Étude par simulations à l'échelle atomique de la déformation de nanofils de silicium

par Julien Guénolé

Thèse de doctorat en Milieux denses, matériaux et composants

Sous la direction de Sandrine Brochard et de Julien Godet.

Le président du jury était Olivier Thomas.

Le jury était composé de Sandrine Brochard, Julien Godet, Ludovic Thilly.

Les rapporteurs étaient Anne Tanguy, Fabrizio Cleri.


  • Résumé

    L'étude des nano-objets en matériau semi-conducteur a révélé des propriétés mécaniques exceptionnelles, différentes de celles observées dans le massif. Outre l'intérêt technologique majeur qu'ils représentent à travers la miniaturisation toujours plus poussée des systèmes électroniques, leurs caractéristiques intrinsèques en font des objets particulièrement bien adaptés pour des études fondamentales. Dans ce contexte, nous avons étudié le déclenchement de la plasticité dans les nano-fils de silicium, les premiers stades de la plasticité étant en effet déterminants pour l'évolution ultérieure du système. Le silicium est ici considéré comme un semi-conducteur modèle. Pour cette étude, nous avons utilisé des simulations atomistiques qui sont parfaitement appropriées à l'analyse détaillée de la structure atomique des nano-objets. Après avoir contextualisé notre étude tant du point de vue de l'expérience que de celui des simulations, nous présentons les techniques numériques que nous avons utilisées. Nous décrivons ensuite l'étude de la déformation de nano-fils monocristallins, révélant notamment le rôle majeur des surfaces et l'activation d'un système de glissement jamais observé dans le silicium massif. Ce système de glissement est analysé en détail, et son activation est expliquée notamment au moyen de calculs ab initio. Enfin, nous avons considéré la déformation de nano-fils coeur-coquille cristal-amorphe et mis en évidence un comportement différent de celui observé pour les nano-fils monocristallins. Ainsi, des défauts natifs à l'interface cristal-amorphe semblent agir comme des germes favorisant la nucléation de la première dislocation qui va initier la plasticité.

  • Titre traduit

    Atomistic simulation study of the deformation of silicon nanowires


  • Résumé

    The study of semiconductor nano-objets has revealed amazing mechanical properties, different from what is commonly observed in bulk. Besides the technological interest of these objects, due to the ever more pronounced miniaturization of electronic devices, their intrinsic specificities make them particularly well suited for fundamental studies. During this thesis, we have thus studied the onset of plasticity in silicon nanowires, the first stages of plasticity being indeed deciding for the subsequent evolution of the system. Silicon is here considered as a model semiconductor. For that study, we have used atomistic simulations, which are well appropriate for the detailed analysis of the nano-objects atomic structure. We first recall the context of that study, both from the experiments and simulations points of view. We then present the numerical methods used. Thestudy of the deformation of monocrystalline nanowires is then described; it reveals in particular the deciding role of surfaces, and the activation of one slip system never observed in bulk silicon. This slip system is analyzed in details, and its activation is explained notably thanks to ab initio calculations. Finally, crystalline-amorphous core-shell silicon nanowires are considered; and shownto exhibit a different behavior from that of monocrystalline nanowires. Indeed, native defects at the crystalline/amorphous interface seem to act as seeds, favoring the nucleation of the first dislocation which gives rise to the plasticity.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Poitiers. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.