior Int(F ), and is such that its closure Clos(F )
coincides with Clos(Int(F )) and its interior Int(F ) equals Int(Clos(F )).
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Two regular subsets F1 and F2 are termed congruent if F1 = F2 up to a translation. The
property of congruence induces an equivalence relation on the set of tiles; an equivalence
class is termed a prototile.

Let T be a set of regular subsets of Rd, we denote by P the corresponding set of
prototiles, i.e. the factor set of T with respect the equivalence relation of congruence.

Definition 3.1.3. A denumerable set T = {Fi}i∈I of regular subsets is a tiling of Rd if

• the corresponding set P of prototiles is finite,

• Rd =
⋃
i∈I Fi, and

• interior(Fi) ∩ interior(Fj) if i 6= j ∈ I.

If T is a tiling, then a regular set F ∈ T is called a tile.

Let E be a d-dimensional subspace of RN , and Eint be its orthogonal supplement in
RN . The spaces E and Eint are termed respectively real space and internal space. We will
denote by π and πint the canonical projections from RN = E⊕Eint to E and from E⊕Eint

to Eint. Thus we have the following

E E ⊕ Eint
πoo πint // Eint .

We denote by K the unit cube in ZN , namely

K =

{
N∑
i=1

αiεi : 0 ≤ αi ≤ 1

}
,

where (ε1, · · · , εN) is the canonical basis of RN .
Let p be an integer 0 ≤ p ≤ N and Mp = {I = (i1, · · · , ip) ⊂ {1, · · · , N}} be the set of

index sets with p elements. The p-facets of the unit cube are indexed by Mp as follows :

KI =

{∑
i∈I

αiεi : αi ∈ [0, 1]

}
for all I ∈Mp and p > 0,

and K∅ = {0}. Obviously, the unit cube K admits the decomposition K = KI +KI{ .
We assume that the configuration RN = E ⊕ E⊥ is non degenerated, i.e. for any

I = {i1, · · · , id} ∈Md, the system {π(εi), i ∈ I} is of rank d and the system {πint(εi), i ∈ I{}
is of rank N − d. Actually, the two systems of vectors are simultaneously maximal or not
maximal since Eint = E⊥. Moreover, maximality is a generic property and under this
condition the d-facets of the unit cube are isomorphic to their projections on E by π, and
also, the (N − d)-facets are isomorphic to their projections on πint. We will denote by DI

the projection π(KI) of the d-facet related to I ∈Md. According to [ODK88] the set

Tt = {x+DI : x = π(ξ), πint(ξ) ∈ πint(KI{ + t), I ∈Md}
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is a tiling for almost every t ∈ Eint whose group of translations is given by E∩ZN . Moreover,
Tt is the projection of the unique d-dimensional faceted manifold entirely contained in the
strip K + E + t — for almost every t ∈ Eint.

The Penrose’s third tiling is obtained by the cut-and-project method if we consider the
real space E in R5 spanned by the two following vectors (see [ODK88])

v1 = (1, cos(2π/5),− cos(π/5),− cos(π/5), cos(2π/5)),

and,
v2 = (0, sin(2π/5), sin(π/5),− sin(π/5),− sin(2π/5)).

For the icosahedral tiling of R3 — see [KD86] —, the vector subspaces E and Eint of R6

are defined with the help of projectors (which are both given here for the sake of simplicity)

π =
1

2
√

5



√
5 1 −1 −1 1 1

1
√

5 1 −1 −1 1

−1 1
√

5 1 −1 1

−1 −1 1
√

5 1 1

−1 −1 −1 1
√

5 1

1 1 1 1 1
√

5


,

and

πint =
1

2
√

5



√
5 −1 1 1 −1 −1

−1
√

5 −1 1 1 −1

1 −1
√

5 −1 1 −1

1 1 −1
√

5 −1 −1

−1 1 1 −1
√

5 −1

−1 −1 −1 −1 −1
√

5


.

Consider a situation for which the set Tt is a tiling of some d-dimensional vector space
E. We can define the cut-and-project graph as the projection on E along Eint of a certain
constrained subgraph of the Cayley graph of the integer lattice ZN . Let us denote by
Kt = K + E + t the strip parametrized by a vector t ∈ Eint. Also, we denote by S =
{±εi : 1 ≤ i ≤ N} the canonical set of generators of ZN . A constraint is a function
f : ZN×S → {0, 1}. In our context, we consider the constraint f defined for (v, s) ∈ ZN×S
by f(v, s) = 1Kt×Kt(v, v + s).

Let ξ0 ∈ Kt and denote by G̃0
0 = {ξ0}. We define the set G̃1

1 by

G̃1
1 =

N⋃
i=1

⋃
qi∈{−1,1}

{(ξ, ξ + qiεi) : ξ ∈ G̃0
0, f(ξ, qiεi) = 1},

and the set G̃0
1 by

G̃0
1 = G̃0

0 ∪

 N⋃
i=1

⋃
qi∈{−1,1}

{ξ + qiεi : ξ ∈ G̃0
0, f(ξ, qiεi) = 1}

 .
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One can easily define the range and source functions r̃(1), s̃(1) : G̃1
1 → G̃0

1: for an element
(ξ, η) ∈ G̃1

1, the source function is defined by s((ξ, η)) = ξ whereas the range function is
given by r((ξ, η)) = η. Thus, the quadruple (G̃0

1, G̃1
1, r̃

(1), s̃(1)) is the partial constrained
subgraph of order 1. For higher order partial constrained subgraphs, we proceed by induc-
tion. Let n ≥ 1, we define G̃1

n+1 by

G̃1
n+1 =

N⋃
i=1

⋃
qi∈{−1,1}

{(ξ, ξ + qiεi) : ξ ∈ G̃0
n, f(ξ, qiεi) = 1},

and G̃0
n+1 by

G̃0
n+1 = G̃0

n ∪

 N⋃
i=1

⋃
qi∈{−1,1}

{ξ + qiεi : ξ ∈ G̃0
n, f(ξ, qiεi) = 1}

 .
Finally, the functions r̃(n+1), s̃(n+1) : G̃1

n+1 → G̃0
n+1 are given for (ξ, η) ∈ G̃1

n+1 by r̃(n+1)((ξ, η)) =
η and s̃(n+1)((ξ, η)) = ξ.

As a consequence, this procedure defines a family of partial constrained subgraphs
{(G̃0

n, G̃1
n, r̃

(n), s̃(n))}n≥1. Thus, the complete constrained subgraph is naturally defined as
follows

• G̃0 = limn→∞ G̃0
n =

⋃
n≥1 G̃0

n,

• G̃1 = limn→∞ G̃1
n =

⋃
n≥1 G̃1

n, and

• the functions r̃, s̃ : G̃1 → G̃0 are defined such that their restrictions to the set G̃1
n are

equal to the maps r̃(n), s̃(n) respectively.

Denoting by G̃k the set of paths of length k, that is the set of sequences (gk, · · · , g1) ∈
(G̃1)k satisfying r(gi) = s(gi+1) for i = 1, · · · , k−1, we set G̃∗ =

⋃
k≥0 G̃k. The undirected-

ness of G̃ implies that (η, ξ) ∈ G̃1 if and only if (ξ, η) ∈ G̃1 so that we can define the inverse
of an edge (ξ, η) ∈ G̃1, denoted by (ξ, η)−1, and defined by (ξ, η)−1 = (η, ξ). Moreover, the
path ((ξ, η), (ξ, η)−1) can be reduced to a path of length 0, and more precisely it is defined
to be equal to ξ ∈ G̃0. More generally, a reducible path of arbitrary length has at least two
consecutive edges α and β such that α = β−1 — or, of course, β = α−1. A path is said to
be irreducible if we can not find such two consecutive edges. We will say that two paths
are equivalent if after all possible reductions they are equal. This equivalence relation will
be denoted by the symbol `.

The factor set G = G̃∗/ ` is naturally endowed with a groupoid structure. Indeed, the
range and source functions naturally extend to the set G since r((gk, · · · , g1)) = r(gk) and
s((gk, · · · , g1)) = s(g1). Thus, we can define the set of composable pairs G2 by

G2 = {(g, h) ∈ G×G : r(h) = s(g)}
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and endow the set G with a product map G2 → G which maps (g, h) on gh where gh is
the composition1 of g with h — with possible reductions. The inverse map G→ G maps
a path (gk, · · · , g1) to the reversed path (g−1

1 , · · · , g−1
k ). It is easy to check that the space

of units G0, and the domain and co-domain functions of the groupoid coincide with the
set G̃0, the source and range functions r̃, s̃ of the graph.

The cut-and-project graph is given by the quadruple G = (G0,G1, r, s) where

• G0 = π(G̃0),

• G1 = π(G̃1),

• the functions r, s : G1 → G0 are defined such that the relations r(π(g)) = π(r̃(g))
and s(π(g)) = π(s̃(g)) hold for all g ∈ G̃1. Such functions r and s are well defined
because Tt is a tiling of the space E.

Obviously, by projecting the complete subgraph, we do not alter the groupoid structure
— actually, being linear, the map π is a groupoid homomorphism.

3.1.4 Main result

The simple random walk on the graph G is the Markov chain (Mn)n≥0 whose state space
is the set G0 and the transition operator is defined for all x, y ∈ G0 by

P (x, y) =

{
P (x, y) = 1

deg(x)
if (x, y) ∈ G1,

0 otherwise,

where deg(x) denotes the degree of point x ∈ G0, i.e deg(x) = card{g ∈ G1 : s(g) = x}.

Theorem 3.1.4. Assume that RN = E ⊕ Eint = E ⊕ E⊥, Λ = ZN , and that the non-
degeneracy hypothesis is fulfilled. Consider the simple random walk (Mn)n≥0 on the cut-
and-project graph G induced by the tiling Tt for a generic t ∈ Eint. If Eint∩ZN = {0}, then
the following dichotomy holds,

• if dim E ≤ 2 then (Mn)n≥0 is recurrent,

• if dim E ≥ 3 then (Mn)n≥0 is transient.

Even though the theorem is stated for simple random walk, it can be trivially extended
to strongly reversible random walks, uniformly irreducible, and with bounded range (see
[Anc90] for instance).

In the example of the icosahedral tiling, it is easy to check that Eint∩Z6 = {0} and that
the non-degeneracy hypothesis is fulfilled. Thus, the theorem applies and for all generic
t ∈ Eint the simple random walk is transient. Unfortunately, it is obvious that the vector

1The elements g and h are seen here as morphisms and the product is the composition of g with h.
Alternatively, we may see g and h as letters and the product would be the concatenation of the two letters.
In this case, the set of composable pairs should be defined by G2 = {(g, h) ∈ G : r(g) = s(h)}.
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(1, 1, 1, 1, 1) belongs to Eint in the configuration considered for the Penrose’s third tiling so
that we might ask for weaker hypothesis.

Note that the approach, involving Fourier transforms, usually used on Zd to show that
the simple random walk is recurrent or transient is no longer available in our context.
Indeed, let S = {±εi : i = 1, · · · , N} be the usual set of generators of ZN . If s =
(s1, · · · , sn) ∈ Sn we denote by x(s, x0) the trajectory (x0, x0 + s1, · · · , x0 + s1 + · · ·+ sn).
Then, the characteristic function of the simple random walk (Mn)n≥0 is given by

Ex0(ei〈t,Mn〉) =
∑
s∈Sn

p(x(s, x0))1(Kt)n+1(x(s, x0))ei〈t,π(x0)+
∑n
i=1 π(si)〉,

where p(x(s, x0)) is the weight of the trajectory x(s, x0) which is given by

p(x(s, x0)) =
n∏
i=1

1

deg(x0 +
∑i−1

l=1 sl)

In the case of the projection of points of Z2 on an irrational line E, the tiling Tt is the
projection of the only broken line entirely contained in the strip Kt. Consequently, the
degree of each point is 2 and the weight p of a trajectory of lenght n is simply given by
2−n. Thus, by inverse Fourier transform, we can compute the return probability

P 2n(x0, x0) =


1

22n

∑
s∈Sn 1(Kt)n+1(x(s, x0)), if

∑2n
i=1 π(si) = 0.

0, otherwise.

Therefore, it is easy to conclude that P 2n(x0, x0) = 1
22n

(
2n
n

)
∼ Cn−1/2 for some C > 0.

In higher dimension, the degree of each point is no longer constant and the number of
trajectories returning to x0 is no longer so easy to compute. That is why in the sequel
we use other technics to estimate the return probability. These estimates are essentially
a consequence of a theorem of Schlottman (see [Sch98]) and isoperimetric inequalities
([Var85, Ger88]) for the statement related to transience and lower bounds on the operator
P (see [LP95]) for the statement involving recurrence.

In the next section, we introduce the notion of model sets and the theorem of Schlottmann
which describes the distribution of the points of such a model set.

3.1.5 Model sets and uniform distribution

The notion of model sets involved in the theorem of Schlottmann appears in a slightly
different context. We still denote by E a d-dimensional vector subspace of the real standard
vector space RN , and by Eint the orthogonal complement of E. We also denote by π and
πint the canonical projections on E and Eint respectively. However, we need not to restrict
ourself to the integer lattice ZN .

Definition 3.1.5. A subset Λ ⊂ E ⊕ Eint is called a lattice if Λ is a discrete Abelian
subgroup of E ⊕ Eint such that there exists a compact K ⊂ E ⊕ Eint satisfying Λ + K =
E ⊕ Eint (Λ is said relatively dense).
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In the context of model sets, it is usually assumed that πint(Λ) is dense in Eint, and that
π restricted to Λ is bijective on its image π(Λ). Under such assumptions, we will say that
the spaces E and Eint are in a standard configuration.

We denote by µ and µint the Lebesgue measure on E and Eint respectively. A window is
a bounded subset W of Eint which is the closure of its interior with zero measure boundary
(with respect to the Lebesgue measure µint). The set L = {π(x) : x ∈ Λ, πint(x) ∈ W}
is termed a regular cut-and-project set (or a regular model set). If the real space E and
the internal space Eint are in a standard configuration, it can be shown that a regular
cut-and-project set is a Delone set (see [Moo00] for instance).

Definition 3.1.6. A subset Λ of RN is a Delone (Delaunay) set if the following holds

1. Λ is relatively dense : there exists a non empty open set O such that, for any v ∈ E,
v +O contains a point of Λ ;

2. Λ is uniformly discrete : there exists a non empty open set O′ such that, for any
v ∈ E, v +O′ contains at most one point of Λ.

Fixing a basis of E, we denote by ‖ · ‖p the standard p-norm on E, namely for x ∈ E,

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

.

In addition, the p-metric induced by the p-norm is denoted by dp. We denote by Bp(x, r)
the ball of radius r > 0 centered at x ∈ Rd, and by ∂Bp(x, r) the corresponding sphere. We
simply write B and ∂B, without subscripts, if the choice of a specific metric is irrelevant
in the involved result.

The version given here can be found in [Sch98], but a similar statement is shown in
[Hof98].

Theorem 3.1.7. Let E ∼= Rd, Eint
∼= R(N−d). Let Λ be a lattice in E ⊕ Eint. Assume that

the space E and Eint are in a standard configuration. Then, uniformly in t ∈ E ⊕ Eint,

lim
r→∞

card(Λ ∩ (t+B(0, r) +W ))

µ(B(0, r))
=

µint(W )

µ⊗ µint(Λ̃)

where Λ̃ is a fundamental domain of Λ.

Combining arguments of [Hof98], we can deduce that when Λ is supposed to be the
standard integer lattice ZN , the density of πint(ZN) in Eint can be substituted by the simpler
condition ZN ∩ Eint = {0}, which is itself equivalent to the injectivity of π restricted
to the integer lattice ZN . Moreover, the window we consider in the sequel is given by
W = Wt = πint(K + t), for t ∈ Eint.
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3.1.6 Isoperimetric inequalities, reversible random walks

A Markov chain (Mn)n≥0 on an undirected graph G = (G0,G1, r, s) is reversible if there
exists a measure — the total conductance — m : G0 7→ (0,∞) such that

m(x)P (x, y) = m(y)P (y, x) (3.1)

for all x, y ∈ G0. Since the graph is undirected, the degree (deg(x))x∈G0 is a measure
satisfying (3.1) for the simple random walk. We view m indiscernably as a measure or as
a combinatorial object.

Let us denote by dG the usual graph metric on the cut-and-project graph G and by
BG(x, n) the ball of radius n centered at x, i.e.

BG(x, n) = {y ∈ G0 : dG(x, y) ≤ n}.

For a finite subset A ⊂ G0 we will denote by ∂A the boundary of A defined as

∂A = {x ∈ A : ∃y /∈ A with dG(x, y) = 1}.

The boundary of a ball BG(x, n) will be denoted by ∂BG(x, n). The growth function of
(G, P ) at the point x is given by VP (x, n) = m(BG(x, n)). We set

VP (n) = inf
x∈G0

VP (x, n).

We omit the index P when the operator P defines the simple random walk.
To prove the statement on recurrence of theorem 3.1.4 we will use the following which

can be found in [Woe00], but see [LP95] for the original result.

Theorem 3.1.8. Suppose that VP (x, n) ≤ m(x)v(n) where v : N 7→ [2,∞) is increasing
and such that the function n 7→ n2

log v(n)2 is increasing and unbounded. Then

P 2n(x, x)

m(x)
≥ 1

3V (x,m(6n))

where m(n) = min{k : n ≤ k2

log v(k)2}.

Note that the graph metric of the Cayley graph of Λ = Zn is nothing but the metric dΛ

induced by the 1-norm on RN in the canonical basis which is denoted in the sequel ‖ · ‖Λ.
This allows us to compare the graph metrics dG and dΛ.

Lemma 3.1.9. For all x, y ∈ G0,

dΛ(ξ, η) = dG(x, y),

where (ξ, η) ∈ Λ2 is the unique pair in the strip Kt = K + E + t, for t ∈ Eint, such that
π(ξ) = x and π(η) = y.
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This lemma states that a geodesic path in the graph can not be the projection of a non
geodesic path of the lattice Λ.

Proof. This lemma is a direct consequence of the fact, due to [ODK88], that the tiling Tt
is the projection of a unique d-dimensional faceted manifold entirely contained in the strip
K + E + t.

Consequently, the theorem of Schlottmann, [Sch98], with lemma 3.1.9 yields the fol-
lowing ball growth estimates.

Proposition 3.1.10. Under the assumptions of theorem 3.1.4, the following estimate is
satisfied for all x ∈ G0

K−1ld ≤ cardBG(x, l) ≤ Kld

for a constant K > 1 independent of x ∈ G0.

Proof. Let x, y ∈ G0 and let (ξ, η)2 ∈ (Λ ∩K )2 be the unique pair of points such that
π(ξ) = x and π(η) = y. On one hand, we obtain

d2(x, y) ≤ ‖π‖dΛ(ξ, η)

where ‖π‖ is the matrix norm defined by

‖π‖ = sup
y∈E⊕Eint:‖y‖Λ≤1

‖π(y)‖2

‖y‖Λ

.

On the other hand, there exist u, v ∈ W ⊂ Eint such that ξ = x + u and η = y + u
(and obviously these u, v are uniquely determined). Thus, we get the following obvious
inequality :

dΛ(ξ, η) = ‖ξ − η‖Λ ≤ ‖x− y‖Λ + ‖u− v‖Λ ≤ c0‖x− y‖2 + diam(W ).

Consequently, by lemma 3.1.9, we get

‖π‖−1d2(x, y) ≤ dG(x, y) ≤ c0d2(x, y) + diam(W ).

Applying theorem 3.1.7 and remarking that

B2(x, c−1
0 (n− diam(W ))) ⊂ BG(x, n) ⊂ B2(x, n‖π‖),

we get the inequality of the proposition.

Denote by a the conductance defined by a(x, y) = m(x)P (x, y). For every f ∈ c0(G0)
— the space of functions with compact support on G0 — we define

‖f‖2
D =

1

2

∑
x,y∈G0

a(x, y)|f(x)− f(y)|2

the Dirichlet norm of f . Recall the following.
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Theorem 3.1.11 (Theorem 1 of [Var85]). Let α ≥ 2, if for every f ∈ c0(G0)

‖f‖r ≤ C‖f‖D where r =
2α

α− 2
, (3.2)

C > 0 is independent of f , and ‖ · ‖r is the standard norm in `r(G0,m). Then we have,

sup
x,y∈G0

P n(x, y)

m(y)
= O(n−α/2).

The isoperimetric inequality does not imply, in full generality, the inequality of theorem
3.1.11. However, for a function f ∈ c0(G0), the Sobolev norm is defined by

‖f‖S =
∑
x,y∈G0

a(x, y)|f(x)− f(y)|,

and according to proprosition of section 3 of [Var85], we have the following.

Proposition 3.1.12. Let α > 2 and assume that there exists C > 0 such that for all
f ∈ c0(G0) the Sobolev inequality holds

‖f‖α/(α−1) ≤ C‖f‖S.

Then, there exists C ′ > 0 such that for all f ∈ c0(G0) the following holds

‖f‖2α/(α−2) ≤ C ′‖f‖D.

It is a matter of fact that d-dimensional isoperimetric inequality is equivalent to a
Sobolev inequality with α = d (see [Woe00], proposition (4.3), p. 40). Because of technical
difficulties, we will not be able to prove a d-dimensional isoperimetric inequality for the
initial graph but only for its k-fuzz. Nonetheless, the k-fuzz construction leaving the type
of the simple random walk invariant, the conclusion will be immediate.

If G is a graph, the k-fuzz of G, denoted by Fuzzk(G), has the same set of vertices as
G and (x, y) is an edge in Fuzzk(G) if and only if 1 ≤ dG(x, y) ≤ k. We note ρ the graph
metric on Fuzzk(G). It is well known that the balls in the two graphs can be compared as
well as the spheres, namely

Bρ(x, n) = BG(x, kn) and ∂Bρ(x, n) =
kn⋃

l=kn−k+1

∂BG(x, l).

Proposition 3.1.13. Let d = dim E. The k-fuzz Fuzzk(G) satisfies a d-dimensional
isoperimetric inequality for k large enough, i.e.

cardBρ(x, n) ≤ Kcard∂Bρ(x, n)d/(d−1)

for some K > 0.
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Proof. According to proposition 3.1.10 there exist C−, C+ > 0 such that for all n ≥ 1

C−(kn)d ≤ cardBρ(x, n) ≤ C+(kn)d.

Hence, we need a lower bound of card∂Bρ(x, n), namely, we have to show that

card∂Bρ(x, n) ≥ κ(kn)d−1.

By lemma 3.1.9, and from the proof of 3.1.10, we get

‖π‖−1d2(x, y) ≤ dG(x, y) ≤ c0d2(x, y) + diam(W ).

Consequently, a point y ∈ ∂Bρ(x, n) satisfies

c−1
0 (kn− k + 1− diam(W )) ≤ d2(x, y) ≤ ‖π‖kn,

and in terms of balls we get

B2(x, ‖π‖kn) \B2(x, c−1
0 (kn− k + 1− diam(W ))) ⊂ ∂Bρ(x, n).

Since c0‖π‖ ≥ 1, it is obvious that for any k ≥ 1

B2(x, c−1
0 kn) \B2(x, c−1

0 kn− c−1
0 (k − 1 + diam(W ))) ⊂ ∂Bρ(x, n).

In the sequel, we need to adapt the proof of proposition 2.1 in [Sch98]. Setting r = c−1
0 kn

and w = w(k) = c−1
0 (k − 1 + diam(W )), and defining

N(r, w, x,W ) =
card(Λ ∩ (B2(x, r) \B2(x, r − w)) +W ))

µ(B2(x, r) \B2(x, r − w))
,

we want to show that the inequality

αµint(W ) ≤ N(r, w, x,W ) ≤ (1− α)µint(W ) (3.3)

holds for some α > 0. Obviously, we have,

N(r, w, x,W ) = βr
card(Λ ∩ (B2(x, r) +W ))

µ(B2(x, r))

+ (1− βr)
card(Λ ∩ (B2(x, r − w) +W ))

µ(B2(x, r − w))
,

where βr = µ(B2(x,r))
µ(B2(x,r)\B2(x,r−w))

. Consequently, we can majorize

|N(r, w, x,W )− µint(W )| ≤ βr

∣∣∣∣card(Λ ∩ (B2(x, r) +W ))

µ(B2(x, r))
− µint(W )

∣∣∣∣
+ (βr − 1)

∣∣∣∣card(Λ ∩ (B2(x, r − w) +W ))

µ(B2(x, r − w))
− µint(W )

∣∣∣∣ .
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It follows from relations (3.20) and (3.23) in [Sch98] that

|N(r, w, x,W )−µint(W )| ≤ µint(W )

[
βr
µ{B2(x, r + δ + ε) \B2(x, r − δ − ε)}

µ(B2(x, r))

+(βr − 1)
µ{B2(x, r − w + δ + ε) \B2(x, r − w − δ − ε)}

µ(B2(x, r − w))

]
,

where δ > 0 depends on the window W and ε > 0 only depends on the lattice Λ. Obviously,
for r large enough, there exists κ0 > 0 such that βr ≤ κ0

r
dw

and κ1 > 0 such that

βr
µ{B2(x, r + δ + ε) \B2(x, r − δ − ε)}

µ(B2(x, r))
≤ κ1

δ + ε

w(k)
.

Since w can be made arbitrarily large with k ≥ 1, the quantity κ1
δ+ε
w

can be made strictly
smaller than 1, and we conclude that

|N(r, w, x,W )− µint(W )| ≤ (1− α)µint(W ),

for some α = α(w) = α(k) > 0. Consequently, the following holds for large enough k

card∂Bρ(x, n) ≥ card(Λ ∩ (B2(x, r) \B2(x, r − w)) +W )) ≥ κ(kn)d−1,

and the k-fuzz Fuzzk(G) satisfies a d-dimensional isoperimetric inequality.

Proof of theorem 3.1.4. Assume that dim E = 2. Then the proposition 3.1.10 together
with the theorem 3.1.8 applied for v(n) = n2, and remarking that 1 ≤ deg(x) ≤ 2N for all
x ∈ G0, imply that

P 2n(x, x) ≥ C0

m(6n)2
≥ C0

n(log n)(log log n)
.

Recurrence obviously follows.
Let d = dim E and suppose that d ≥ 3, then the k-fuzz graph Gk satisfies a d-

dimensional isoperimetric inequality by proposition 3.1.13. Then, according to theorem
of [Var85], it satisfies a Dirichlet inequality with parameter α = d, thus theorem 3.1.11
implies the transience of the simple random walk on the k-fuzz Fuzzk(G), so, on G as well
(see [Woe00]).

3.1.7 Some open problems

An interesting problem would be to study the average degree of vertices which would
explain why the simple random walk is recurrent for the 2-dimensional case.

Another problem concerns the estimate of the return probability. In the case of Pólya’s
random walks, up to a multiplicative constant, the return probability is equivalent to n−d/2

where d is the dimension of the lattice Zd. As long as we are interested in the type of the
random walk the rough estimates of this paper are sufficient. However, a first step in
the computation of the Martin boundary — for d ≥ 3 — should be to get an asymptotic
equivalent of this return probability instead of the mere qualitative behavior “as O(n−d/2)”
we got here.
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3.2 Circle packing and triangulations

In the previous section, we proved that simple random walks on a class of quasi-periodic
graphs in the Euclidean plane are recurrent. By now, we want to discuss two theorems
concerning simple random walks on planar graphs. The first one states that the simple
random walk on the adjacency graph of a circle packing such that the degree deg(x) of
each vertex satisfying deg(x) ≤ 6 is recurrent. The second one tells that the simple random
walk on a triangulation of a surface such that 7 ≤ deg(x) ≤ d <∞ is transient.

In the example of random walks on quasi-periodic graphs, the condition on the degree
is not fulfilled (for some vertex deg(x) ≤ 6 and for other deg(x) ≥ 7) but is still uniformly
bounded.

A circle packing in the plane is a collection {Cx} of closed topological disks with pairwise
disjoint interiors. With a circle packing, we can associate a graph, termed the adjacency
graph of the packing; the vertex set consists of the center of the disks and there is an edge
between x and y if Cx ∩ Cy 6= ∅.

A surface is triangulated if it can be covered by a countable collection {Tx} of triangles
— i.e. 3-simplices — with pairwise disjoint interiors. A graph is naturally induced by a
triangulation; its set of vertices is composed of the corners of the triangles and the edges
are their sides. Such a graph is termed a triangulation. It is obvious that the adjacency
graph of a packing of the plane is a triangulation.

Proposition 3.2.1. If the degree of any vertices is lower than 6, then the simple random
walk on the adjacency graph of a circle packing of the plane is recurrent.

Proof. Let A0 = {x0} for some x0 ∈ G0. We define inductively an increasing sequence
of subgraphs: An+1 = An ∪ Bn, where Bn = {x ∈ An : d(x,An) = 1}. We decompose
Bn = Cn ∪ Dn where Cn consists of those vertices having precisely one neighbour in An,
Dn is the set of the remaining vertices.

Let x ∈ Bn be a vertex having some neighbour in G0 \An+1. By definition, this vertex
x has also a neighbour in An. We denote by y0, . . . , ym−1, ym = y0 the m ≤ 6 neighbours of
x in cyclic order with the convention that y0 ∈ An. Let j(1) and j(2) be the minimal and
maximal index such that yj /∈ An+1. Since G is the adjacency graph of a circle packing,
hence a triangulation, the vertices yj(1)−1 and yj(2)+1 are in Bn (figure 3.6a). Those vertices
are obviously different from y0 so that 2 ≤ j(1) ≤ j(2) ≤ m− 2. Also, yj(1) and yj(2) lie in
Dn+1. Then, we need to consider two cases :

(i) x ∈ Dn. If j(1) < j(2) then x has two neighbours in An, two neighbours in Bn and
two in Dn+1 (figure 3.6a). If j(1) = j(2) then yj(1) is the only neighbour of x outside
of An+1, and it lies in Dn+1 (figure 3.6b).

(ii) x ∈ Cn. Similarly, we conclude that x has three neighbours in G \An+1, two of them
are in Dn+1 and one of them is in Cn+1, two neighbours in Bn each of then are in
Dn, and one in An (figure 3.7).
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x ∈ Dn

y0

y1

yj(1)−1

yj(1)

yj(2)

yj(2)+1

An Bn Bn+1

(a) x ∈ Dn and j(1) < j(2).

x ∈ Dn

y0

y1

yj(1)−1

yj(1)

yj(2)+1

y5

An Bn Bn+1

(b) x ∈ Dn and j(1) = j(2).

Figure 3.6: Case 1 : the vertex x has many neighbours in An.

Cn ∋ xy0

yj(1)−1

yj(1)

yj(1)+1

yj(2)

yj(2)+1

An Bn Bn+1

Figure 3.7: Case 2 : the vertex x has only one neighbour in An, i.e. x ∈ Cn.
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xy0

yk′

yj(1)−1

yj(1)

yj(1)+k

yj(2)

yj(2)+1

yj(2)+k′′

yj(1)−2

An Bn Bn+1

Figure 3.8: In a triangulation, a vertex x has exactly two neighbours in Bn.

Combining the two cases, we infer that the number of edges between An+1 and Bn+1

satisfies ∂An+1 ≤ 2cardDn + 3cardCn and that

cardCn+1 ≤ cardCn, and 2cardDn+1 ≤ 2cardDn + 3cardCn.

Thus, we obtain ∂An+1 ≤ 2cardD0 + 3ncardC0. Also, it is obvious that cardAn = O(n2) so
that we can apply the theorem 3.1.8 of [LP95] and the recurrence follows.

Actually, in the proof given in [Woe00], he concludes by shortening each finite sets A0

and Bn for n ≥ 0 to a single point and applies the criterion of Nash-Williams.
According to [Dod84], if, for a triangulation, there exists an integer d such that for

each vertex x, 7 ≤ deg(x) ≤ d, then the graph satisfies an isoperimetric inequality, hence
the simple random walk is transient. We provide with a purely combinatorial proof of the
result of Dodziuk, partially inspired by the proof above.

Proposition 3.2.2. Let G = (G0,G1, r, s) be a triangulation. Assume that 7 ≤ deg(x) ≤
d < ∞ for all x ∈ G0, then the graph G satisfies a strong isoperimetric inequality. In
addition, the simple random walk on G is transient.

Proof. We define inductively an increasing sequence of subsets An of G0 by A0 = {x0} for
some x0 ∈ G0 and An+1 = Bn ∪ An where Bn = {y ∈ G0 : d(y, An) = 1}.

Fix n ≥ 1 and let x ∈ Bn. Obviously, x has at least one neighbour in An. Denote
by y0, . . . , yl−1, yl = y0 the l neighbours of x (l ≤ d). Without loss of generality, we can
assume that y0 ∈ An. Suppose for a while that x has at least one neighbour in Bn+1, then
we claim that x has exactly two neighbours in Bn. Indeed, let us denote by j(1) and j(2)
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xy0

yk′

yj(1)−1

yj(1)

yj(1)+k

yj(2)

yj(2)+1

yj(2)+k′′

An Bn Bn+1

l dx − l − 2

Figure 3.9: Distribution of the neighbours of x in An and Bn+1.

the minimal and maximal index such that yj /∈ An+1. By definition, yj(1)−1 and yj(2)+1

are in An+1 and if they were in An it would imply that a point of An and a point of Acn+1

have a common neighbour (namely, the vertex x) in Bn without being neighbours which
is impossible because the graph G is a triangulation. We can see also that x has no other
neighbour in Bn. Indeed, suppose for example that yj(1)−1 and yj(1)−2 are in Bn, then since
yj(1)−2 is a neighbour of x and x has a neighbour in Bn+1, the first has a neighbour in
Bn+1 — once again because G is a triangulation. Moreover, by construction yj(1)−2 has a
neighbour in An. This situation is impossible in a triangulation (see figure 3.8). Obviously,
the same contradiction arises if we suppose yj(2)+1 and yj(2)+2 both in Bn. Consequently,
the vertex x has k neighbours in An (1 ≤ k ≤ l− 3) and l− k− 2 neighbours in G0 \An+1,
this is summarized in figure 3.9.

We say that x is of type Ti, i = 1, . . . , l, if it has i neighbours in Bn−1. Obviously, if
x is of type Ti, then x has l − i − 2 neighbours in Bn+1. Similarly, we say that a vertex
z ∈ Bn+1 is of type Ti if it has i neighbours in Bn. We can compute that if y is of type Ti
then l− i− 4 of its neighbours in Bn+1 are of type T1, one is of type Tp, and the last is of
type Tq. This gives rise to a finite graph whose the adjacency matrix Rl = (ri,j)1≤i,j≤l by

r1,j = l − j − 4 ∧ 0 for j = 1, . . . , l
ri,p = 1
ri,q = 1
ri,j = 0 otherwise,

where a ∧ b is the minimum of a and b. Let R+ and R− be (d × d)-dimensional matrices
defined by

R+ =


d− 5 d− 6 · · · 1 · · · 1

1 1 · · · 1 · · · 1
...

...
...

...
1 1 · · · 1 · · · 1

 ,
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and,

R− =


2 1 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

 .

Setting Sn = (Sin)i=1,...,d the column vector whose ith coordinate is the number of points of
type Ti in Bn, we obviously have

R−Sn ≤ Sn+1 ≤ R+Sn,

Indeed, for i 6= 1, we need to count only one of the Ti neighbours z of y since z has itself
as a neighbour the point yj(1)−1 or yj(2)+1.

Analysing the spectra of R+ and R−, we conclude that the spheres are increasing expo-
nentially fast and hence the balls are increasing exponentially fast as well. Consequently,
the graph satisfies a strong isoperimetric inequality and the simple random walk is tran-
sient.

Returning to the hypothesis telling that x has at least one neighbour in Bn+1, it suffices
to remark that if such points existed in a triangulation then an unbounded connected part
of the plane would not be covered by the triangulation.

The local curvature at point x ∈ G0 of an undirected graph is given by the integer
6−deg(x). Let (Kn)n≥0 be an increasing sequence of subsets of G0 such that

⋃
n≥0Kn = G0.

We define the mean curvature as the limit

lim
N→∞

6− 1

cardKn

∑
x∈Kn

deg(x).

Rewriting the proposition 3.2.1, we see that positive local curvature, i.e. 6−deg(x) ≥ 0,
for all vertices, hence the mean curvature is positive. On the contrary the proposition
3.2.2, the local curvature at each vertex is supposed to be negative, hence globally the
mean curvature of the graph is negative as well.



Chapter 4

Groupoids and semi-groupoids

With a di-graph we can associate a semi-groupoid on the set of finite paths, as well as with
an undirected graph we associate a groupoid. The purpose of this chapter is to explain
this connection. This chapter aims at defining, furthermore, the notion of random walks
on a groupoid and a semi-groupoid and make explicit the link with the “adapted” Markov
chain evoked in the first chapter.

4.1 Groupoids and graphs

4.1.1 Groupoids

The notion of groupoids is an extension of the notion of groups in the sense that a groupoid
is a set endowed with a binary operation which is not defined for all pairs of elements. Let
us give the definition of [Ren80].

Definition 4.1.1 (Groupoid). A groupoid is a set G endowed with a product map G2 3
(x, y)→ xy ∈ G where G2 is a subset of G×G called the set of composable pairs, and an
inverse map G 3 x→ x−1 ∈ G such that the following relations are satisfied :

1. (x−1)−1 = x,

2. (x, y), (y, z) ∈ G2 ⇒ (xy, z), (x, yz) ∈ G2 and (xy)z = x(yz),

3. (x−1, x) ∈ G2 and if (x, y) ∈ G2 then x−1(xy) = y,

4. (x, x−1) ∈ G2 and if (z, x) ∈ G2 then (zx)x−1 = z.

For x ∈ G, the source of x is s(x) = x−1x and its range is r(x) = xx−1. We denote G0

the space of units defined by G0 = r(G) = s(G).
The following proposition links the notion of groupoid to the theory of categories. This

could seem anecdotal, however, with this proposition, the connection with the undirected
graphs become obvious and furthermore it highlights the essential ingredients we will need
for semi-groupoids.

51
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Proposition 4.1.2. A groupoid is a small category in which homomorphisms are isomor-
phisms.

A small category comes with an identification of the set of objects as a subset of
morphisms by associating with any object A the identity morphism from A to A. This
gives rise to a map ε : G0 3 u→ εu ∈ G which associate with the unit u the identity εu of
u — u seen as an object. This map satisfies the relation s(εu) = r(εu) = u for all u ∈ G0.

4.1.2 Measure groupoids

We refer the reader to [Kai05] for the definition of a measurable groupoid and a Haar
system. The point of view of [Ren80] is slightly different since the notion of topological
groupoids is introduced and a continuity condition is required for the left Haar system.

Definition 4.1.3 (measurable groupoid). A measurable groupoid consists of a groupoid
G and a measurable σ-algebra on G such that

1. G 3 x→ x−1 ∈ G is measurable, and

2. G2 3 (x, y) → xy ∈ G is measurable where G2 is a measurable set for the product
σ-algebra on G×G.

In the following definition, we denote byM+(G) the space of non-negative measurable
functions and by Gx and Gx the fibers r−1(x) and s−1(x) respectively. In this context, we
can define the notion of left Haar system of a measurable groupoid.

Definition 4.1.4 (Haar system). A left Haar measure system consists of a collection of
measures {λu : u ∈ G0} such that

1. the support supp λu of the measure λu is contained in the fiber Gu for all u ∈ G0,

2. for all f ∈M+(G), the map u 7→
∫
G
f(y)λu(dy) is measurable, and

3. for all x ∈ G and all f ∈M+(G), the following holds∫
G

f(xy)λs(x)(dy) =

∫
G

f(y)λr(x)(dy).

A Haar measure system need not exist in full generality. However, if G is a denumerable
set we can check that the counting measures on the fibers Gx of r define a left Haar measure
system. Indeed, define for u ∈ G0 the measure λu by

λu =
∑
h∈Gu

δh,
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and let f ∈ M+(G). Noting that the map Gs(g) 3 h → gh ∈ Gr(g) is a bijection for all
g ∈ G, we obtain∫

G

f(gy)λs(g)(dy) =
∑

h∈Gs(g)

f(gh) =
∑

h∈Gr(g)

f(h) =

∫
G

f(y)λr(g)(dy).

Let ν be a measure on the space of units G0. We denote by λ ? ν the measure on G
defined by

λ ? ν =

∫
G0

λxν(dx).

The measure λ? ν is said to be quasi-invariant if it is quasi-invariant by the map G 3 g →
g−1 ∈ G. A groupoid G endowed with a quasi-invariant measure λ ? ν is called a measure
groupoid.

For a locally compact group G, setting G = G and G2 = G×G, it follows immediately
that G is a groupoid for which the maps r and s are trivial — r(x) = s(x) = e for all
x ∈ G where e is the neutral element of the group G — and consequently, the space units
is reduced to {e}. Thus, a left Haar measure system in the case of locally compact groups
consists of a collection {λe} containing exactly one measure supported by the unique fiber
carried by the neutral element which is precisely the group G. Moreover, the relation 3 in
the definition corresponds to the fact that the measure λe is invariant by left translation,
that is, it is a Haar measure, or more precisely, the Haar measure on G is the measure λ?ν
with ν = δe the only probability measure on the singleton G0 = {e}.

Definition 4.1.5. A system of transition probabilities consists of a collection {πg}g∈G of
probability measures on G. We say that such a system is invariant if

1. supp πg ⊂ Gs(g) for all g ∈ G, and

2. for all (g′, g) ∈ G2, the following relation holds

πg
′g = g′πg

where g′πg is the measure on G defined by∫
f(y)g′πg(dy) =

∫
f(g′y)πg(dy)

for all f ∈M+(G).

Proposition 4.1.6. Every system {µx : x ∈ G0} of probability measures on the fibers Gx,
x ∈ G0, can be extended to a system of transition probabilities invariant on G.

Proof. Let {µx : x ∈ G0} be a system of probability measures on the fibers Gx. We define
the system of transition probabilities by

πg = gµs(g),
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for all g ∈ G. Thus, the measure πg is defined for all f ∈M+(G) by the formula∫
f(y)πg(dy) =

∫
f(y)gµs(g)(dy) =

∫
f(gy)µs(g)(dy).

The support of the measure πg is, by definition, a subset of the fiber Gs(g) for all g ∈ G.
We need to check that the system {πg : g ∈ G} is invariant. Let f ∈M+(G), and compute
for (g′, g) ∈ G2∫

f(y)πg
′g(dy) =

∫
f(y)g′gµs(g

′g)(dy) =

∫
f(g′y)dgµs(g)(dy) =

∫
f(y)g′πg(dy)

since, s(g′g) = s(g).

Coming back to the example of groups, a system of probability measures {µu : u ∈ G0}
actually consists of exactly one measure µ whose support is contained in the unique fiber
of the neutral element e, i.e. µ is a probability measure on G. Thus, we can define the
transition probability πg = gµ and we have for all h ∈ G

πg(h) = µ(g−1h),

and the latter defines a Markov operator invariant under the left action of the group on
itself, that is a right random walk on G.

Let G be groupoid with a left Haar measure system {λx : x ∈ G0} and ν a measure on
G0. With a system µ = {µx : x ∈ G0} of probability measures concentrated on the fibers,
we associate the system of transition probabilities {πg : g ∈ G} invariant with respect to
the groupoid. In this context, a Markov operator is the operator φµ : L∞(G, λ ? ν) →
L∞(G, λ ? ν) defined by

φµ(f)(h) =

∫
f(g)πh(dg) =

∫
f(g)hµs(h)(dg) =

∫
f(hg)µs(h)(dg)

for all h ∈ G and f ∈ L∞(G, λ ? ν).

4.1.3 The groupoid of an undirected graph

Let (G0,G1, r, s) be an undirected graph and recall the notation Gk for the set of paths of
length k, for k ≥ 0. Denote by G the set of all finite paths up to reductions (see section
3.1.3 of chapter 3), namely G =

⋃
k≥0 Gk/ `. The range and source maps initially defined

on G1 can be extended to the whole set G. Indeed, let g = (gk, · · · , g1) be a path of length
k ≥ 2, then we can set r(g) = r(gk) and s(g) = s(g1). Thus, we can define the set of
composable pairs G2 by

G2 = {(g, h) ∈ G : r(h) = s(g)}
and the product map G2 3 (g, h) 7→ gh where gh is the concatenation of the path h with
g. More precisely, if h = (hk, · · · , h1) and g = (gl, · · · , g1) for some l, k ≥ 0, then gh is
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the path gh = (gl, · · · , g1, hk, · · · , h1). We adopt here the convention of left concatenation
because of the closed connection of groupoids with categories turning the finite paths of
the graph in morphisms so that the left concatenation corresponds to the composition
of morphisms. Furthermore, we can check that domain and co-domain functions of the
groupoid G coincide with the range and source function, also the space of units G0 coincides
with the set of vertices G0.

Consider a discrete group G and a probability measure µ on G. It is well-known that
the right random walk with respect to µ is the Markov chain whose Markov operator
(P (g, h))g,h∈G is given by

P (g, h) = µ(g−1h).

This Markov operator is obviously invariant under the left action of G on itself, that is for
all g, h, k the relation P (gh, gk) = P (h, k) holds.

Analogously, we may define the left random walk with respect to µ, that is the Markov
chain whose Markov operator is given by p(g, h) = µ(hg−1), for all g, h ∈ G, and this time
such a Markov operator is invariant under the right action of G on itself.

Of course, considering the left or the right random walks is not essential since we can
map the first one to the second one. Dealing with groupoids, we have a notion of left and
right random walk, but we have also the notion of product as composition or product as
concatenation. The two point of views are equivalent but the definition will be different
— the system of probability measures (µx)x∈G0 may be supported by the fiber of r or the
fiber of s depending on the case we are considering, for instance.

The definitions given in the last section are valid for a groupoid with a product as a
composition of morphisms, and a right random walk — and, consequently, an invariance
property for a “left action”.

Definition 4.1.7. Let G be a groupoid, a G-space is a set X endowed with a projection
map p : X → G0 and an action :

{(g, x) ∈ G×X : s(g) = p(x)} 3 (g, x) 7→ gx ∈ X,
satisfying, when defined, the following relations:

1. p(gx) = r(g),

2. εp(x)x = x, and

3. g(hx) = (gh)x.

As a matter of fact, there is a natural action of a groupoid G on G with its range
function r : G→ G0 as projection map and action given by the left product. Nevertheless,
there is also a natural action of the groupoid G on the space of units G0. The projection
map is simply the identity map and the action is given for (g, x) ∈ G × G0 such that
s(g) = p(x) = x by (g, x) 7→ gx = r(g).

Recalling that the space of units G0 coincide with the set of vertices G0 in the context
of the groupoids of undirected graphs, we conclude that a random walk on the groupoid
G can be carried on a random walk on the initial graph G.
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4.2 Semi-groupoids and directed graphs

In the first section of this chapter, we have seen how, with an undirected graph, a groupoid
can be associated. However, this does not cover the more general case of directed graph.
The semi-groupoid appears as the modelling of such di-graph. Actually, the universe of
directed graphs is a little smaller than that one of semi-groupoids.

4.2.1 Semi-groupoids

Let us give the definition of a semi-groupoid as in [Exe11]

Definition 4.2.1. A semigroupoid is a triple (G,G2, ·) where G is a set, G2 is a subset
of G×G, and

· : G2 → G

is a binary operation which is associative in the following sense : if f, g, h ∈ G are such
that either

(i) (f, g) ∈ G2 and (g, h) ∈ G2, or

(ii) (f, g) ∈ G2 and (fg, h) ∈ G2, or

(iii) (g, h) ∈ G2 and (f, gh) ∈ G2,

then all of (f, g), (g, h), (fg, h) and (f, gh) lie in G2, and

(fg)h = f(gh).

The semi-groupoid structure is closely related to the theory of categories as in the case
of groupoids even though the class of semi-groupoids can not be exhaustively described
with categories (see [Exe11] for an example). However, since we are interested in the semi-
groupoid structure of a directed graph, we are, actually, studying semi-groupoids induced
by a small category.

Proposition 4.2.2. To a small category corresponds a semi-groupoid with G the set of all
morphisms, G2 the subset of G×G of composable morphisms, and the product map given
by the composition of morphisms.

If the semi-groupoid G is a category, then a morphism f ∈ G naturally comes with two
objects A and B such that f is a morphism from A to B. Thus, the definitions of the range
and source functions became obvious and will still be denoted by r and s respectively. In
addition, we will denote by G0 the union of images of G by r and s, and the set G0 will
be named the space of units of the semi-groupoid. In the sequel, we restrict ourselves to
semi-groupoids which are small categories.

Note that, the notion of reduction in the set of paths of finite length were introduced in
the case of undirected graphs to suit the definition of groupoids : all elements are invertible
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and there is a notion of cancelation on the right and the left (see properties 3 and 4 of
definition 4.1.1). In the case of directed graphs, we can also define a partially defined
inverse map, however, this is useless regarding the definition of a semi-groupoid (roughly
speacking, in the context of semi-groupoids, there is only a notion of associativity).

4.2.2 Measurable semi-groupoid

Definition 4.2.3 (measurable semi-groupoid). A measurable semi-groupoid consists of a
semi-groupoid G and a measurable σ-algebra on G such that

(i) G2 3 (x, y) → xy ∈ G is measurable where G2 is endowed with the σ-algebra
induced by the product measurable σ-algebra on G×G, and

(ii) the space of units G0 is endowed with a σ-algebra such the maps r, s : G→ G0 are
measurable.

The notion of left Haar measure system can be defined the same way as in the groupoid
context. However, since the map Gs(g) 3 h 7→ gh ∈ Gr(g) is no longer a bijection, we can
not insure the existence of such a measure system even in the case of a denumerable set
G.

Nevertheless, the definition 4.1.5 of transition probability systems and the proposition
4.1.6 are still valid in the context of semi-groupoids. Analgously to undirected graphs,
the set of paths of finite length of a directed graph can be endowed with a semi-groupoid
structure. Also, we can define the notion of G-spaces and a semi-groupoid naturally acts
on its space of units G0 in such a way that the random walk on G induces a random walk
on the initial directed graph.

4.3 Reversible random walks

4.3.1 Definitions and notations

We consider in the sequel an undirected graph G = (G0,G1, r, s) which is supposed to be
simple. Let a : G1 → R+ be a σ-finite symmetric measure on the set of edges G1 that is
for all α ∈ G1 we have that a(α) = a(α−1). This measure a gives rise to a σ-finite measure
m on the set of nodes G0, called the total conductance. More precisely, we define m by the
formula

m(x) =
∑

α:s(α)=x

a(α).

Since the graph G is assumed to be simple, we can identify the set of edges G1 to a
symmetric subset of G0 × G0. As a consequence, each edge α is uniquely determined
by a pair of nodes (x, y). Thus, we can rewrite a(α) = a(x, y) = a(y, x) = a(α−1) and
m(x) =

∑
y∈G0 a(x, y).
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We denote by (Mn)n≥0 the G0-valued Markov chains whose transition probabilities
(P (x, y))x,y∈G0 are given for all x, y ∈ G0 by

P (x, y) =
a(x, y)

m(x)
. (4.1)

Such a Markov chain is said to be reversible.
In the sequel, we will need to consider the notion of vertex and edge boundaries. Let

A be a subset of G0, its vertex boundary is the set

∂0A = {y ∈ A{ : a(x, y) > 0 for some x ∈ A},

and its edge boundary the set

∂1A = {α ∈ G1 : either r(α) ∈ A, s(α) /∈ A or r(α) /∈ A, s(α) ∈ A}.

For a function f : G0 → R we denote by ∇f : G1 → R the gradient of f , defined for
all α ∈ G1, by

∇f(α) = f(r(α))− f(s(α)).

We denote by ∆f : G0 → R the operator defined for all x ∈ G0 by

∆f(x) =
1

m(x)

∑
α:s(α)=x

a(x, r(α))∇f(α).

We define the Laplacian L of f as the opposite of ∆, namely L = −∆.
Now, it is easy to see that ∆f(x) = Pf(x)− f(x) = (P − id)f(x) where Pf is the real

function defined for all x ∈ G0 by Pf(x) =
∑

y∈G0 P (x, y)f(y).

We denote by `2(G0,m,R) the space of m-squared summable real functions. This
space turns into a Hilbert space if endowed with the inner product (·, ·), defined for all
f, g ∈ `2(G0,m,R), by

(f, g) =
∑
x∈G0

f(x)g(x)m(x).

The main goal of these considerations is to show a theorem appearing in [Var85] and
to highlight the role played by the reversibility of the Markov chain.

First, we denote by c0(G0) the space of compactly supported real functions on G0. For
a function f ∈ G0, we consider the quasi-norm of Dirichlet of f denoted by ‖f‖D and
defined by

‖f‖D =
1

2

∑
α∈G1

a(α)|f(r(α))− f(s(α))|2.

Also, we denote by ‖ · ‖r the standard norm on the space `r(G0,m,R) defined for all
f ∈ `r(G0,m,R) by

‖f‖r =

(∑
x∈G0

|f(x)|rm(x)

)1/r

.
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Finally, we introduce on the space `2(G1, a,R) the inner product 〈·, ·〉 defined for all
φ, ψ ∈ `2(G1, a,R) by

〈φ, ψ〉 =
1

2

∑
α∈G1

φ(α)ψ(α)a(α).

We can remark that the Dirichlet quasi-norm is nothing but the norm of ∇f for the norm
induced by the inner product 〈·, ·〉.

Theorem 4.3.1. Let P be a reversible Markov operator and let n ≥ 2. We suppose that

‖f‖r ≤ C‖f‖D for all f ∈ c0(G0) where r =
2n

n− 2
,

and C > 0 is independent of f . Then we have,

sup
x,y∈G0

P l(x, y)

m(y)
= O(l−n/2).

Actually the converse is also true — for n > 2 nevertheless — and we refer to [Var85]
for further details. We can also recall the following theorem which can be found in [Woe00].
A pair (G, a), where G is an undirected graph and a a symmetric σ-finite measure on G1,
is named a weighted graph. A Markov operator is canonically associated with a weighted
graph by formula (4.1). Recall that a weighted graph satisfies a strong isoperimetric
inequality if there exists a constant κ > 0 such that m(A) ≤ κa(∂1A) for all finite subsets
A ⊂ G0. Finally, we denote by ρ = ρ(P ) the spectral radius of P defined by

ρ(P ) = lim sup
n→∞

P n(x, y)1/n ∈ (0, 1].

The latter does not depend on x, y ∈ G0 in the irreducible case.

Theorem 4.3.2. Let (G, a) be a weighted graph. Then the following statements are equiv-
alent.

1. (G, a) satisfies a strong isoperimetric inequality.

2. (Dirichlet inequality) There is κ̄ > 0 such that

‖f‖2
2 ≤ κ̄‖f‖D for every f ∈ c0(G0).

3. The spectral radius ρ(P ) is strictly smaller than 1.

4. The Green kernel defines a bounded linear operator on `2(G0,m,R) by Gf(x) =∑
y∈G0 G(x, y)f(y).
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4.3.2 Preliminary results

We begin this paragraph by proving the Green’s formula, that is the following theorem.

Theorem 4.3.3 (Green’s formula). Let G be a locally finite graph without isolated points.
Consider a finite subset F ⊂ G0. Then, we have∑

x∈A
m(x)g(x)∆f(x) = −1

2

∑
x,y∈A

a(x, y)∇f(x, y)∇g(x, y)

+
∑

x∈A,y∈A{

a(x, y)∇f(x, y)g(x).

Proof. Let us compute the left hand side,

∑
x∈A

m(x)g(x)∆f(x) =
∑
x∈A

m(x)

 1

m(x)

∑
y∈G0

(f(y)− f(x))a(x, y)

 g(x)

=
∑
x∈A

∑
y∈G0

a(x, y)(f(y)− f(x))g(x)

=
∑
x∈A

∑
y∈A

a(x, y)(f(y)− f(x))g(x)

+
∑
x∈A

∑
y/∈A

a(x, y)∇f(x, y)g(x).

By symmetry of a and exchanging the variables x and y, we get for the first term∑
x,y∈A

a(x, y)(f(y)− f(x))g(x) =
∑
x,y∈A

a(y, x)(f(x)− f(y))g(y)

= −
∑
x,y∈A

a(x, y)(f(y)− f(x))g(y)

= −1

2

∑
x,y∈A

a(x, y)(f(y)− f(x))(g(y)− g(x))

and the theorem follows.

Definition 4.3.4 (Rayleigh quotient). Let f ∈ `2(G0,m,R), we define the Rayleigh quo-
tient by

R(f) =
(L f, f)

(f, f)
=
−(∆f, f)

(f, f)

=
1

2

∑
x,y∈G0 a(x, y)(∇f(x, y))2

‖f‖2
2
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Let F be a finite subset of G0 and denote by CF the set of functions with support in
F . Then, we can define the Laplacian restricted to CF by

LFf(x) = f(x)−
∑
x,y∈G0

P (x, y)f(y).

Notice that LF is not the Laplacian of the subgraph of G0 having as vertex set F .

Lemma 4.3.5. Let f, g ∈ CF . Then, the following holds

(LFf, g) =
1

2

∑
x,y∈∪1(F )

a(x, y)∇f(x, y)∇g(x, y),

where ∪r(F ) =
⋃
x∈F B(x, r).

Proof. By the Green’s theorem, we compute

(LFf, g) =
∑

x∈∪1(F )

L f(x)g(x)m(x)

=
1

2

∑
x,y∈∪1(F )

a(x, y)∇f(x, y)∇g(x, y)

−
∑

x∈A,y∈A{

∇f(x, y)g(y)a(x, y)

and it suffices to remark that g ∈ CF so that the second term vanishes.

Obviously, the operator — actually the matrix since CF is finite dimensional — LF is
symmetric on CF hence its spectrum is real and finite. The spectrum of LF is denoted by

spec LF = {λ1, · · · , λ|F |}.

Moreover, it is easy to see that

λ1(F ) = inf
f∈CF \{0}

R(f) = inf
f∈CF \{0}

1

2

∑
x,y∈G0 a(x, y)(∇f(x, y))2∑

x∈G0 m(x)f(x)2
.

Theorem 4.3.6. Let F be a non empty finite subset of G0. Then, we have

1. 0 < λ1(F ) ≤ 1,

2. λ1 + λ|F |(F ) ≤ 2, also spec LF ⊂ [λ1(F ), 2− λ1(F )] ⊂ (0, 2),

3. λ1(F ) decreases when F increases.
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Proof. We start with the first assertion. Since λ1(F ) = R(f) ≥ 0, it suffices to show
that λ1(F ) 6= 0. In order to prove this, we suppose that λ1(F ) = 0 and consider an
eigenfunction f associated with λ1. Then we must have ∇f(x, y) = 0 for all x, y ∈ ∪1(F )
with a(x, y) > 0. Thus for such vertices we have f(x) = f(y).

Fix x ∈ F . Since F is finite, there exists a path (x0, · · · , xn) — i.e. a sequence of
points satisfying a(xi, xi+1) > 0 for 0 ≤ i ≤ n− 1 — such that

x = x0, · · · , xn−1 ∈ F, xn /∈ F.

Consequently, we conclude that

f(x0) = · · · = f(xn−1) = f(xn) = 0

since xn /∈ F and f ∈ CF . Thus, f(x) = 0, but x was chosen arbitrarily in F so that f ≡ 0
on F .

As a conclusion, f can not be an eigenfunction, which implies that λ1(F ) > 0.
In order to show that λ1(F ) ≤ 1, we observe that

trace(LF ) = λ1(F ) + · · ·+ λ|F |(F ) =
∑

(ek,LF ek),

where (ek) is an arbitrary basis of `2(G0,m,R)∩CF . We can choose, for instance ex = 1{x}
and compute

trace(LF ) =
∑
x∈F

(ex,LF ex)

=
∑
x∈F

∑
y,z∈G0

ex(y)(id− P )(y, z)ex(z)

=
∑
x∈F

1− P (x, x) ≤ |F |.

Furthermore, we have the following obvious minoration

trace(LF ) = λ1(F ) + · · ·+ λ|F |(F ) ≥ |F |λ1(F ),

and consequently, λ1(F ) ≤ 1.
For the second assertion, we consider now that f is an eigenfunction corresponding to

the eigenvalue λ|F |(F ). We still have λ|F |(F ) = R(f), and obviously

λ1(F ) ≤ R(|f |) =
1

2

∑
x,y∈G0 a(x, y)(∇|f |(x, y))2∑

x∈G0 m(x)f(x)2
.

Now, we can use the following estimate

(∇f(x, y))2 + (∇|f |(x, y))2 = (f(y)− f(x))2 + (|f(y)| − |f(x)|)2

≤ 2(f(x)2 + f(y)2),
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we deduce

λ1(F ) + λ|F |(F ) ≤
∑

x,y∈G0 a(x, y)(f(x)2 + f(y)2)∑
x∈G0 m(x)f(x)2

= 2.

The last assertion is obvious since F is increasing, then CF is increasing so that the
infimum inff∈CF \{0}R(f) is decreasing so is the eigenvalue λ1(F ).

4.3.3 Cheeger’s inequality, isoperimetric inequalities and esti-
mate of the Laplacian’s first eigenvalue

The Laplacian’s first eigenvalue can be estimated with the help of the Cheeger’s constant.
Recall that for a subset F of G0, we denote by ∂1F the edge boundary, namely

∂1F = {α ∈ G1 : s(α) ∈ F, r(α) /∈ F}.

Moreover, for a set of edges E, we write a(E) =
∑

α∈E a(α).

Definition 4.3.7 (Cheeger’s constant). Let F be a finite subset of G0, the Cheeger’s
constant is defined by

h(F ) = inf
∅6=S⊂F

a(∂1S)

m(S)
,

i.e h is the largest constant such that a(∂1S) ≥ h(F )m(S) for all non empty subsets S of
F .

The Laplacian’s first eigenvalue is connected with the Cheeger’s constant with the help
of the Cheeger’s inequality.

Theorem 4.3.8 (Cheeger’s inequality). All finite subsets F of G0 satisfy the following
inequality

λ1(F ) ≥ 1

2
h(F )2.

Before we prove this theorem, we need to show the following lemma.

Lemma 4.3.9. Let f ∈ CF be non negative. Then,∑
α∈G1

a(α)|∇f(α)| ≥ h(F )
∑
x∈G0

m(x)f(x).

Proof. Let t ∈ R+ and set for f ∈ CF

St = {x ∈ G0 : f(x) > t} = {x ∈ F : f(x) > t}.

For α = (x, y), we set Iα = [f(x), f(y)) ⊂ R assuming f(x) ≤ f(y), else we exchange x
and y.
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Thus, the set ∂1St contains the edges α = (x, y) such that f(x) ≤ t < f(y), that is
t ∈ Iα. We can compute

a(∂1St) =
∑
α∈∂1St

a(α) =
∑
α∈G1

a(α)1Iα(t),

and, ∫
R+

a(∂1St)dt =
∑
α∈G1

a(α)Leb(Iα) =
∑
α∈G1

a(α)|∇f(α)|.

Hence the left hand side in the inequality of the lemma is nothing but
∫
R+
a(∂1St)dt.

Since St ⊂ F , and by definition of the Cheeger’s constant, we obtain for all t ≥ 0

a(∂1St) ≥ h(F )m(St),

so that it follows ∫
t≥0

a(∂1St)dt ≥ h(F )

∫
t≥0

m(St)dt.

Now, let us compute the righ hand side integral,∫
t≥0

m(St)dt =

∫
t≥0

∑
x∈St

m(x)dt

=

∫
R

∑
x∈G0

m(x)1[0,f(x))(t)dt

=
∑
x∈G0

m(x)f(x).

and the lemma is proved.

Proof. Proof of theorem 4.3.8

Let f be an eigenfunction of LF corresponding to λ1(F ). Then, λ1(F ) can be written

λ1(F ) =

∑
α∈G1 |∇f(α)|2a(α)∑
x∈G0 f(x)2m(x)

.

It suffices to prove that
∑

α∈G1 |∇f(α)|2a(α) ≥ h(F )2

2

∑
x∈G0 f(x)2m(x).

Replacing f by f 2 in lemma 4.3.9, we get∑
α∈G1

a(α)|∇f 2(α)|2 ≥ h(F )
∑
x∈G0

m(x)f(x)2.
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At this step, we have to estimate the left hand side using Cauchy-Schwarz inequality∑
α∈G1

a(α)|∇f 2(α)| = 1

2

∑
x,y∈G0

a(x, y)|f(y)2 − f(x)2|

=
1

2

∑
x,y∈G0

a(x, y)|f(y)− f(x)||f(x) + f(y)|

=
1

2

 ∑
x,y∈G0

a(x, y)(f(y)− f(x))2

1/2

 ∑
x,y∈G0

a(x, y)(f(y) + f(x))2

1/2

=
1

2

(
2
∑
α∈G1

a(α)|∇f(α)|2
)1/2(

4
∑
x∈G0

m(x)f(x)2

)1/2

=

(
2
∑
α∈G1

a(α)|∇f(α)|2
∑
x∈G0

m(x)f(x)2

)1/2

.

Hence,

h(F )‖f‖2
2 ≤ ‖f‖2

(
2
∑
α∈G1

a(α)‖∇f(α)‖2

)1/2

,

and we get ∑
α∈G1

a(α)‖∇f(α)|2 ≥ h(F )2

2
‖f‖2

2

and the Cheeger’s inequality follows.

Definition 4.3.10 (Isoperimetric inequality). A graph (G, a) satisfies ISΦ if for all non
empty finite subsets F of G0, we have

a(∂1F ) ≥ Φ(m(F )),

where Φ is a non negative function well defined for all s ≥ infx∈G0 m(x).

The Cheeger’s inequality can be improved with the following theorem.

Theorem 4.3.11. Assume (G, a) satisfies ISΦ with a function Φ such that Φ(s)
s

is decreasing
with s ≥ 0. Then, for all non empty finite subsets F of G0 we have

λ1(F ) ≥ Λ(m(F ))

with Λ(s) = 1
2

(
Φ(s)
s

)2

.
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This theorem states that the isoperimetric inequality implies the Faber-Krahn inequal-

ity — see definition below — with function Λ = 1
2

(
Φ(s)
s

)2

.

Definition 4.3.12 (Faber-Krahn inequality). A graph (G, a) satisfies a Faber-Krahn in-
equality with Λ, (FKΛ), if for all non empty finite subsets F of G0 we have λ1(F ) ≥
Λ(m(F )).

Proof. Proof of theorem 4.3.11
The isoperimetric inequality ISΦ implies that for all non empty subsets S of F we have

a(∂1S) ≥ Φ(m(S)) =
Φ(m(S))

m(S)
m(S) ≥ Φ(m(F ))

m(F )
m(S).

since Φ(s)
s

is assumed to be decreasing. Consequently, we deduce

h(F ) ≥ Φ(m(F ))

m(F )
.

Finally, the theorem 4.3.8 implies

λ1(F ) ≥ 1

2
h(F )2 ≥ 1

2

(
Φ(m(F ))

m(F )

)2

= Λ(m(F )).

4.3.4 Upper bound for the heat kernels

We assume now that the measure a satisfies 1 ≤ a(α) ≤M for some M ≥ 1 and all α ∈ G1.
We assume also that the graph has bounded geometry, that is deg(x) ≤ D for some D.

Lemma 4.3.13. Let F be a finite subset of G0. Then, there exists a constant c0 > 0 such
that m(∪1(F )) ≤ c0m(F ).

We recall that ∪r(F ) = {y ∈ G0 : d(x, F ) ≤ r}.

Proof. We start with the equality m(x) =
∑

y∈G0 a(x, y), and remark that 1 ≤ m(x) ≤ D
so that |F | ≤ m(F ) ≤ MD|F | where M is the constant appearing in the assumptions
above.

Furthermore, we have that |B(x, 1)| ≤ D + 1 and it follows that

| ∪1 (F )| ≤
∑
x∈F
|B(x, 1)| ≤ (D + 1)|F |.

Finally, we obtain m(∪1(F )) ≤MD(D + 1)m(F ) = c0m(F ).
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The following theorem is equivalent to the theorem of Varopoulos introduced at the
begining of this section. Recall that pn(·, ·) denotes the heat kernel defined for x, y ∈ G0

by

pn(x, y) =
P n(x, y)

m(y)
.

Theorem 4.3.14. Assume (G, a) satisfies the conditions recalled above and FKΛ with
Λ(s) = cs−1/β for some constant c > 0. Then,

pn(x, y) ≤ cn−β.

Proof. The proof will be split in several steps. If f ∈ c0(G0), then L f and Pf are also in
c0(G0) since supp(Pf) ⊂ ∪1(supp(f)). Moreover, the inner product (f, g) is well defined
when f, g ∈ c0(G0).

Fix z ∈ G0 and set fn(x) = pn(x, z). It is easy to see that fn+1(x) = Pfn(x). Also, if
we set bn = (fn, fn), we can compute

bn =
∑
x∈G0

pn(x, z)pn(x, z)m(x) = p2n(z, z).

The strategy of the proof is to show that bn is decreasing and estimate the differences
bn − bn+1 so that we can obtain an upper bound of bn and deduce an estimate of pn(x, y).
Note that bn − bn+1 = (fn, fn)− (Pfn, Pfn).

Step 1: We start by proving that (Pf, 1) = (f, 1) for f ∈ c0(G0).
We observe that (f, 1) =

∑
x∈G0 f(x)m(x), and from Green’s theorem 4.3.3 applied on

F = ∪1(supp(f)), we compute

(f, 1)− (Pf, 1) = (L f, 1) =
∑
x∈F

L f(x)1m(x)

=
1

2

∑
x,y∈F

∇f(x, y)∇1(x, y)a(x, y)

−
∑
x∈F

∑
y/∈F
∇f(x, y)a(x, y).

The first sum vanishes because the gradient ∇1(x, y) = 0, whereas the second one vanishes
too because x ∈ ∪1(supp(f)) and y /∈ ∪1(supp(f)) for y such that a(x, y) > 0. This implies
that if x /∈ supp(f) then ∇f(x, y) = 0.

Step 2: Consider the functional Q(f, g) = (f, g) − (Pf, Pg) which is well defined for
f, g ∈ c0(G0). We write simply Q(f) = Q(f, f) for the diagonal.

Let F be a finite subset and f a function with ∪1(supp(f)) ⊂ F , then it can be shown
that Q(f) ≥ λ1(F )(f, f). Indeed, we clearly have that supp(f) ⊂ F so that Pf = PFf
where PF = id −LF . We set µ1 = 1 − λ1(F ). Thus, we obtain spec PF ⊂ [−µ1, µ1] and
‖PF‖ ≤ µ1. In addition, we compute

Q(f) = (f, f)− (Pf, Pf)

≥ ‖f‖2
2 − µ2

1‖f‖2
2 = (1− µ1)(1 + µ1)‖f‖2

2

≥ λ1‖f‖2
2
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and the assertion is proved.
Step 3: Let g, h ∈ c0(G0) and c a real constant such that

• g ≥ 0 on G0,

• h = c on supp g,

• h ≤ c on (supp g){.

Then, we can show that Q(h, g) ≥ 0. In fact, we compute

Q(h, g) = (h, g)− (P 2h, g) = (h− P 2h, g).

Moreover, P 2 is a Markov kernel reversible with respect to m and P 2 induces weights
a∗(x, y) = m(x)P 2(x, y) and a measure m∗(x) =

∑
y∈G0 a∗(x, y) = m(x). We also denote

L∗ = id− P 2 the corresponding Laplacian on (G, a∗). Then, set F = supp g and compute
with the help of the Green’s theorem

(L∗h, g) =
∑
x∈G0

L∗h(x)g(x)m(x)

=
1

2

∑
x,f∈F

∇h(x, y)∇g(x, y)a∗(x, y)

−
∑
x∈F

∑
x/∈F
∇h(x, y)g(x)a∗(x, y).

Then, the first sum is zero because h = c on F so that ∇h = 0 whereas the second one is
non positive since ∇h(x, y) = h(y)− h(x), y /∈ F — thus, h(y) ≤ c — and x ∈ F — thus,
h(x) = c. We conclude

(L∗h, g) = (h− P 2h, g) = Q(h, g) ≥ 0.

Step 4: Let f ∈ c0(G0) and c ≥ 0. Then we obtain that Q((f − c)+) ≤ Q(f) where
(f − c)+ denotes the non negative part of (f − c). Actually, it suffices to set g = (f − c)+,
h = f−g, and the bilinearity of Q implies that Q(f) = Q(h+g) = Q(g)+Q(h)+2Q(h, g).
By definition, g is a non negative function, thus it remains to check that the function h
satisfies the conditions of step 3 :

• if x ∈ supp g, g(x) = f(x)− c > 0 and h(x) = c by definition of h;

• if x /∈ supp g, g(x) = 0 and f(x) ≤ c, thus, h(x) = f(x)− g(x) ≤ c.

By step 3, we get Q(h, g) ≥ 0 and by step 2, Q(h) ≥ 0 and it follows that Q(f) ≥ Q(g).
Step 5: Let f ∈ c0(G0) non negative. For all s ≥ 0, define Fs = ∪1(supp (f − s)+).

Then, Q(f) ≥ λ1(Fs)((f, f)− 2s(f, 1)). Indeed, setting g = (f − s)+, we deduce by step 4
and step 2 that

Q(f) ≥ Q(g) ≥ λ1(Fs)(g, g).
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In addition, g2 ≥ f 2 − 2sf because if f ≥ s, g = f − s and if follows g2 = f 2 − 2sf + s2 ≥
f 2 − 2sf . In the other case, f < s, g = 0 and it follows f 2 − 2sf = (f − 2s)f ≤ 0 = g2.
Finally, integrating the inequality with respect to the measure m, the following holds

(g, g) ≥ (f, f)− 2s(f, 1).

Note that for s = 0, the statement of step 5 is equivalent to the statement of step 2.
Furthermore, for s = 1

4
(f,f)
(f,1)

, we obtain the following estimate

Q(f) ≥ 1

2
λ1(Fs)‖f‖2

2.

Step 6: Let (fn)n≥0 be a sequence of non negative and compactly supported real
functions such that (f0, 1) = 1 and fn+1 = Pfn. Setting bn = (fn, fn), we will show by

induction that bn − bn+1 ≥ c′b1+1/β
n for some β > 0 and c′ = 1

8
c(4c0)−1/β.

Since f0 ∈ c0(G0) and (f0, 1) = 1, one has fn ∈ c0(G0) and (fn, 1) = 1. In fact, we
compute

(fn, 1) =
∑
x∈G0

m(x)P nf0(x) =
∑
x∈G0

m(x)f0(x) = (f0, 1).

The estimate of step 5 for s = 1
4

(fn,fn)
(fn,1)

= bn
4

gives us

Q(fn) = bn − bn+1 ≥
1

2
λ1(Fs)bn,

where Fs = ∪1(supp(fn − s)+). Additionally, we can estimate by the Markov inequality
the measure of Fs as follows

m(supp(fn − s)+) ≤ 1

s

∑
x∈G0

m(x)fn(x) =
1

s
(fn, 1) =

1

s
.

By lemma 4.3.13, we get m(Fs) ≤ c0
s

= 4c0
bn

. From the FKΛ inequality with Λ(s) = cs−1/β

assumed in the theorem we are proving, we can write

λ1(Fs) ≥ cm(Fs)
−1/β ≥ c(4c0)−1/βb1/β

n .

As a conclusion, we get that

Q(fn) = bn − bn+1 = c′b1+1/β
n .

where c′ is the real constant in the theorem.
Step 7: If (bn)n≥0 is a sequence of positive real numbers satisfying bn−bn+1 ≥ c′b1+1/β

n ,

then bn ≤ κn−β with κ =
(
β
c′
)β

.
For δ ≥ 0, x > y > 0, the mean value theorem implies that

y−δ − x−δ ≥ δ(x− y)

xδ+1
.
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Thus, applying to δ = 1/β, we obtain

b
−1/β
n+1 − b−1/β

n ≥ bn − bn+1

βb
1+1/β
n+1

≥ c′

β

b
1+1/β
n

b
1+1/β
n

=
c′

β
.

Summing the left and side, we obtain

n−1∑
k=0

(b
−1/β
k+1 − b

−1/β
k ) = b−1/β

n − b−1/β
0 ≥ c′

β
n.

Hence, we easily check that bn ≤ κn−β.
Now we can finish the proof of the theorem. Fix a vertex z ∈ G0 and set f0 = 1

m(z)
1{z} ∈

c0(G0). Obviously, one has (f0, 1) = 1. Defining inductively (fn)n≥0 by fn+1 = Pfn we can
show that fn(x) = pn(x, z). Indeed, we have

f1(x) = Pf0(x) =
∑
y∈G0

P (x, y)f0(y) =
P (x, z)

m(z)
= p1(x, z),

hence, the assertion is true for n = 1. Assume that the assertion is true for n ≥ 1 and
compute

fn+1(x) = Pfn(x) =
∑
y∈G0

P (x, y)fn(y)

=
∑
y∈G0

p1(x, y)pn(y, z)m(y) = pn+1(x, z).

I follows from step 6 that

bn = (fn, fn) = p2n(z, z) ≤ c′n−β,

for all z ∈ G0.
Furthermore, by the lemma 4.3.15 below, we can show for x, y ∈ G0 that

pk+l(x, y) ≤ (p2k(x, x)p2l(y, y))1/2 ≤ c′(kl)−β/2.

For any integer n ≥ 2 we decompose n = k + l with l = k if n is even and l = k + 1
otherwise. In both cases, the integers l and k satisfy l ≥ k ≥ n−1

2
≥ n

4
and consequently

pn(x, y) ≤ c1n
−β. For n = 1, p1(x, y) = P (x,y)

m(y)
is bounded since m is supposed to be

bounded from below.

Lemma 4.3.15. For all x, y ∈ G0, the heat kernel satisfies the following inequality

pn+m(x, y) ≤ (p2n(x, x)p2m(y, y))1/2 .
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Proof. Using Cauchy-Schwartz and the reversibility, we get

pn+m(x, y) =
∑
zinG0

pn(x, z)pm(z, y)m(z)1/2m(z)1/2

=
∑
z∈G0

m(z)1/2pn(x, z)m(z)1/2pm(y, z)

≤
(∑
z∈G0

m(z)pn(x, z)2

)1/2(∑
z∈G0

m(z)pm(y, z)2

)1/2

= p2n(x, x)1/2p2m(y, y)1/2.

4.3.5 Conclusions

In the last section, we reproduce the proof of the theorem [Var85] to highlight the crucial
property of reversibility — we should also cite [GT01]. One of the main reasons there
are strong results in the context of reversible Markov chains is that the Laplace-Beltrami
operator is closely related to the Markov operator and the Green function — L = id −
P . Moreover, as an operator of the Hilbert space `2(G0,m,R), the Laplacian is self-
adjoint so that its spectral theory is quite well known. More precisely, one can estimate
the first eigenvalue with the help of the Faber-Krahn inequality which is an extension of
isoperimetric inequality. In the case of non reversible random walks, very few result are
known, nevertheless let us state a comparaison theorem for non-reversible Markov chain
— see [Woe00].

Theorem 4.3.16. Let P be an irreducible Markov operator with excessive measure ν and
let Q be reversible with conductance a and total conductance m. Assume that

(i) supx∈G0
m(x)
ν(x)

<∞, and

(ii) there is ε0 > 0 such that P ≥ ε0Q elementwise.

Then the recurrence P implies the recurrence of Q.

This result only deals with weak non reversible pertubations of reversible Markov chains.
This theorem is useless, for instance, for genuinely directed graph like those studied in
chapter 2. Furthermore, it does not give any informations in the case of transience of P or
recurrence of Q.

In the case of genuinely directed graphs — or semi-groupoids — the Markov operator
is no longer expressible in terms of Laplace operator and the previous theorem can never
be applied so that the situation is even worse.
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Appendix A

Di-graph H : triviality of the Martin
boundary

In this appendix, we give the details of the computations of the Martin kernel and conclude
with the triviality of the Martin boundary of the simple random walk (Mn)n≥0 on the
directed graph H.

In first section, the characteristic function of the induced random walk (Mτn)n≥0 is
given and sharp estimates of the Green function are obtained from a fine analysis of the
singularity of the characteristic function.

In second section, the Martin kernel of the original chain is shown to be related to the
Martin kernel of the induced chain. The symmetries of the graph H give rise to a closed
formula of the Martin kernel. A fine analysis of this closed formula furnishes a sufficiently
good estimate to deduce the triviality of the boundary.

A.1 Martin boundary of the induced Markov chain

A.1.1 Characteristic function of the embedded chain (Mτn)n≥0

We start this paragraph by computing the characteristic function of the chain (Mτn).
Provided that Mτ0 = M0 ∈ Z × {0} — we denote in the sequel the latter set H0, this
Markov chain can be regarded as a random walk on Z, that is a sum of independent
and identically distributed random variables. The triviality of its Martin boundary is not
obvious because the jumps are not integrable.

Crucial ideas to compute the law of the chain (Mτn) are essentially those presented in
[CP03]. Let us recall the notation.

Definition A.1.1. Let (ψn)n≥0 be a sequence of independent, identically distributed,
{−1, 1}-valued symmetric Bernoulli’s variables and

Yn = Y0 +
n∑
k=1

ψk
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for all n ≥ 1 with Y0 = M
(2)
0 . Denote by

ηn(y) =
n∑
k=0

1{Yk=y}

Definition A.1.2. Let (σn)n≥0 be a sequence of stopping times defined by induction by
σ0 = 0 and

σn+1 = inf{n ≥ σn + 1 : Yn = 0}, for n ≥ 0.

More precisely, σn is the nth return time to the origin of a simple symmetric random walk
on Z.

Definition A.1.3. Let (ξ
(y)
n )n≥1,y∈V2 be a doubly infinite sequence of independent iden-

tically distributed N-valued geometric random variables of parameters p and q = 1 − p.
Let

Xn =
∑
y∈V2

εy

ηn−1(y)∑
i=1

ξ
(y)
i , n ∈ N

Moreover, we denote |Xn| the quantity
∑

y∈V2
|εy|
∑ηn−1(y)

i=1 ξ
(y)
i , n ∈ N which represent the

total horizontal displacement.

Denote by Tn the time

Tn = n+
∑
y∈V2

ηn−1(y)∑
i=1

ξ
(y)
i

with the convention that the sum
∑

i vanishes whenever ηn−1(y) = 0. Then

MTn = (Xn, Yn)

Recall that τn denote the nth return to 0 of the vertical projection of the Mn’s. One
has the following.

Proposition A.1.4. The law of Mτn is uniquely determined by the law of Xσ1, i.e. its
characteristic function is given by

E0(ei〈t,Mτn 〉) = E0(eit1Xσ1 )n.

We denote by φ the characteristic function of Xσ1 with starting point 0. It is given by

φ(t) = E0[exp(itXσ1)] = Re r(t)−1g(r(t))

where the functions g and r are defined by the formulae

g(x) =
1−
√

1− x2

x
and r(t) =

p

1− qeit .
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Proof. It is a matter of fact that τn = σn +
∑n

i=1 |Xσn| = Tσn . Then,

E0(ei〈t,Mτ1 〉) = E0(eit1Xσ1 )

We compute the law of Xσ1 . Denote by [ the vector (0, 1) and factorize by the first step
of the random walk, thus

E0(eitXσ1 ) =
1

2

[
E[(exp(itXσ1−1)) + E−[(exp(itXσ1−1))

]
=

1

2

[
E[(exp(itXσ1−1)) + E[(exp(−itXσ1−1))

]
As a consequence, we only need to compute the following characteristic function

E[[exp(itXσ1−1)] = E[E[[exp(itXσ1−1)|Y ]

= E[

[∏
y∈Z

ησ1−1∏
i=1

E[[exp(itξ
(y)
i )]

]
= E[[r(t)σ1−1]

where r is the characteristic function of the ξ
(y)
i ’s which are i.i.d, geometric random vari-

ables, so that r is given by

r(t) =
p

1− qeit
Therefore, we get a closed formula for the characteristic function of Xσ1−1

E[[exp(itXσ1−1)] =
g(r(t))

r(t)
,

where g is given by g(x) = E[[xσ1 ] and satisfies the quadratic relation

g(x) =
x

2
(1 + g(x)2),

so that g(x) = 1−
√

1−x2

x
.

Remark A.1.5. In the example of di-graph H, p = 1
3

= 1−q. Undoubtedly, all the following
computations are still valid if p is chosen differently as soon as the drift vector remains
parallel to the horizontal axis (if not, the stopping time τ1 is no longer finite almost surely).

A.1.2 Estimation of the Green function

By inverse Fourier transform, we find a closed formula for the Green function of the induced
random walk, namely

G(x, y) = π−1

∫ π

0

cos((y − x)t)

1− φ(t)
dt

and we want to get an asymptotic equivalent as y → ∞. It appears that the function
[1 − φ]−1 has an integrable singularity for t = 0. The fruitful idea is to separate this
singularity from the regular part of the function.
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Proposition A.1.6. There exists two analytic functions a, b in a neighborhood of 0 such
that

1

1− φ(t)
=

c√
|t|

+
√
|t|a(t) + b(t)

The proof of this proposition is postponed to section A.3. Having this decomposition
in mind, a simple computation yields a precise estimate of the integral involved in the
formula of the Green function.

Proposition A.1.7. Denote by γ the function defined by

γ(x) =

∫ π

0

cos(xt)

1− φ(t)
dt.

Then, the limit of
√
xγ(x) as x→∞ exists and is non zero.

Proof. Denote by Ra and Rb the convergence radii of a and b and choose ε > 0 such that
ε < Ra ∧Rb, then

γ(x) =

∫ π

0

cos(xt)

1− φ(t)
dt =

∫ ε

0

cos(xt)

1− φ(t)
dt+

∫ π

ε

cos(xt)

1− φ(t)
dt

The second terms behaves like O
(

1
x

)
at infinity because on (ε, π) the function 1

1−φ is
infinitely continuously differentiable.

Because of the proposition A.1.6, the first integral term can be split in three parts
γ0, γ1, γ2. Then,

γ0(x) = c

∫ ε

0

cos(xt)√
t

dt,

and setting u = xt we get

γ0(x) =
c

x

∫ εx

0

√
x

cos(u)√
u

du.

The latter is a convergent integral so that, when x→∞, γ0(x) ∼ c′√
x

with

c′ = c

∫ ∞
0

cos(u)√
u

du

Secondly, γ2(x) behaves like O
(

1
x

)
at infinity. Indeed,

γ2(x) =

∫ ε

0

cos(xt)b(t)dt

and b is infinitely continuously differentiable.
Finally, it remains to estimate the last term which is

γ1(x) =

∫ ε

0

cos(xt)
√
ta(t)dt.
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We may integrate by part,

γ1(x) =

[√
ta(t)

sin(tx)

x

]ε
0

− 1

x

∫ ε

0

[
a(t)

2
√
t

+
√
ta′(t)

]
sin(tx)dt

and it follows that γ1 behaves like O
(

1
x

)
and the proposition is proved.

Finally, we give the proof of the first part of theorem 2.2.4.

Proof of the first part of theorem 2.2.4. If we denote by G0 the Green kernel of the Markov
chain (Mτn)n≥0 then we get for all x, y ∈ Z× {0}

G0(x, y) = γ(y − x)

so that the Martin kernel is given by

K0(x, y) =
G0(x, y)

G0(0, y)
=
γ(y − x)

γ(y)

By proposition A.1.7, we have γ(y) ∼ c√
|y|

, consequently, for all unbounded sequences

(yk)k≥0 of points of Z, the limit of K(x, yk) is equal to 1 as k goes to infinity. Therefore,
the Martin compactification is the one point compactification.

A.2 Martin boundary of the original Markov chain

In this section, we will prove the triviality of the Martin boundary of the original Markov
chain (Mn)n≥0.

Denote by νx the probability, supported by H0 = Z× {0}, defined by

νx(z) = Px(Mτ1 = z).

Then, strong Markov property implies the following,

K(x, y) =
Ex(η0,τ1(y))

G(0, y)
+
∑
z∈X0

νx(z)K(z, y) (A.1)

for x, y ∈ H.

In section A.2.1, we show — corollary A.2.7 — that the second term in equation A.1
goes to 1 as |y| goes to infinity for all x ∈ H, whereas in section A.2.2 the first term will
be shown to vanish as |y| goes to infinity.
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A.2.1 Martin kernel conditioned by the first return time to H0

Martin kernel centered on H0 and Fourier transform

We first express the Martin kernel K(z, y) in terms of Fourier transform for z ∈ H0.

Proposition A.2.1. Let z ∈ H0 and y ∈ H, then the Martin kernel is given by

K(z, y) =

∫ π
−π e

ity1−itz g(r(t))|y2|
1−φ(t)

dt∫ π
−π e

ity1
g(r(t))|y2|

1−φ(t)
dt

where g is given by

g(x) =
1−
√

1− x2

x
and r is given by

r(t) =
1

3− 2eit
.

Proof. If y = (y1, y2) ∈ H then we will denote by ȳ the vector ȳ = (y1,−y2). Using the
geometry of the lattice H, it is easy to see that

G(z, y) = G(ȳ, z) =
∑
w∈H0

νȳ(w)G0(w, z)

and
G(0, y) = G(ȳ, 0) =

∑
w∈H0

νȳ(w)G0(w, 0),

for z ∈ H0 and y ∈ H.
Consequently, using the translation invariance of G0 and applying the substitution

v = w − z in the first sum, we get

K(z, y) =

∑
v∈H0

νȳ−z(v)G0(v, 0)∑
v∈H0

νȳ(v)G0(v, 0)
.

Recall that νy(v) = Py(Mτ1 = v) = P(0,y2)(Mτ1 = v − y1), thus we can assume that
y = (0, y2) and compute,

νy(v) =
1

2π

∫ π

−π
e−itv+ity1φy2(t)dt

where φy2 is given by
φy2(t) = Ey2(eitXσ1 ) = g(r(t))|y2|,

and this comes from a simple modification of the computations of the proof of the propo-
sition A.1.4. Then, let us compute the sum∑

v∈H0

νȳ−zG0(0, v) =
1

2π

∫ π

−π
φ−y2(t)eity1−itz

∑
v∈H0

eitvG0(0, v)dt
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and the summation is the Fourier series of the function [1−φ(t)]−1 computed in the section
A.1.

As a consequence, we have to estimate the rate of convergence of the integral∫ π

−π
eity1−itz φy2(t)

1− φ(t)
dt (A.2)

when y = (y1, y2) goes to infinity, that is when |y1| or |y2| goes to infinity.

Sharp estimates of the Martin kernel centered on H0

In the spirit of section A.1.2, we first compute — see section A.3 — an analytic decompo-
sition of the characteristic function of the Green function (centered on H0).

Proposition A.2.2. The function g◦r can be decomposed in a neighborhood of 0 as follows

g(r(t)) = 1− 2
√
|t|esgn(t)iπ

4 −
√
|t|α(t)− β(t),

where α and β are analytic functions in a neighborhood of 0, satisfying α(0) = β(0) = 0.

We will estimate the rate of convergence of the integral (A.2). This rate depends on
the relative rate of escape to infinity of y1 with respect to y2. It is straightforward to show
that there are two cases depending on the ratio y1

y2
2

:

• lim y1

y2
2

= λ ∈ R

• lim y1

y2
2

= ±∞

The first case will be proved in proposition A.2.3 whereas the last one will be handled
in proposition A.2.5.

Proposition A.2.3. Assume that (y1, y2) goes to infinity in such a way that lim y1y
−2
2 =

λ ∈ R. Then the sequence(
|y2|

∫ π

−π
eity1−itz φy2(t)

1− φ(t)
dt

)
(y1,y2)∈Z2

converges to a non zero constant.

Proof. Let n be a positive integer and set m = y1 − z, we begin to estimate the difference

D(t) =
φn(tn−2)

n(1− φ(tn−2))
−Q(t)

where Q is given by

Q(t) =
c exp{−2esgn(t)iπ

4

√
|t|}√

|t|
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where sgn is the function sign and c is the constant involved in the proposition A.1.6.
Let ε > 0 be sufficiently small so that the decompositions in propositions A.2.2 and in

A.1.6 are satisfied. Then for |tn−2| < ε we have

φn(tn−2)

n(1− φ(tn−2))
−Q(t) = exp

{
n log(1− 2esgn(t)iπ

4

√
|tn−2|

−
√
|tn−2|α(tn−2)− β(tn−2))

}
1

n

[
c√
|tn−2|

+
√
|tn−2|a(tn−2) + b(tn−2)

]
−Q(t)

Since |tn−2| < ε and the quantity xn(t), defined by

xn(t) = 2esgn(t)iπ
4

√
|tn−2|+

√
|tn−2|α(tn−2) + b(tn2),

goes to 0 as |tn−2| goes to 0, developing the log yields

D(t) = exp
{
−2esgn(t)iπ

4

√
|t|
}

exp
{
−
√
|t|α(tn−2)− nβ(tn−2)

}
enxn(t)ε(xn(t)) c√

|t|

[
1 +
|t|a(tn−2)

cn2
+

√
|t|b(tn−2)

cn

]
−Q(t)

Now, we can factorize by Q

D(t) = Q(t)
{

exp
(
−
√
|t|α(tn−2)− nβ(tn−2) + nxn(t)ε(xn(t))

)
− 1

+

[ |t|a(tn−2)

cn2
+
√
|t|b(tn

−2)

cn

]
exp

(
−
√
|t|α(tn−2)− nβ(tn−2) + nxn(t)ε(xn(t))

)}
,

and take modulus,

|D(t)| ≤ |Q(t)|
∣∣∣exp

{
−
√
|t|α(tn−2)− nβ(tn−2) + nxn(t)ε(xn(t))

}
− 1
∣∣∣

+ |Q(t)|
∣∣∣∣∣ |t|a(tn−2)

cn2
+

√
|t|b(tn−2)

cn

∣∣∣∣∣∣∣∣exp
{
−
√
|t|α(tn−2)− nβ(tn−2) + nxn(t)ε(xn(t))

}∣∣∣ .
As a consequence, we have that∣∣∣∣∣ |t|a(tn−2)

cn2
+

√
|t|b(tn−2)

c

∣∣∣∣∣ =

√
|t|
n2

∣∣∣∣∣
√
|t|
n2

a(tn−2)

c
+

√
n2

|t|
b(tn−2)

c

∣∣∣∣∣
≤ Nε

√
|t|
n2
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because the function ρ(x) : x 7→
√

(x)

c
a(x) + b(x)

c
√
x

goes to 0 as x goes to 0. The dependence
to ε of Nε is not so strong, we actually have uniformity — due to the continuity of the
function ρ in the neighborhood of 0 — in the sense that there exists an ε0 > 0 such that
for all 0 < ε < ε0 we have Nε < Nε0 . This uniformity will be interesting in the sequel.

Using the following estimate,

|ea+ib − 1| ≤ ea|b|+ |ea − 1|

we have, for any a ∈ R,

|ea − 1| = |a|
∣∣∣∣∣∑
n≥1

an−1

n!

∣∣∣∣∣ ≤ |a|∑
n≥1

|a|n−1

n!
. (A.3)

Denoting by Υ(tn−2) the quantity

Υ(tn−2) = α(tn−2) +
n√
|t|
β(tn−2) +

n√
|t|
xn(t)ε(xn(t)).

The function x 7→ α(x) + β(x)√
|x|

is continuous at x = 0 and

|nxn(t)ε(xn(t))| ≤
√
|t|
∣∣∣∣2esgn(t)iπ

4 + α(tn−2) +
n√
t
β(tn−2)

∣∣∣∣ |ε(xn(t))|

but the function ρ̃ : x 7→ 2esgn(t)iπ
4 + α(x2) + β(x)√

|x|
is bounded so that

|nxn(t)ε(xn(t))| ≤M
√
|t|Kε

where Kε comes from the fact that ε(xn(t)) goes to 0 as |tn−2| goes to 0, so that |ε(xn(t))| ≤
Kε. Summarising, Υ(tn−2) can be made arbitrarily small as |tn−2| goes to zero, namely
|Υ(tn−2)| ≤ Lε. Thus,

|e−
√
|t|Υ(tn−2) − 1| ≤ e−

√
|t|ReΥ(tn−2)|Im

√
|t|Υ(tn−2)|+ |e−

√
|t|ReΥ(tn−2) − 1|

then, the first quantity is obviously majorized by

e−
√
|t|ReΥ(tn−2)|

√
|t|ImΥ(tn−2)| ≤ eLε

√
|t|√|t|Lε (A.4)

whereas for the second quantity, we use the estimate (A.3) and we get

|e−
√
|t|ReΥ(tn−2) − 1| ≤

√
|t|Lε

∣∣∣∣∣∑
k≥1

Lk−1
ε |t|

k−1
2

k!

∣∣∣∣∣ . (A.5)
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Finally, it is obvious that |ez| ≤ e|z| for any complex number z, so that the following
estimate holds

|D(t)| ≤ |Q(t)|
{
eM
√
|t|KεNε0

√
|t|
n2

+ eLε
√
|t|√|t|Lε + Lε

√
|t|
∣∣∣∣∣∑
k≥1

Lk−1
ε |t|

k−1
2

k!

∣∣∣∣∣
}
. (A.6)

Coming back to the proof of the proposition, we consider the first case, that is we sup-
pose that mn−2 converges to a real number, and we fix a δ > 0 such that the decomposition
in A.2.2 and A.1.6 are satisfied. Then we can split

n

∫ π

−π
eitm

φn(t)

1− φ(t)
dt = n

∫ δ

−δ
eitm

φn(t)

1− φ(t)
dt+ n

∫
|t|>δ

eitm
φn(t)

1− φ(t)
dt

= I1(m,n, δ) + I2(m,n, δ).

Let us consider first, the term I1(m,n, δ), then setting t = un−2 and decomposing as
follows, we get

n

∫ δ

−δ
eitm

φn(t)

1− φ(t)
dt =

∫ n2δ

−n2δ

eiumn
−2 φn(un−2)

n(1− φ(un−2))
du

=

∫ n2δ

−n2δ

eiumn
−2

[
φn(un−2)

n(1− φ(un−2))
− exp{−2esgn(t)iπ

4

√
|u|}√

|u|

]
du

+

∫ ∞
−∞

eiumn
−2 exp{−2esgn(t)iπ

4

√
|u|}√

|u|
du

−
∫
|u|>n2δ

eiumn
−2 exp{−2esgn(t)iπ

4

√
|u|}√

|u|
du.

= I3(m,n, δ) + I4(m,n) + I5(m,n, δ)

It is easy to see that the term I5(m,n, δ) converges to 0 as n goes to infinity at the rate

O(e−
√

π
2
n) as the tail of the integral of an integrable function.

Applying the dominated convergence theorem to the term I4(m,n) implies that it con-
verges to ∫ ∞

−∞
eiuλ

exp{−2esgn(t)iπ
4

√
|u|}√

|u|
du = s(λ)

which is a non zero constant for all λ.
Finally, it remains to show that the term I3(m,n, δ) goes to 0. Using the estimate

(A.6), we get∣∣∣∣∣
∫ n2δ

−n2δ

eiumn
−2 φn(un−2)

n(1− φ(un−2))
du

∣∣∣∣∣ ≤
∫ n2δ

−n2δ

|Q(t)|
{
eM
√
|t|KεNε0

√
|t|
n2

eLε
√
|t|√|t|Lε + Lε

√
|t|
∑
k≥1

Lk−1
ε |t|

k−1
2

k!

}
dt.
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At this step, we have to choose ε > 0 such that the decompositions A.2.2 and A.1.6 hold
and such that MKε <

√
2

4
and Lε ≤

√
2

2
so that the left hand-side integral is majorized by∫ n2ε

−n2ε

c

n
Nε0e

−
√

2
4

√
|t| + cLεe

−
√

2
2

√
|t| + cLεe

−
√

22
√
|t|
∑
k≥1

√
2
k−1|t| k−1

2

4k−1k!
dt

= I6(n, ε) + I7(n, ε) + I8(n, ε).

Then, the quantity I6(n, ε) goes to 0 as n goes to infinity, the quantity I7(n, ε) can be made
arbitrarily small, namely it behaves like a O(Lε), and setting t = u2

2
, I8(n, ε) becomes

2Lε

∫ n
√

2ε

0

e−u
∑
k≥1

√
2
k−1|u|k

8k−1k!
dt.

Then, exchanging sum and integral, we get the majoration

2Lε
∑
k≥1

√
2
k−1

8k−1k!

∫ ∞
0

e−uukdu.

But the latter integral is nothing but (k+ 1)! thus the quantity I8(n, ε) behaves like O(Lε)
and as consequence it can be made arbitrarily small.

Finally, the term I2(m,n, δ) goes to zero geometrically, and the proposition is proved.

The following lemma is a refinement of a well known result on Fourier series.

Lemma A.2.4. Let (fn) be a sequence of 2π-periodic α-Hölder real functions with Hölder
constant Kn and 0 < α ≤ 1. Then for any ε > 0, we have the estimate∣∣∣∣∫ ε

−ε
fn(t)eitmdt

∣∣∣∣ ≤ Ln

1 + |m|α

for all n,m ∈ Z.

Proof. It is well known that∫ π

−π
fn(t)eitmdt =

∫ 2π

0

1

m

m−1∑
k=0

[
fn

(
t

m
+

2kπ

m

)
− fn

(
2kπ

m

)]
eitdt.

Thus, we get that
∫ ε
−ε fn(y)eitmdt is given by∫ 2π

0

1

m

m−1∑
k=0

[
fn

(
t

m
+

2kπ

m

)
1Λε

(
t

m
+

2kπ

m

)
− fn

(
2kπ

m

)
1Λε

(
2kπ

m

)]
eitdt

where Λε = [π − ε; π + ε].
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Then, the regularity of fn gives us that for any x, y

|fn(x)1A(x)− fn(y)1A(y)| ≤ |fn(x)− fn(y)|+ |fn(y)||1A(x)− 1A(y)|
≤ Kn|x− y|α +M |1A(x)− 1A(y)|.

Consequently,∣∣∣∣∣
∫ 2π

0

1

m

m−1∑
k=0

[
fn

(
t

m
+

2kπ

m

)
1Λε

(
t

m
+

2kπ

m

)
− fn

(
2kπ

m

)
1Λε

(
2kπ

m

)]
eitdt

∣∣∣∣∣
≤
∫ 2π

0

1

m

m−1∑
k=0

Kn

∣∣∣∣ tm
∣∣∣∣α dt

+

∫ 2π

0

1

m

n−1∑
k=0

M

∣∣∣∣1Λε

(
t

m
+

2kπ

m

)
− 1Λε

(
2kπ

m

)∣∣∣∣ dt
= J1(m, ε) + J2(m, ε).

It is obvious that the quantity J1(m, ε) is majorized by∫ 2π

0

1

m

m−1∑
k=0

Kn

∣∣∣∣ tn
∣∣∣∣α dt ≤ K ′

n

|m|α

For the quantity J2(m, ε), we only have to observe that the difference of indicator function
is non zero for only two integers k, and, in that case, the difference is obviously bounded
so that ∫ 2π

0

1

m

n−1∑
k=0

M

∣∣∣∣1Λε

(
t

m
+

2kπ

m

)
− 1Λε

(
2kπ

m

)∣∣∣∣ dt ≤ 2M

m
.

Therefore the lemma is proved.

Proposition A.2.5. The sequence(√
|y1|

∫ π

−π
eity1−itz φy2(t)

1− φ(t)
dt

)
(y1,y2)∈Z2

converges to a non zero constant as y1

y2
2

goes to infinity.

Proof. Like in the previous proposition, set n = y2 and m = y1 − z for short. Thus, we
want to estimate the integral ∫ π

−π
eitm

g(r(t))n

1− φ(t)
dt.

Choose δ > 0 so that the decompositions in propositions A.2.2 and A.1.6 are satisfied and
split the integral,∫ π

−π
eitm

g(r(t))n

1− φ(t)
dt =

∫ δ

−δ
eitm

g(r(t))n

1− φ(t)
dt+

∫
|t|>δ

eitm
g(r(t))n

1− φ(t)
dt

= I1(m,n, δ) + I2(m,n, δ).
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The function t 7→ g(r(t))n[1−φ(t)]−1 being continuously differentiable on the set {|t| > δ},
integrating by parts, we see that I2(m,n, δ) goes to 0 like O( n

m
) i.e. like o

(
1√
|m|

)
.

Let us deal with the quantity I1(m,n, δ), then we can write,

g(r(t))n

1− φ(t)
=
g(r(t))n − (1− 2esgn(t)iπ

4

√
|t| − it)n

1− φ(t)

+
(1− 2esgn(t)iπ

4

√
|t| − it)n − 1

1− φ(t)
+

1

1− φ(t)

= R1(n, t) +R2(n, t) +R3(n, t).

We already know that the integral of the function R3(n, t)∫ δ

−δ
eitm[1− φ(t)]−1dt

is equivalent to the sequence (c′|m|−1/2)m as |m| goes to infinity. Consider the function
R1(n, t), then we can show it is Lipschitz with Lipschitz constant depending linearly on n.
Let us denote by q the function,

q(t) = 1− 2esgn(t)iπ
4

√
|t| − it.

Then, we split

g(r(t))n − q(t)n
1− φ(t)

= c
g(r(t))n − q(t)n

|t|1/2
+ [g(r(t))n − q(t)n] |t|1/2a(t)

+ [g(r(t))n − q(t)n] b(t).

Actually, if the first quantity is continuously differentiable, the two other quantities are
also continuously differentiable because they are obviously smoother. Let us compute the
derivative of the first function.

d

dt

g(r(t))n − q(t)n
|t|1/2 =

d

dt

(
α(t) +

β(t)√
|t|

)
n−1∑
k=0

g(t)kq(t)n−k

=

(
α′(t) +

β′(t)√
|t|
− β(t)

2|t|3/2

)
n−1∑
k=0

g(r(t))kq(t)n−k

+

(
α(t) +

β(t)√
|t|

)
n−1∑
k=0

[
kg′(t)g(r(t))k−1q(t)n−k

+g(r(t))k(n− k)q′(t)q(t)n−k−1
]
.
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The sums are estimated as follows,∣∣∣∣∣
n−1∑
k=0

g(r(t))kq(t)n−k

∣∣∣∣∣ ≤ n

and ∣∣∣∣∣
n−1∑
k=0

kg′(r(t))g(r(t))k−1q(t)n−k + g(r(t))k(n− k)q′(t)q(t)n−k−1

∣∣∣∣∣ ≤ Mn√
|t|

where M is a upper bound of |
√
|t|g′(r(t))| and |

√
|t|q′(t)| in a neighborhood of 0.

Since, α(0) = β(0) = β′(0) = 0, the function t 7→ (α′(t) + β′(t)|t|−1/2 − β(t)2−1|t|−3/2)
is continuous, therefore bounded. Moreover, the function t 7→ (α(t) + β(t)|t|−1/2) is a
O(
√
|t|). Finally, we have the following estimate of the derivative,∣∣∣∣ ddt g(r(t))n − q(t)n

|t|1/2
∣∣∣∣ ≤Mn

and this implies that the function R1(n, t) is Lipschitz with Lipschitz constant Mn.
By lemma A.2.4, there exists a constant K such that√

|m|
∣∣∣∣∫ δ

−δ

g(r(t))n − q(t)n
1− φ(t)

eitmdt

∣∣∣∣ ≤ Kn√
|m|

so that the integral goes to 0 when

√
|m|
n

goes to infinity.
It remains to estimate the integral of the function R2(n, t), namely∫ δ

−δ

q(t)n − 1

1− φ(t)
eitmdt

which can be split into∫ δ

−δ
c
q(t)n − 1

|t|1/2 eitmdt+

∫ δ

−δ
(q(t)n − 1)|t|1/2a(t)eitmdt+

∫ δ

−δ
(q(t)n − 1)b(t)eitmdt

= I3(m,n, δ) + I4(m,n, δ) + I5(m,n, δ)

Considering the integral I3(m,n, δ), factorizing the quantity q(t)n − 1, and integrating
by parts, we get√

|m|
∫ δ

−δ
c
q(t)n − 1

|t|1/2 eitmdt

= −n
√
|m|
∫ δ

−δ
(2esgn(t)iπ

4 + i
√
|t|) 1

n

n−1∑
k=0

(−1)k(2esgn(t)iπ
4 + i

√
|t|)keitmdt

=
−n

i
√
|m|

[
(2esgn(t)iπ

4 + i
√
|t|) 1

n

n−1∑
k=0

(−1)k(2esgn(t)iπ
4 + i

√
|t|)keitm

]ε
−ε

+
n

i
√
|m|

∫ ε

−ε

d

dt

[
(2esgn(t)iπ

4 + i
√
|t|) 1

n

n−1∑
k=0

(−1)k(2esgn(t)iπ
4 + i

√
|t|)k

]
eitmdt.
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The first quantity in the bracket is obviously bounded, so that the first term goes to 0 as√
|m|
n

goes to infinity. Consequently, it only remains to show that the derivative involved
in the integral is integrable. Let us compute it,

d

dt

[
(2esgn(t)iπ

4 + i
√
|t|) 1

n

n−1∑
k=0

(−1)k(2esgn(t)iπ
4 + i

√
|t|)k

]

=
i

4
√
|t|

1

n

n−1∑
k=0

(−1)k(2esgn(t)iπ
4 + i

√
|t|)k

+ (2esgn(t)iπ
4 + i

√
|t|) 1

n

n−1∑
k=0

k(−1)k(
esgn(t)iπ

4√
|t|

+ i)(2esgn(t)iπ
4 + i

√
|t|)k−1.

The Cesàro sum
1

n

n−1∑
k=0

k(−1)k(2esgn(t)iπ
4 + i

√
|t|)k−1

converges to 0 as n goes to infinity (hence is bounded). Thus, we get the estimate∣∣∣∣∣ ddt
[

(2esgn(t)iπ
4 + i

√
|t|) 1

n

n−1∑
k=0

(−1)k(2esgn(t)iπ
4 + i

√
|t|)k

]∣∣∣∣∣
≤ 1

4
√
|t|

+K
∣∣∣2esgn(t)iπ

4 + i
√
|t|
∣∣∣ ∣∣∣∣∣esgn(t)iπ

4√
|t|

+ i

∣∣∣∣∣
and the latter is integrable.

Quantities I4(m,n, δ) and I5(m,n, δ) can be estimated in the same way and the propo-
sition is proved.

Asymptotics of the Martin kernel conditioned by first return time in H0

From proposition A.2.1, A.2.3 and A.2.5, we get the following corollaries.

Corollary A.2.6. Let z ∈ H0, then we have

lim
|y|→∞

K(z, y) = 1.

Corollary A.2.6 implies the following.

Corollary A.2.7. Let x ∈ H, then

lim
|y|→∞

∑
z∈H0

νx(z)K(z, y) = 1
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Proof. From Corollary A.2.6 we have that, for any z ∈ H0,

lim
|y|→∞

K(z, y) = 1.

The sum
∑

(z,0)∈H0
νx(z)K(z, y) is given by

∑
(z,0)∈H0

νx(z)K(z, y) =

∫ π
−π e

ity1φy2(t)(1− φ(t))−1
∑
νx(z)e−itzdt∫ π

−π e
ity1φy2(1− φ(t))−1dt

.

Noting that the probability νx(z) = ν−x(−z), the following equality holds∑
(z,0)∈H0

νx(z)e−itz =
∑

(z,0)∈H0

ν−x(z)eitz.

The latter is the characteristic function of ν−x which is given (see the proof of theorem
A.2.1) by

e−itx1φx2(t).

Replacing in the integral, we obtain∑
(z,0)∈H0

νx(z)K(z, y) =

∫ π
−π e

it(y1−x1)φ|y2|+|x2|(t)(1− φ(t))−1dt∫ π
−π e

ity1φy2(1− φ(t))−1dt

and using the estimates of proposition A.2.3 and A.2.5, one has the announced convergence.

A.2.2 Behavior before first return time

Recall the equation (A.1) holding for x, y ∈ H,

K(x, y) =
Ex(η0,τ1(y))

G(0, y)
+
∑
z∈H0

νx(z)K(z, y).

It remains to show that the first term in this equation tends to zero.
Assume that x2, y2 ≥ 0 and y1 ≥ x1 and let us fix our notation. We will define by s[yi

for i = 1, 2 the following stopping time,

s[yi = inf{n ≥ [ : M (i)
n = yi,∀k ≤ n : M (i)

n 6= 0}, with, [ ∈ {0, 1}.

Then, we will denote by gu(y) the probability

gu(y) = P(y1,u)(s0
y2
<∞|M (1)

τ1
≥ y1).

Finally, the quantity hy will denote the probability

hy = P(y1,y)(s1
y <∞|M (1)

τ1
≥ y1).
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Proposition A.2.8. The quantity Ex(η0,τ1(y)) is given by

Ex(η0,τ1(y)) =
1

(1− hy2)2

∑
u≥0

µx(u)gu(y2)

where µx is defined by
µx(u) = Px(Ms0y1

= u,M (1)
τ1
≥ y1).

Proof. As a matter of fact, we have that

Ex(η0,τ1(y)) =
∑
k≥0

kPx(η0,τ1 = k).

On conditioning by the event {s0
y1
<∞}, which is equal to the event {M (1)

τ1 ≥ y1}, we get

Ex(η0,τ1(y)) = Px(M (1)
τ1
≥ y1)

∑
k≥0

kPx(η0,τ1(y) = k|M (1)
τ1
≥ y1).

By strong Markov property and observing that s0
y1

is finite on the event {M (1)
τ1 ≥ y1}, we

get

Px(η0,τ1(y) = k|M (1)
τ1
≥ y1) =

∑
u≥0

Px(M
(2)

s0y1
= u|M (1)

τ1
≥ y1)

P(y1,u)(η0,τ1(y) = k|M (1)
τ1
≥ y1).

Then, it is easy to see that

P(y1,u)(η0,τ1(y) = k|M (1)
τ1
≥ y1) = gu(y2)hk−1

y2
.

Finally, we get

Ex(η0,τ1(y)) =
∑
k≥0

k
∑
u≥0

µx(u)gu(y2)hk−1
y2

and grouping all terms, we obtain

Ex(η0,τ1(y)) =
1

1− hy2

∑
u≥0

µx(u)gu(y2),

proving thus the proposition.

It is easy to get an upper bound for the probability hy2 because at the site (y1, y2) it is
possible to never come back with probability at least 1/3 so that the quantity (1− hy2)−2

does not play any role in the asymptotics of the mean Ex(η0,τ1(y)).

Proposition A.2.9. For any u ≥ 0, the quantity gu(y) decreases exponentially fast to 0
as y goes to ∞.
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Proof. Recall that
gu(y2) = P(y1,u)(s0

y2
<∞|M (1)

τ1
≥ y1).

Actually we can majorize gu by

gu(y2) ≤ P(y1,u)(∃n ≥ 0 : M (2)
n = y2|M (1)

τ1
≥ y1) = pu(y2).

Then, we can identify this probability with the probability to reach y2 from u in the model
of a simple random walk on Z with a cemetery attached to each site, where the random
walk can die with probability 1/3.

If we replace the cemetery by binary trees, then the probability pu satisfies

pu(y2) ≤ F (u, y2)

where F (u, y2) is the probability to hit y2 from u in a homogeneous tree of degree 3. By
the lemma (1.24), found on p.9 of [Woe09], we get F (u, y2) = 2−d(u,y2) where d is the usual
graph metric in the tree. Thus, gu(y2) decreases exponentially fast to 0.

Proposition A.2.10. The quantity
∑

u≥0 µx(u)gu(y2) behaves like o(|y2|−1) whenever y1

y2
2

converges to a finite limit and like o(|y1|−
1
2 ) in other cases, namely when y1

y2
2

goes to ±∞.

Before giving the proof of this fact, let us introduce some notation. We will denote by
(Sn)n≥0 the simple symmetric random walk on Z. Recall that the characteristic function
of (Sn) starting from z is given by

Ez(eitSn) = eitz(eit(S1−S0))n = eitz(cos(t))n

On the set N we define the following Markov chain (Zn)n≥0 by its Markov operator
q : N× N 7→ [0, 1] by

q(x, y) =


2
3

y = x ≥ 1
1
3

y = x− 1, x ≥ 1
1 x = y = 0
0 otherwise

On introducing the stopping time

T = inf{n ≥ 0 : Zn = 0},

it is easy to compute its generating function.

Lemma A.2.11. The generation function of T is given for any h ≥ 0 by

Eh(xT ) =

(
x

3− 2x

)h
.

We can now prove the proposition A.2.10.
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Proof. We can show that

µx(u) = Px(M
(2)

s0y1
= u,M (1)

τ1
≥ y1) =

∑
m≥0

Px2(Sm = u : Sk 6= 0, k ≤ m)

P1(T = m+ (y1 − x1)).

Then, by the mirroring principle, we have that

Px2(Sm = u : Sk 6= 0, k ≤ m) = Px2(Sm = u)−P−x2(Sm = u).

Thus,

µx(u) =
∑
m≥0

Px2(Sm = u)P1(T = m+ (y1 − x1))

−
∑
m≥0

P−x2(Sm = u)P1(T = m+ (y1 − x1))

= Σ1(x, y, u) + Σ2(x, y, u).

Then, let us compute the sum Σ1(x, y, u),

Σ1(x, y, u) =
1

2π

∫ π

−π
eitx2

∑
m≥0

(cos(t))mP1(T = m+ (y1 − x1))e−itudt

=
1

2π

∫ π

−π
F (cos(t))y1−x1eitx2−itudt

(A.7)

where F (x) = E1(xT ) is the generating function of T . Whereas the sum Σ2(x, y1, u) is
given by

Σ2(x, y, u) =
1

2π

∫ π

−π
F (cos(t))y1−x1e−itx2−itudu. (A.8)

As a consequence,

µx(u) =
1

2π

∫ π

−π
F (cos(t))y1−x12i sin(tx2)e−itudt.

Now, from proposition A.2.9, we get that∑
u≥0

µx(u)gy2(u) ≤
∑
u≥0

µx(u)2−|y2−u|

Split the sum ∑
u≥0

µx(u)2−|y2−u| =
y2−1∑
u=0

µx(u)2−(y2−u)

+
∞∑

u=y2

µx(u)2−(u−y2)

= Σ3(x, y) + Σ4(x, y),
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and, injecting (A.7) and (A.8), sums Σ3(x, y) and Σ4(x, y) become

Σ3(x, y) =
1

2π

∫ π

−π
F (cos(t))y1−x12i sin(tx2)

y2−1∑
u=0

e−itu2u−y2dt. (A.9)

The geometric sum can be simplified by observing that

y2−1∑
u=0

e−itu2u−y2 = 2−y2
(2e−it)y2 − 1

2e−it − 1

hence, the sum (A.9) becomes

I1(x, y) =
1

2π

∫ π

−π
F (cos(t))y1−x12i sin(tx2)2−y2

(2e−it)y2 − 1

2e−it − 1
dt. (A.10)

Similarly,

Σ4(x, y) =
1

2π

∫ π

−2π

F (cos(t))y1−x12i sin(tx2)
∞∑

u=y2

e−itu2−(u−y2)dt, (A.11)

so that simplifying the geometric sum
∞∑

u=y2

e−itu2−(u−y2) = e−ity2(1− e−it

2
)−1

integral (A.11) becomes

I2(x, y) =
1

2π

∫ π

−π
F (cos(t))y1−x12i sin(tx2)e−ity2

2

2− e−itdt. (A.12)

At this step, it remains to study the rate of convergence of I1(x, y) and I2(x, y). We
have to distinguish two cases depending on the way that (y1, y2) goes to infinity :

• y1 remains bounded ;

• lim
y2
2

y1
= λ for λ ∈ R ∪ {±∞} and y1 is unbounded.

Let us handle the first case, and assume that y1 is bounded. The function F has a
unique singularity for x = 3

2
so that F (cos(·)) is infinitely continuously differentiable for

|t| ≤ π. As a consequence of lemma A.2.4, the quantity I2(x, y) decreases like O
(
yk1
yk2

)
for

arbitrary k ≥ 0, i.e. like O
(

1
yk2

)
because y1 is supposed to be bounded. For the quantity

I1(x, y), we have the following∫ π

−π
F (cos(t))y1−x12i sin(tx2)2−y2

(2e−it)y2 − 1

2e−it − 1
dt

=

∫ π

−π
F (cos(t))y1−x1

2i sin(tx2)

2e−it − 1
e−ity2dt

− 2−y2

∫ π

−π
F (cos(t))y1−x1

2i sin(tx2)

2e−it − 1
dt
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Then, on one hand, the first term goes to 0 as O( 1
yk2

) by lemma A.2.4 — by virtue of the

same arguments as for the quantity I2(x, y) — and on the other hand, the second term
goes obviously exponentially fast to 0. Summarising, if y1 remains bounded we have that

Ex(η0,τ1(y)) = O

(
1

yk2

)

where k is non negative and can be arbitrarily large.

Let us deal with the second case, and suppose that y1 is unbounded. Rewriting the
quantity I2(x, y) by setting t = u√

|y1|
, we get

x2

y1

2i

∫ π

−π
F (cos(t))y1−x1

y1

x2

sin(x2t)
2

2− e−it e
−ity2dt

=
x2

y1

2i

∫ π
√
|y1|

−π
√
|y1|

F

(
cos

t√
|y1|

)y1−x1 √|y1|
x2

sin

(
x2t√
|y1|

)
2e
−i ty2√

|y1|

2− e−i
t√
|y1|

dt.

(A.13)

Therefore,

F

(
cos

t√
|y1

)y1−x1

= exp

{
−3

2

y1 − x1

y1

t2 +
y1 − x1

y1

t2ε

(
t2

y1

)}
−→ e−

3
2
t2 as

t2

|y1|
→ 0,

implying the following pointwise convergence,

F

(
cos

t√
|y1|

)y1−x1 √|y1|
x2

sin

(
x2t√
|y1|

)
2

2− e−i
t√
|y1|
−→ e−

3
2
t2t

as t2

y1
→ 0. Let ε0 > 0 such that

∣∣∣ t2y1

∣∣∣ < ε0, i.e.
∣∣∣ε( t2y1

)∣∣∣ ≤ 3
4
. Then we get the domination

∣∣∣∣∣F
(

cos
t√
|y1|

)y1−x1 √|y1|
x2

sin

(
x2t√
|y1|

)
2

2− e−i
t√
|y1|

∣∣∣∣∣
≤ 2Me−

3
2
t2 |t|e

∣∣∣ y1−x1
y1

∣∣∣t2∣∣∣ε( t2y1 )∣∣∣
≤ 2Me−

3
8
t2 |t|.
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Consequently, we can split the integral (A.13) as follows

x2

y1

2i

∫ π
√
|y1|

−π
√
|y1|

F

(
cos

t√
|y1|

)y1−x1 √|y1|
x2

sin

(
x2t√
|y1|

)
2e
−i ty2√

|y1|

2− e−i
t√
|y1|

dt

=
x2

y1

2i

∫ ε0
√
|y1|

−ε0
√
|y1|

F

(
cos

t√
|y1|

)y1−x1 √|y1|
x2

sin

(
x2t√
|y1|

)
2e
−i ty2√

|y1|

2− e−i
t√
|y1|

dt

+
x2

y1

2i

∫
|t|>
√
|y1|ε0

F

(
cos

t√
|y1|

)y1−x1 √|y1|
x2

sin

(
x2t√
|y1|

)
2e
−i ty2√

|y1|

2− e−i
t√
|y1|

dt

= I3(x, y) + I4(x, y).

The integral I3(x, y) converges by Lebesgue convergence to the integral∫ ∞
−∞

e−
3
2
t2te−itλdt

with λ = lim y2√
|y1|

. And this integral can be easily computed,

∫ ∞
−∞

e−
3
2
t2te−itλdt =

iλ

3

∫ ∞
−∞

e−
3
2
t2e−itλdt =

iλ

3

√
2π

3
e−

λ2

6 .

Then substituting λ by the ratio
y2
2

y1
the quantity (12) becomes

−2

3

x2

y1

√
2π

3

y2√
|y1|

e
− 1

6

y2
2
y1 .

We conclude that,

• if
y2
2

y1
goes to 0, then I3(x, y) behaves like o

(
1√
|y1|

)
;

• if
y2
2

y1
goes to ±∞, I3(x, y) behaves like o

(
1
|y2|

)
;

• finally, if
y2
2

y1
converges to λ non zero real, then I3(x, y) behaves again like o( 1

|y2|).

Integrating by parts gives us the following estimate of I4(x, y),

∣∣∣∣x2

y1

2i

∫
|t|>
√
|y1|ε0

F

(
cos

t√
|y1|

)y1−x1 √|y1|
x2

sin

(
x2t√
|y1|

)
2e
−i ty2√

|y1|

2− e−i
t√
|y1|

dt

∣∣∣∣∣∣
≤ My1

y2

Ly1−x1
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because,

sup
|t|>ε0

∣∣∣∣ ddtF (cos(t))

∣∣∣∣ < 1.

As a consequence, the quantity I4(x, y) behaves like

• o
(

1
|y2|

)
if y1

y2
2

converges to a finite limit with y1 unbounded.

• o
(

1√
|y1|

)
if y1

y2
2

goes to sgn(t)∞.

Turning to the quantity I1(x, y), we note that

I1(x, y) =

∫ π

−π
F (cos(t))y1−x12i sin(tx2)2−y2

(2e−it)y2 − 1

2e−it − 1
dt

=

∫ π

−π
F (cos(t))y1−x12i sin(tx2)

e−ity2 − 1

2e−it − 1
dt

− 2−y2

∫ π

−π
F (cos(t))y1−x12i sin(tx2)

1

2e−it − 1
dt

= I5(x, y) + I6(x, y).

The quantity I5(x, y) can be estimated along the same lines as the quantity I2(x, y) is

whereas the quantity I6(x, y) behaves like o
(

1
|y2|

)
in the case where y1

y2
2

converges to finite

limit. It remains to show that I6(x, y) behaves like o

(
1√
|y1|

)
in the case y1

y2
2

goes to

infinity. We can estimate the integral I6(x, y) in the same manner as it has been done for
the quantity I2(x, y) in the case of y1 unbounded and y2 fixed.

Obviously, by symmetry, all these estimations can be made in the case x2, y2 ≤ 0 and
y1 ≤ x1. And as soon as, x2y2 < 0 then the mean Ex(η0,τ1(y)) is zero, therefore we get the
following.

Corollary A.2.12. The quantity
Ex(η0,τ1(y))

G(0, y)

in equation (A.1) goes to 0 when |y| goes to infinity.

Proof. By propositions A.2.3, A.2.5 and A.2.10, we have that

• G(o, y) is equivalent to

(
c√
|y1|

)
if y1

y2
2

goes to infinity ;

• G(0, y) is equivalent to
(

c′
|y2|

)
if y1

y2
2

converges to a finite limit.
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In the first case, the quantity

Ex(η0,τ1(y)) = o

(
1√
|y1|

)
and in the second case,

Ex(η0,τ1(y)) = o

(
1

|y2|

)
.

Then, obviously, the ratio involved in the corollary converges to 0 in any direction as |y|
goes to infinity.

Proof of the second part of theorem 2.2.4. Since for all x ∈ H, K(x, yk) has no other limit
point than 1 for all unbounded sequence (yk) then, the Martin boundary is trivial.

A.3 Proofs of analytic decompositions

Lemma A.3.1. The function φ is given by

φ(t) =
1

p2
(1− 2q cos(t) + q2 cos(2t))

−
[√

1− 2q cos(t) + q2

(
(p−1 − 1)2 − 2q

p
(p−1 − 1) cos(t) +

q2

p2

) 1
4

(
(p−1 + 1)2 − 2q

p
(p−1 + 1) cos(t) +

q2

p2

) 1
4

cos

[
arctan

( −q sin(t)

1− q cos(t)

)
+

1

2
arctan

( − sin(t)

1− cos(t)

)
+

1

2
arctan

( −q sin(t)

1 + p− q cos(t)

)]]
.

Furthermore, in the case of the simple random walk we have p = 1/3 = 1− q, so that

φ(t) = (9− 12 cos(t) + 4 cos(2t))

−
[√

13− 12 cos(t)

3
81/4 ((1− cos(t))

1
4 41/4 (5− 4 cos(t))

1
4

cos

[
arctan

( −2 sin(t)

3− 2 cos(t)

)
+

1

2
arctan

( − sin(t)

1− cos(t)

)
+

1

2
arctan

( − sin(t)

2− cos(t)

)]]
.

(A.14)

Proof. Denote by z the complex number z = 1− qeit, then we get

φ(t) = Re
z2

p2
− z

p

√
z2

p2
− 1
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A simple computation gives us that Re z
2

p2 = 1
p2 (1 − 2q cos(t) + q2 cos(2t)). It remains to

make explicit the term with the square root. Start by expanding in polar form,

z

p

√
z2

p2
− 1 =

z

p

√
z

p
− 1

√
z

p
+ 1,

then, we have for the modulus of z,

|z|2 = 1− 2q cos(t) + q2,

and for its argument

Arg

(
z

p

)
= arctan

( −q sin(t)

1− q cos(t)

)
.

For the modulus and argument of z
p
− 1∣∣∣∣zp − 1

∣∣∣∣2 =

∣∣∣∣1p − 1− q

p
eit
∣∣∣∣2 = (p−1 − 1)2 − 2q

p
(p−1 − 1) cos(t) +

q2

p2
,

and

Arg

(
z

p
− 1

)
= arctan

( − sin(t)

1− cos(t)

)
.

Finally, we have for z
p

+ 1∣∣∣∣zp + 1

∣∣∣∣2 =

∣∣∣∣1p + 1− q

p
eit
∣∣∣∣2 = (p−1 + 1)2 − 2q

p
(p−1 + 1) cos(t) +

q2

p2
,

and

Arg

(
z

p
+ 1

)
= arctan

( −q sin(t)

1 + p− q cos(t)

)
.

Proof of proposition A.1.6. It is easy to show that

− sin(t)

1− cos(t)
= −2

t
(1 + A0(t))

and that the power series of arctan in the neighborhood of −∞ and +∞ and is given by

arctan(v) = ±π
2
−
∑
n≥0

(−1)n
1

(2n+ 1)v2n+1

and the ± depends on the fact that v is in the neighborhood of ±∞. Consequently, it gives

arctan

( − sin(t)

1− cos(t)

)
= sgn(t)

π

2
− t

2
(1− A1(t))
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with A1 analytic such that A1(0) = 0.

The functions t 7→ arctan
(
−2 sin(t)

3−2 cos(t)

)
and t 7→ arctan

(
− sin(t)
2−cos(t)

)
are analytic in a neigh-

borhood of 0 and vanish for t = 0. Thus, the expansion in a power series of the cosine in
equation A.14 is given by

√
2

2
(1 + A2(t)) where A2 is analytic and A2(0) = 0.

The only remaining problematic term is (1−cos(t))1/4 which can rewritten as
√
|t|A3(t)

with A3 a power series around 0.
Summarizing, there exists two analytic functions A4(t) and A5(t) with A4(0) 6= 0 and

A5(0) = 0 such that

φ(t) = 1−
√
|t|A4(t)− A5(t)

and the proposition A.1.6 easily follows.

Proof of proposition A.2.2. We already know that g(r(t)) is given by

g(r(t)) =
1−

√
1− r(t)2

r(t)
=

1

r(t)
−
√

1

r(t)2
− 1.

The first term is very easy to decompose

1

r(t)
= 3− 2eit = 1 + 2(1− eit) = 1− β(t)

where β is given by β(t) = 2
∑

n≥1
(it)n

n!
.

The second term with the square root requires a finer analysis. First we have to express
the argument of the square in polar form.

1

r(t)2
− 1 = (3− 2eit)2 − 1 = 4(2− eit)(1− eit)

Then, we compute the square of the modulus,∣∣∣∣ 1

r(t)2
− 1

∣∣∣∣2 = 32(5− 4 cos(t))(1− cos(t))

Thus, the square root of the modulus is given by√∣∣∣∣ 1

r(t)2
− 1

∣∣∣∣ = 2
√
|t|(1 + A0(t))

where A0(t) is an analytic function satisfying A0(0) = 0.
Let us now decompose the argument of the complex function r(t)−2 − 1,

arg

(
1

r(t)2
− 1

)
= arctan

− sin(t)

2− cos(t)
+ arctan

− sin(t)

1− cos(t)
.

The first term arctan − sin(t)
2−cos(t)

is analytic as the composition of two analytic functions.
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For the second term, we compute as in the proof of the proposition A.1.6

arctan

( − sin(t)

1− cos(t)

)
= sgn(t)

π

2
− t

2
(1− A1(t))

with A1 analytic such that A1(0) = 0.
Finally we get the following decomposition,√

1

r(t)2
− 1 =

√
|t|(1 + A0(t))eisgn(t)π

4A7(t)

with A0(0) = 0 and A2(0) = 1 and letting α(t) = A0(t)A2(t)esgn(t)iπ
4 , the proposition is

proved.
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Appendix B

Poisson boundary : the category
point of view

B.1 Measurable partitions in Lebesgue spaces

Let (X,X , µ) be a measure space. A collection α = (Ai)i∈I of pairwise disjoint measurable
subsets of X is a partition if their union covers X. Subsets which are unions of elements
of the partition α are called α-sets.

Let α be a partition of X, and denote by X/α the factor set and by π : X → X/α the
canonical map which sends every point x ∈ X on its equivalence class. Endow the set X/α
with the σ-algebra Xα generated by π, i.e the smallest one for which the map becomes
measurable. We may define the measure µα on this σ-algebra as the image of the measure
µ by the map π, namely µα = µ ◦ π−1. Thus, the space (X/α,Xα, µα) is a measure space
and the map π is measurable and measure preserving. Note that a subset Λ ⊂ X/α is
Xα-measurable if and only if ⋃

y∈Λ

π−1y

is X -measurable and π−1y is an element of the partition α.
Suppose we are given a countable family S = (Sn) of measurable sets Sn ∈ X . For

every sequence ω = (ωn) ∈ {0, 1}∞, let Sn(ωn) = Sn if ωn = 1 and Sn(ωn) = X \ Sn if
ωn = 0. Let us consider the set

⋂∞
n=0 Sn(ω). It is clear that the obtained sets (we take into

account only nonempty ones) form a partition, which is denoted by α(S).
A partition α is called measurable if it has the form α = α(S) for some at most

countable family S of X -measurable sets.
We shall say that the measure space (X,X , µ) has a countable basis {Bn} if

1. the sets Bn ∈ X separate the points in X, that is, for two distinct points x and y
there exists Bn such that either x ∈ Bn and y /∈ Bn or x /∈ Bn and y ∈ Bn,

2. the completion of σ(Bn, n ≥ 0) with respect to µ coincides with the completion of X
with respect to µ, i.e σ(Bn, n ≥ 0)µ = Xµ.
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As above, consider a sequence ω = (ωn) ∈ {0, 1}∞, and define

Eω =
⋂
n≥0

Bn(ωn).

The basis {Bn} separate the points so that each Eω contains at most one point. The space
X is said to be complete if each Eω is non-empty.

Definition B.1.1. The measure space (X,X , µ) is called Lebesgue if it is isomorphic mod
0 to a measure space (X ′,X ′, µ′) with a countable basis with respect to which it is complete.

Countable Cartesian products of Lebesgue spaces are Lebesgue, and the factor space of
a Lebesgue space with respect to a measurable partition is a Lebesgue space. More details
about Lebesgue space are given in section 9.4 of [Bog07]. As examples of Lebesgue space,
there are Polish spaces with a Radon measure and countable spaces as shown below.

Consider the measure space (N,P(N), µ). For each integer n we denote by ω = (ωk) its
binary expansion

n =
∞∑
k=0

ωk2
k

and define the set Ck = {ω : ωk = 1}. Then, (Ck) is a countable basis which separates the
integers. This basis is furthermore complete, indeed⋂

k≥0

Ck(ωk) = {ω}.

Thus, (N,P(N), µ) is a Lebesgue space. Since every countable measure space (X,P(X), µ)
is isomorphic to the integers it is a Lebesgue space.

Let α be an arbitrary partition of the Lebesgue space (X,X , µ). Let us suppose that
by introducing certain measures µA, the elements A of this partition themselves are turned
into measure spaces. We say that the system {µA} is a system of regular conditional
measures with respect to α if

1. µA is a Lebesgue measure for µα-a.e point A ∈ X/α,

2. for every measurable set B ⊂ X,

(a) the set B ∩ A is measurable in its space A for µα-a.e A ∈ X/α,

(b) µA(B ∩ A) is a measurable function of the point A ∈ X/α,

(c) and,

µ(B) =

∫
X/α

µα(dA)µA(B ∩ A).
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A partition α of a Lebesgue space is measurable if and only if there exists a system
of regular conditional measures, and in such a case, it is essentially unique (see [Roh49]).
A partition in a countable space is at most countable, consequently such partitions are
measurable.

Finally, denote by Z the set of partitions of a set X, and let α, β ∈ Z then α is said to
be finer than β if and only if for every element A ∈ α there exists an element B ∈ β such
that A ⊂ B. This fact is denoted by β � α. Thus, (Z,�) becomes a partially ordered set.
For this partial order, there exists a coarsest partition given by the partition consisting of
one element, the set X itself, and a finest partition, the partition into individual points
of X. For any subfamily Y of partitions, it is well known that its greatest lower bound,
denoted by

∧
α∈Y α, and its least upper bound, denoted by

∨
α∈Y α, exist. Thus, the set Z

is endowed with a complete lattice structure.

Denote by ZX the collection of measurable partitions of the Lebesgue space (X,X , µ).
For sure, ZX is a subset of Z and we can define a partial order as previously. However,
generally speaking, ZX is not a substructure of the structure Z. More precisely, the least
upper bound of an at most countable subfamily of partitions always exists, but the greatest
lower bound of even two partitions is not always measurable. That is why we have to
introduce the notion of identical mod 0 partition. Two measurable partitions α and β are
said identical mod 0 if we can find a subset X ′ of full measure such that restricted to this
set, α and β are equal. Denote by Z̄X the set of classes of measurable partition identical
mod 0, then endowed with the partial order � (which is naturally extended to Z̄X), the
partially ordered set (Z̄X ,�) is a complete lattice (see [Roh49]).

From now, we will consider only measurable partitions mod 0.

B.2 Tail boundary of Markov chains

B.2.1 Tail boundary in the category of measure spaces

Let (X,X ,m) be a measure space. A linear operator P : L∞(X,m)→ L∞(X,m) is called
Markov if P1 = 1 and Pf ≥ 0 as soon as f ≥ 0. Let θ be a probability measure on X
supposed absolutely continuous with respect to m.

Suppose that the path space (X∞,X⊗N,Pθ) is a Lebesgue space and denote by αk the
time k-coordinate partition so that two paths y and y′ belong to the same element of the
partition αk iff yk = y′k ; denote by αnk =

∨n
i=k αi the supremum of the αi (for �). Here, n

is allowed to be∞. Partitions αk are not always measurable, even in a Lebesgue space. In
the sequel we will always assume that the partition αk is measurable for each k ≥ 0. Note
that this property is satisfied in the case of a countable set X with the counting measure
m.

Denote by (X∞/α∞n ,Xα∞n , µα∞n ), the factor space of X∞ with respect to α∞n and by prn
the factor map. Note that the measure µα∞n depends on the initial distribution θ and thus
we should write µθα∞n . However, for the construction of the tail boundary, the distribution θ
is fixed once for all. For the Poisson boundary, we will consider different initial distributions
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so that the notation will make it explicit.
The sequence of partitions (α∞n )n≥0 is decreasing, thus, for all m ≥ n, if two trajectories

x, y ∈ X∞ are α∞n -equivalent, then they are α∞m -equivalent. Consequently, we can define
a map πmn : X∞/α∞n → X∞/α∞m verifying the relation πmn ◦ prn = prm. Moreover, this
map is unique, if not, there exists a map π̃mn (which verifies the previous relation) and a
point y0 ∈ X∞/α∞n such that π̃mn (y0) 6= πmn (y0). But, this implies that pr−1

m (π̃mn y0) and
pr−1
m (πmn y0) are two distinct elements of the partition α∞m , which is a contradiction.

The map πmn is measurable, indeed for each measurable subset Λ ⊂ X∞/α∞m ,

pr−1
n ((πmn )−1Λ) = (πmn ◦ prn)−1Λ = pr−1

m Λ

and we conclude by noting that the two σ-algebras Xα∞n and Xα∞m are respectively generated
by the maps prn and prm.

Remark that the map πmn is well defined. If ξ is a partition identical to α∞n mod 0 then
the corresponding map πξ is equal almost surely to πmn .

We may check that (X∞/α∞n ,Xα∞n , πmn )n≤m is an inductive system in the category Meas
of measurable spaces with measurable mappings as morphisms.

Denote by α∞ the infimum of the α∞n : α∞ =
∧
n≥0 α

∞
n , and denote by (X∞/α∞,Xα∞ , µ)

the factor space of X∞ with respect to α∞ and by pr∞ the factor map.
In the same way we have defined the map πmn , we can define a map πn : X∞/α∞n →

X∞/α∞ verifying πn◦prn = pr∞, indeed, again two trajectories x, y which are α∞n -equivalent
are α∞-equivalent because α∞ � α∞n .

Lemma B.2.1. For m ≥ n, we have πn = πm ◦ πmn .

Proof. The relation is obvious because two α∞n -equivalent trajectories are α∞m -equivalent
and two α∞m -equivalent trajectories are α∞-equivalent.

Lemma B.2.2. The map πn is measurable.

Proof. It is the same proof as for the measurability of πmn replacing m by ∞.

As a consequence,

Lemma B.2.3. The σ-algebra Xα∞ and σ(πn, n ≥ 0) are equal.

Proof. The measurability of πn for all n implies that Xα∞ is a sub-σ-algebra of σ(πn, n ≥ 0).
Conversely, let Λ ∈ σ(πn, n ≥ 0), then for each n, π−1

n Λ ∈ Xα∞n , that is pr−1
n (π−1

n Λ) =
pr−1
∞ Λ ∈ X⊗N. Therefore, Λ is Xα∞-measurable.

Consider the subset S ⊂∏n≥0X
∞/α∞n of admissible sequences, i.e such that πmn (a≥n) =

a≥m. By definition, each point a≥n corresponds to an element of the partition An ∈ α∞n ,
namely pr−1

n a≥n. To an admissible sequence (a≥n)n≥0 corresponds a sequence of subsets
(An)n≥0 with An ∈ α∞n , furthermore, this sequence An is increasing because partitions α∞n
are decreasing. We will say that an admissible sequence (a≥n)n≥0 converges to a point
a ∈ X∞/α∞ if the corresponding increasing sequence of subsets (An)n≥0 is such that
A =

⋃
n≥0An where A ∈ α∞ corresponds to the point a.
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Lemma B.2.4. Let A be an element of α∞. Then there exists an increasing sequence
(An)n≥0 of subsets of X∞ verifying An ∈ α∞n and A =

⋃
n≥0An.

Proof. The infimum α∞ verifies by definition that for all decompositions β such that α∞ �
β there exists an integer n such that α∞ � α∞n � β. Let A be an element of α∞, then for
all subsets B ⊂ A, one defines the decomposition

βB = α∞ ∨ α(B) = {C ∩B : C ∈ α∞} ∪ {C ∩ (A \B) : C ∈ α∞}.

Obviously, βB is finer than α∞, so that there exist an integer n and an element Dn of α∞n
such that B ⊂ Dn ⊂ A. Moreover, we may inductively define a sequence Dn+1, Dn+2, . . .
with Dk ∈ α∞k : Dn+1 is the unique element of α∞n+1 containing Dn, and so on. Conse-
quently, we obtain

B ⊂
⋃
k≥n

Dk ⊂ A.

Thus, for each point a ∈ X∞/α∞, there exist an admissible sequence (a≥n)n≥0 ∈ S
which converges to a. The following lemma says that if two admissible sequences converge
to the same point a ∈ X∞/α∞ then they are eventually equal.

Lemma B.2.5. Assume that (a≥n)n≥0, (b≥n)n≥0 ∈ S converge to the same point a ∈
X∞/α∞, then there exists an integer n0 such that a≥n0 = b≥n0.

Proof. Let (a≥n)n≥0 and (b≥n)n≥0 be two admissible sequences converging to the same point
a ∈ X∞/α∞. Denote by (An)n≥0 and (Bn)n≥0 the corresponding increasing sequences of
subsets such that

A =
⋃
n≥0

An =
⋃
n≥0

Bn

where A ∈ α∞ corresponds to the point a. We claim that there exists an integer n, such
that An = Bn.

By contradiction, suppose that for all n, An 6= Bn, then⋃
n≥0

(An ∩Bn) = ∅

because An and Bn are distinct elements of the same partition.
Now, we have obviously that

⋃
n≥0

(An ∩Bn) ⊂
(⋃
n≥0

An

)
∩
(⋃
n≥0

Bn

)

and the converse inclusion holds as well. Indeed, let u ∈
(⋃

n≥0Xn

)
∩
(⋃

n≥0 Yn
)

then,
there exists n0 and n1 such that u ∈ An0 and u ∈ Bn1 . If n0 ≤ n1 then An0 ⊂ An1 so that
u ∈ An1 ∩Bn1 . So u ∈ ⋃n≥0(Xn ∩ Yn). Clearly, if n1 ≤ n0, we can do the converse.
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Consequently, we get a contradiction

A =

(⋃
n≥0

An

)
∩
(⋃
n≥0

Bn

)
= ∅.

We shall say that two admissible sequences are equivalent if and only if they are even-
tually equal. Denote by ∼ this relation, and by S/ ∼ the factor set of S with respect to
∼. Then, lemma B.2.4 and B.2.5 tell us that S/ ∼ and X∞/α∞ are in bijection.

Theorem B.2.6. Let (Y,Y) be a measurable space, and for n ≥ 0, φn : X∞/α∞n → Y be
a sequence of measurable maps verifying φm ◦ πmn = φn for all m ≥ n. Then, there exists a
unique measurable map φ : X∞/α∞ → Y such that φn = φ ◦ πn.

Proof. Define the map ψ : S → Y by ψ((a≥n)n≥0) = φ0(a≥0) where (a≥n)n≥0 is an admissi-
ble sequence. We claim that the map ψ can be factorized in a map ψ̄ : S/ ∼→ Y . Indeed,
let a, b be two ∼-equivalent admissible sequences, then there exist an integer n0 such that
a≥n0 = b≥n0 . Thus,

φn0(a≥n0) = φn0(b≥n0)

φn0(πn0
0 a≥0) = φn0(πn0

0 b≥0)

φ0(a≥0) = φ0(b≥0).

Since the sets S/ ∼ and X∞/α∞ are in bijection, the map ψ̄ naturally defines a map
φ : X∞/α∞ → Y .

Let a≥0 be a point of X∞/α∞0 , then the sequence (πn0a≥0)n≥0 is of course admissible
and

φ ◦ π0(a≥0) = ψ̄((πn0a≥0)n≥0) = φ0(a≥0).

Now, let a≥n ∈ X∞/α∞n and choose a≥0 ∈ X∞/α∞0 such that πn0a≥0 = a≥n. Then,

φ ◦ πn(a≥n) = φ ◦ π0(a≥0) = φ0(a≥0) = φn(πn0a≥0) = φn(a≥n),

thus, φ ◦ πn = φn.
Actually, what we have just showed is that the inductive limit in the category Set of

sets with maps as morphisms of the inductive system (X∞/α∞n , π
m
n )n≤m is identified with

(X∞/α∞, (πn)n≥0).
By the surjectivity of πn, the map φ is unique, and its measurability is a consequence

of the lemma B.2.3.

All those results imply that (X∞/α∞,Xα∞ , (πn)n≥0) is the inductive limit in the cate-
gory Meas of the system (X∞/α∞n ,Xα∞n , πmn )m≥n, in symbols

(X∞/α∞,Xα∞ , (πn)n≥0) = Meas− lim−→
n∈N

(X∞/α∞n ,Xα∞n , πmn ).
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Let µα∞n be the measure on X∞/α∞n defined as above. For a measurable set Λ of
X∞/α∞m , we have the relation µα∞m (Λ) = µα∞n ◦ (πmn )−1(Λ). Indeed,

µα∞n ◦ (πmn )−1Λ = Pθ ◦ pr−1
n ◦ (πmn )−1Λ = Pθ ◦ pr−1

m Λ = µα∞mΛ.

For all measurable subsets Λ of X∞/α∞, the sequence (µα∞n ◦π−1
n Λ)n≥0 is obviously constant

and equal to µ(Λ), indeed

µα∞n ◦ π−1
n Λ = Pθ ◦ pr−1

n ◦ π−1
n Λ = Pθ ◦ pr−1

∞ Λ = µ(A).

Endowed with µ, X∞/α∞ is a measure space, and we only have to check that

(X∞/α∞,Xα∞ , µ, (πn)n≥0)

is the inductive limit of the inductive system (X∞/α∞n ,Xα∞n , µα∞n , πmn )m≥n in the category
of measure spaces with measurable and measure preserving maps as morphisms, denoted
by M . Regarding what has been already done, we have to check that πn = πm ◦ πmn and
show a similar version of theorem B.2.6.

Clearly, the following equality holds for all measurable subsets Λ of X∞/α∞

µα∞n ◦ π−1
n Λ = µα∞n ◦ (πmn )−1 ◦ π−1

m Λ = µα∞m ◦ π−1
m Λ.

Thus, πn = πm ◦ πmn .

Theorem B.2.7. Let (Y,Y , ν) be a measure space, and for n ≥ 0, φn : X∞/α∞n → Y be a
sequence of measurable and measure preserving maps verifying φm◦πmn = φn for all m ≥ n.
Then there exists a unique measurable and measure preserving map φ : X∞/α∞ → Y such
that φn = φ ◦ πn.

Proof. From theorem B.2.6, we have the existence of a unique map φ, so that we only have
to show that φ is measure preserving, that is

µ ◦ φ−1 = ν.

It is a matter of fact that µα∞n ◦ φ−1
n = ν, thus it follows that µα∞n ◦ π−1

n ◦ φ−1 = ν. By
definition, the left hand side of this equality is nothing else than µ ◦ φ−1.

X∞/α∞n
πmn //

πn

��????????????????

φn

��

X∞/α∞m

πm

������������������

φm

��

X∞/α∞

∃!φ

���
�
�
�
�
�

Y
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B.2.2 The tail boundary in the category of Banach spaces

In some sense, we can get the same results by “duality” for random variables. Let
Lp(X∞/α∞n ,Xα∞n , µα∞n ), p ∈ [1,+∞], be the space of integrable real random variables.
Defining ρnm(gm) = gm ◦ πmn , we check that this map is well defined because it does not
depend on the choice of the representative gm, and that

(Lp(X∞/α∞n ,Xα∞n , µα∞n ), ρnm)n≤m

is a projective system in the category Ban of Banach spaces with linear isometries as
morphisms.

Our goal is to describe the projective limit of this system in terms of the inductive limit
we studied in the last section.

Consider the Banach space Lp(X∞/α∞,Xα∞ , µ), and define

ρn : Lp(X∞/α∞,Xα∞ , µ)→ Lp(X∞/α∞n ,Xα∞n , µα∞n )

by ρn(X) = g◦πn. The map ρn is a linear isometry of Banach spaces verifying ρn◦ρnm = ρm
for all n ≤ m. Our aim is to show that the space Lp(X∞/α∞,Xα∞ , µ) is in fact the
projective limit of the above projective system.

In a general setup, let (Bn, h
n
m)n≤m be a projective system in the category Ban1 of

Banach spaces with linear contractions as morphisms. It is well known (see [CLM79] for
more details) that this projective system always admits a projective limit. Furthermore,
it is identified with the closed subset of Πn≥0Bn (for the sup norm ‖x‖ = supn≥0 ‖xn‖Bn)
consisting of all sequences x = (xn)n≥0 such that hnm(xm) = xn. Denoting this subset by
L, and defining hn by hn(x) = xn, we get

(L, hn) = Ban1 − lim←−
n∈N

(Bn, h
n
m)n≤m.

Note that L is effectively a closed subset, because it may be written in the form

L =
⋂
n≤m

Ker(hn − hnm ◦ hm).

Furthermore, the relation hnm ◦ hm = hn holds by definition.
For a given family ln : Z → Bn of linear contractions satisfying hnm ◦ ln = lm for all

n ≤ m, we consider the map Πln : Z → ΠBn. It is clear that its image belongs to L, so
that it can be uniquely factored over L with the stated properties.

If we consider, now, that (Bn, h
n
m)n≤m is a projective system in the category of Banach

spaces with linear isometries as morphisms, then (L, hn) is again the projective limit of
this system. Indeed, it is obvious that the hn are linear isometries. Moreover, if the ln are
assumed to be linear isometries, it is also the case for Πln.

From now, we assume that Bn = Lp(X∞/α∞n , Xα∞n , µα∞n ), ρnm = hnm, Z = Lp(X∞/α∞,
Xα∞ , µ), and ln = ρn. Then there exists a linear isometry

ρ : Lp(X∞/α∞,Xα∞ , µ)→ L
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such that ρn = hn◦ρ. We aim to show that the linear isometry ρ is in fact an isomorphism,
that is, a linear bijective map such that the inverse map ρ−1 is itself a linear isometry. But
in fact, if ρ is bijective, then ρ−1 is a linear isometry. On another hand, ρ is injective as a
linear isometry, so that we only have to show the surjectivity.

Let (gn)n≥0 ∈ L and let g̃n ∈ Lp(X∞/α∞n ,An, µα∞n ) be a version of gn. The lemma
3.1 of [Mac89] — see also the lemma 4.1 of [Mac95] — says that there exists an element
g̃ ∈ Lp(X∞/α∞,A, µ) such that g̃ ◦ πn = g̃n and ‖g̃‖ = supn≥0 ‖g̃n‖. Let g̃′n be another
version of gn, then g̃′ = g̃ µ-a.e. Indeed, denote by N the set

N = {x ∈ X∞/α∞ : g̃(x) 6= g̃′(x)}

by Nn the set
Nn = {x ∈ X∞/α∞n : g̃n(x) 6= g̃′n}

and let x ∈ N , thus g̃(x) 6= g̃′(x) and for all integer n and all points y ∈ π−1
n x we have

g̃ ◦ πn(y) 6= g̃′ ◦ πn(y), that is g̃n(y) 6= g̃′(y). Consequently, the set π−1
n x is a subset of Nn

and it follows for all integers n that π−1
n (N) ⊂ Nn. Thus, we get for all n

µα∞n (π−1
n N) = µ(N) ≤ µα∞n (Nn) = 0

We conclude that for all sequences (gn)n≥0 ∈ L there exists an element g ∈ Lp(X∞/α∞,A, µ)
such that ρ(g) = (gn)n≥0 because ρn(g) = gn for all n.

Thus, we have the following result,

Theorem B.2.8.
Let (X∞/α∞n ,Xα∞n , µα∞n , πmn )n≤m be an inductive system and (X∞/α∞,Xα∞ , µ, (πn)n≥0) its
inductive limit defined in the last section. Then

(Lp(X∞/α∞,Xα∞ , µ), (ρn)n≥0) ∼= lim←−
n∈N

(Lp(X∞/α∞n ,Xα∞n , µα∞n ), ρnm)n≤m.

Lp(X∞/α∞n ,Xα∞n , µα∞n ) Lp(X∞/α∞m ,Xα∞m , µα∞m )
ρnmoo

L

hn

ggOOOOOOOOOOOOOOOOOOOOOOOOOO

hm

77oooooooooooooooooooooooooo

Lp(X∞/α∞,Xα∞ , µ)

ρn

\\

ρm

BB

∃!ρ

OO�
�
�
�
�
�

We can remark that the range of ρ0
n is isometrically isomorphic to the subspace En =

{f ∈ Lp(X∞/α∞0 ,Xα∞0 , µα∞0 ) : f is σ(πn0 )−measurable}.
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Lp(X∞/α∞n ,Xα∞n , µα∞n )
ρ0
n // En ⊂ Lp(X∞/α∞0 ,Xα∞0 , µα∞0 )

E(·|πn+1
0 )

��
Lp(X∞/α∞n+1,Xα∞n+1

, µα∞n+1
)

ρnn+1

OO

ρ0
n+1

// En+1 ⊂ Lp(X∞/α∞0 ,Xα∞0 , µα∞0 )

Indeed, for all g ∈ Lp(X∞/αn+1,Xα∞n+1
, µα∞n+1

), the following equality holds by σ(πn+1
0 )-

measurability of ρ0
n+1(g) :

E(ρ0
n ◦ ρnn+1(g)|πn+1

0 ) = E(ρ0
n+1(g)|πn+1

0 ) = ρ0
n+1(g).

Consider a function g ∈ Lp(X∞/α∞0 ,Xα∞0 , µα∞0 ), then the sequence (E(g|πn0 ))n≥0 is a back-
ward martingale. It converges almost surely to the integrable function E(g|π∞0 ).

Let f : X∞/α∞n+1 → R be a bounded measurable function, and g : X∞/α∞n → R. Since
the state space X is Lebesgue and the partitions are assumed to be measurable, there
exists a system of regular conditional probabilities µtα∞n and∫

X∞/α∞n

f ◦ πn+1
n (x)g(x)dµα∞n (x) =

∫
X∞/α∞n+1

f(t)

∫
X∞/α∞n

g(x)dµtα∞n (x)︸ ︷︷ ︸
Qng(t)

dµα∞n+1
(t)

which gives rise to an operator

Qn : Lp(X∞/α∞n ,Xα∞n , µα∞n )→ Lp(X∞/α∞n+1,Xα∞n+1
, µα∞n+1

)

defined for g ∈ Lp(X∞/α∞n ,Xα∞n , µα∞n ) by

Qng(t) =

∫
X∞/αn∞

g(x)dµtα∞n (x).

In the next section we will show that this operator can be approximated.

B.2.3 Approximation of the operator Qn

If we consider a function g ∈ Lp(X∞/α∞0 , µα∞0 ) the function

Qk · · ·Q0g

belongs to the space Lp(X∞/α∞n , µα∞n ). Note that, if g ∈ Lp(X∞/α∞n , µα∞n ), it is obvious
that

Qng(t) = Eµα∞n
(g|πn+1

n = t) for µα∞n+1
− almost all t ∈ X∞/α∞n+1.

In the next paragraph, we present some results (which can be found in [Rao05]) which
allow approximations of such conditional expectation.
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Differentiation, conditioning and computation

Let us recall the general definition of conditional expectation. Let (Ω,Σ, µ) be measure
space. For us, µ will be a probability, but the following results can be generalized to any
σ-finite measure.

Suppose that f : Ω 7→ R is an integrable function on Ω and consider any sub-σ-algebra
B ⊂ Σ. Then the mapping (A ∈ B)

νf : A 7→
∫
A

fdµ

is a signed measure on B which vanishes on µ-null sets of B, so that νf is absolutely
continuous with respect to µB, the restriction of the measure µ on the σ-algebra B. Hence by
the Radon-Nikodym theorem, there exists a µB-unique integrable function f̃ on (Ω,B, µB)
such that for all A ∈ B

νf (A) =

∫
A

f̃dµB

The function f̃ is called the conditional expectation of f with respect to B, often denoted
by E(f |B). Thus, the conditional expectation E(f |B) is nothing but the Radon-Nikodým’s
derivative of the measure νf with respect to µB, namely

E(f |B) =
dνf
dµB

µB − a.e

Definition B.2.9. Let (Ω,Σ, µ) be a measure space and A ⊂ Ω be a subset.

1. For each ω ∈ A, let {Bω
i , i ∈ I} ⊂ Σ be a (not necessarily countable) family with

a directed index set I, such that Bω
i ⇀ ω in the Moore-Smith sense (i.e, it is a

converging net, or µ∗(Bω
i \ {ω}) → 0) and that for each co-final sequence J of I,

Bω
i ⇀ ω also. (Here co-final means for each i ∈ I, there is a j ∈ J such that j > i.)

Let D be the collection of all {Bω
i : 0 < µ(Bω

i ) <∞, i ∈ I, ω ∈ A}. Then D is called
a differentiation or a derivation basis on A.

2. A converging net {Bω
i , i ∈ I} is called contracting to ω, if there is an i0 ∈ I such that

ω ∈ Bω
i for all i > i0.

Let ν be a signed measure on Σ and {Bω
i , i ∈ I} an ω-converging sequence for ω ∈ A ⊂

Ω, then we define the upper and the lower derivatives of ν relative to µ at ω ∈ A by

(D∗ν)(ω) = sup{lim sup
i

ν(Bω
i )

µ(Bω
i )

: all nets Bω
i ⇀ ω}

and

(D∗ν)(ω) = inf{lim inf
i

ν(Bω
i )

µ(Bω
i )

: all nets Bω
i ⇀ ω}

Note that sup and inf can be dropped when the Bω
i -sequences are subsequences of a

universal sequence.
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Definition B.2.10. Let D be a differentiation basis of a subset A ⊂ Ω. Then

1. a family F ⊂ D is a fine covering of A if for each ω ∈ A there is some {Bω
i , i ∈ J} ⊂ F

converging to ω.

2. If D is a differentiation basis in (Ω,Σ, µ) for A ⊂ Ω of finite outer measure, then
D is said to satisfy the Vitali property relative to µ, provided for any fine covering
F ⊂ D of A and ε > 0 and a measurable cover Ã of A, there is at most a countable
collection C ⊂ F such that the following two conditions hold

(a) µ(Ã4 V ) = 0 where V =
⋃
B∈C B

(b) if φC(ω) is the number of sets of C to which ω belongs, then∫
V

(φC − 1)dµ(ω) < ε (B.1)

If the members of C are disjoint (or their pairwise intersection is µ-null so that B.1
is true for any ε > 0) the corresponding D is said to have the strong Vitali property
(modulo µ-null sets).

To have an alternative view of the above property, we state the following result due to
R. de Possel.

Theorem B.2.11. Let (Ω,Σ, µ) be a measure space and D ⊂ Σ be a derivative basis.
Then D has a Vitali property iff for any A ∈ Σ and ω ∈ A there exists an ω-converging
net {Bω

i , i ∈ I} ⊂ D such that

lim
i

µ(Bω
i ∩ A)

µ(Bω
i )

= χA(ω) , a.a ω

The following theorem gives us an approximation result of the Radon-Nikodym deriva-
tive.

Theorem B.2.12. Let (Ω,Σ) be measurable space. Let µ, ν be two finite measures on
the σ-algebra Σ, and suppose ν absolutely continuous with respect to µ. If D ⊂ Σ is a
derivation basis on Ω satisfying the Vitali property relative to both ν and µ, then

(Dν)(ω) =
dν

dµ
, µ− a.e

Approximation of the operator Qn for Markov chains on a denumerable state
spaces

In the following, we assume that X is a countable set and the Markov operator P has a
finite range.
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As we have seen above, the following relation holds µα∞n |σ(πn+1
n )-a.e

E(g|πn+1
n ) =

dνg
dµα∞n |σ(πn+1

n )

where νg is defined for all A ∈ σ(πn+1
n ) by

νg(A) =

∫
A

gdµα∞n

Fix x ∈ X∞/α∞n+1 and denote by Bx
i the subset

Bx
i = {y ∈ X∞ : yn+1 = xn+1, · · · , yn+i = xn+i}

Then, it is clear that µ∗α∞n (Bx
i \ {x})→ 0 as i→∞ and for all subsequences also. We will

define the derivation basis D for some A ⊂ X∞/α∞n by

D = {Bx
i : 0 < µα∞n (Bx

i ) <∞, i ≥ 1, x ∈ A}

We have to show that D has the Vitali property. Let F ⊂ D be a fine covering of A.
Then, for each x ∈ A, there exists {Bx

j , j ∈ J} ⊂ F converging to x. Denote by Ai the set

Ai = {x : inf{j : Bx
j ∈ F} = i}

then the collection of sets Ai is a partition of A. Since, for each i there is at most a finite
number of distinct Bx

i , Ai is a union of finite members of F , namely

Ai =
⋃

Bij

with Bij ∈ F . Thus we can set for C the collection of Bi,j. Then C is a countable partition,
so that D has the strong Vitali property.

Note that, in our case, the Vitali property is easily checked because the support of
measures P (x, .) is a finite set for all x.

Thus, by the theorem of the previous section, we get µα∞n |σ(πn+1
n )-a.e

E(g|πn+1
n ) = Dνg

and moreover for µα∞n |σ(πn+1
n )-a.e t ∈ X∞/α∞n+1

E(g|πn+1
n = t) = Qng(t) = Dνg(t)

Fix an x ∈ X∞/α∞n+1 and consider the linear form Lx on L∞(X∞/α∞n , µα∞n ) defined by

Lxg = lim
i

∫
Bxi
gdµα∞n

µα∞n |σ(πn+1
n )(B

x
i )
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The linear form Lx is continuous and its operator norm is ‖Lx‖ = 1.
For each function g ∈ L∞(X∞/α∞n , µα∞n ) we can find a sequence of functions gj ∈

L∞(X∞/α∞n , µα∞n ) depending only on the first j + 1 coordinates and converging almost
surely and in L∞ to g. Since the linear form Lx is continuous we can exchange the order
of taking limits, namely

lim
i

lim
j

∫
Bxi
gjdµα∞n

µα∞n (Bx
i )

= lim
j

lim
i

∫
Bxi
gjdµα∞n

µα∞n (Bx
i )

Now, recalling that

Bx
i = {y ∈ X∞ : yn+1 = xn+1, · · · , yn+1 = xn+i},

we can compute for i ≥ j∫
Bxi
gjdµα∞n

µα∞n (Bx
i )

=

∑
u∈X gj(u, xn+1, · · · , xn+j)θP

n(u)P (u, xn+1) . . . P (xn+i−1, xn+i)

θP n+1(xn+1) . . . P (xn+i−1, xn+i)

=
∑
u∈X

gj(u, xn+1, · · · , xn+j)
θP n(u)P (u, xn+1)

θP n+1(xn+1)

Therefore, the latter expression is independent of i, and we get

Qng(t) =
∑
u∈X

g(u, t)
θP n(u)P (u, tn+1)

θP n+1(tn+1)

for µα∞n+1
-almost all t ∈ X∞/α∞n+1.

Theorem B.2.13. Let (X,P, θ) be a Markov chain on a denumerable state space X whose
Markov operator has finite range. Then for µα∞n+1

-almost all t ∈ X∞/α∞n+1 (n ≥ 0), the
operator Qn is given for g ∈ L∞(X∞/α∞n , µα∞n ) by

Qng(t) =
∑
u∈X

g(u, t)
θP n(u)P (u, tn+1)

θP n+1(tn+1)

B.3 Poisson boundary

In the section B.2.1, we defined the tail boundary (X∞/α∞,Xα∞ , µθ, (πn)n≥0) of a Markov
chain (X,P, θ) as the inductive limit in the category Meas of measure spaces of the sys-
tem (X∞/α∞n ,Xα∞n , µθα∞n , (π

m
n )m≥n). The tail boundary depends obviously on the Markov

operator P but also on the initial distribution θ. The tail boundary distinguishes the
asymptotic behavior of the trajectories. However, this boundary is not time invariant, i.e.
it distinguishes shifted trajectories. In order to obtain time independent informations on
the asymptotic behavior of the Markov chain (X,P, θ), we need to introduce the notion of
Poisson boundary.
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Let us recall the notation. We consider a X-valued Markov chain of Markov operator
P and initial distribution θ on X. We can endow the path space X∞ with the product
σ-algebra X . Thus we can define the probability measure Pθ on the σ-algebra X associated
with the Markov operator P and the probability measure θ.

The path space (X∞,X ) comes with the natural measurable action of the time shift
S̃ : X∞ → X∞ defined for x ∈ X∞ by (S̃x)i = xi+1 for i ≥ 0. The point is that the
time shift on the path space can not be extended directly to the tail boundary. The main
difficulty comes from the fact that the partition α∞ is defined modulo Pθ-null sets so that
the map S̃ induces a map

S : (X∞/α∞,Xα∞ , µθ)→ (X∞/α∞,Xα∞ , µθP ),

and from the measure theoretic point of view the two spaces are not isomorphic in general.
This difficulty will be dropped by considering a larger measure space — namely the space
E, see below — containing each tail boundary for each probability measure θ.

We write µ ≺ ν if µ is absolutly continuous with respect to ν. Indeed, if θ1 ≺ θ2 ≺ m
are two probability measures on the state space X, then Pθ1 ≺ Pθ2 so that there is a
natural embedding

(X∞/α∞, µθ1) ↪→ (X∞/α∞, µθ2)

in such a way that µθ1 ≺ µθ2 .
Let us denote by µν,n the measure on the tail boundary of the Markov chain with an

initial distribution ν ≺ θP n. Such measures are called harmonic measures. Because of
the natural embedding above, we can assume that all harmonic measures µν,n with ν ≺ m
are defined on a universal space (E, E) — the σ-alebgra E is generated by the family of σ-
algebras of tail boundaries corresponding to each ν ≺ m. We denote by [µm] the class (two
measures are equivalent if they are mutually absolutely continuous) of harmonic measures
µν,0 for ν ∼ m, and by [µ̃m] the minimal measure class dominating all harmonic measures
µν,n, ν ≺ m and n ≥ 0. The measure space (E, E , [µ̃m]) is named the tail boundary of the
Markov operator P (the initial distribution is no longer taken in consideration).

Thus, the time shift S̃ naturally induces a invertible action on the tail boundary of the
Markov operator P (the inverse image of a tail set — measurable subset of E — is itself a
tail set) denoted by S. Furthermore, we obviously have

µν,n ◦ S−1 = µν,n−1 = µνP,n.

In particular, [µ̃m]◦S−1 = [µ̃m] so that the measure [µ̃n] is quasi-invariant. In this context,
the theorem of ergodic decomposition holds and we can define the Poisson boundary.

Theorem B.3.1. There exists a Lebesgue space (Y, ξ) and a family of probability measures
{λy}y∈Y on E such that

• for ξ-a.e. y ∈ Y , λy(·) is a probability on E,

• for all measurable subsets B ⊂ E, the map y 7→ λx(B) is measurable,
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• for all measurable subsets B ⊂ E, the following decomposition holds

λ(B) =

∫
Y

λy(B)ξ(dy)

• for ξ-a.e. y ∈ Y , λy is a quasi-invariant ergodic measure under the time shift.

Definition B.3.2. The measure space (Y, ξ) is called the Poisson boundary of the Markov
operator P . For an initial distribution θ ≺ m the measure space (Y, ξθ), where ξθ is the
image measure on Y of µθ, is named the Poisson boundary of the chain (X,P, θ)

We refer the reader to [Kai92] for further results on the Poisson boundary. In particular,
it is shown in this paper that the Poisson boundary is isometrically isomorphic to the space
of bounded harmonic functions, i.e. real bounded functions f : X → R such that Pf = f .
This theorem is actually the time independent version of a more general theorem etablishing
an isometric isomorphism between the tail boundary and the space of bounded harmonic
sequences, that is the space of sequences of functions f = (fn)n≥0, fn ∈ L∞(X, θP n) satis-
fying the conditions fn = Pfn+1 for all n ≥ 0 with the norm ‖f‖ = supn≥0 ‖fn‖L∞(X,θPn).
This theorem is the consequence of the convergence of a certain bounded backward mar-
tingale which is, in our context, the back the bounded backward martingale (Eθ(f |π∞n ))n≥0

defined in section B.2.2. This theorem also has as a consequence the so-called Poisson
formula which is undoubtly better known in the context of harmonic analysis and groups.
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RÉSUMÉ : L’étude des marches aléatoires fait apparâıtre des connexions entre leurs pro-
priétés algébriques, géométriques ou encore combinatoires et leurs propriétés stochastiques.
Le premier exemple de telles connexions est donné par le théorème de Pólya concernant
les marches aléatoires aux plus proches voisins sur le groupe ZN . Si les marches aléatoires
sur les groupes — ou sur des espaces homogènes — fournissent beaucoup d’exemples, il
serait apréciable d’obtenir de tels résultats de rigidité sur des structures algébriques plus
faibles telles celles de semi-groupoide ou de groupoide. Dans cette thèse il est considéré
un exemple de semi-groupoide et un exemple de groupoide, tous les deux sont définis à
partir de sous-graphes contraints du graphe de Cayley d’un groupe — le premier graphe
est dirigé alors que le second ne l’est pas. Pour ce premier exemple, on précise un résultat
de Campanino et Petritis — ils ont montré que la marche aléatoire simple était tran-
siente pour cet exemple de graphe dirigé — en déterminant la frontière de Martin associée
à cette marche et établissant sa trivialité. Dans le second exemple apparaissant dans ce
manuscrit, on considère des pavages quasi-périodiques de l’espace euclidien obtenus à l’aide
de la méthode de coupe et projection. Nous considérons la marche aléatoire simple le long
des arêtes des polytopes constituant le pavage, et nous répondons à la question du type de
celle-ci, c’est-à-dire nous déterminons si elle est récurrente ou transiente. Nous montrons
ce résultat en établissant des inégalités isopérimétriques. Cette stratégie permet d’obtenir
des estimées de la vitesse de décroissance du noyau de la chaleur, ce que n’aurait pas permis
l’utilisation d’un critère de type Nash-Williams.

ABSTRACT: The study of random walks demonstrates connections between their al-
gebraic, combinatorial, geometric and stochastic properties. The first example of such a
connection was given in a theorem of Pólya dealing with nearest neighbourhood random
walks on the group ZN . Random walks on groups provide with many examples, however
it should be interesting to have such rigid results in the case of weaker algebraic structures
such that semigroupoids and groupoids. In this thesis, one example of semigroupoid and
one example of groupoid are considered; they are both defined as constrained subgraphs
of the Cayley graph of a group — the first one is genuinely directed contrary to the second
one which is undirected. For this first example, it has been shown by Campanino and
Petritis that the simple random walk is transient. Here, we refine this statement by deter-
mining the Martin boundary of this process and show its triviality. In the second example,
we consider quasi-periodic tilings of the Euclidean spaces obtained with the help of the
cut-and-project scheme. We have considered the simple random walk along the sides of the
polytopes constituting the tiling and answered the question of its type, i.e. we determined
whether the random walk is recurrent or transient. This result is a consequence of isoperi-
metric inequalities. This strategy allow us to obtain estimates of the rate of convergence
of the heat kernel which could not have been done with the help of the Nash-Williams
criterion.


