Measurement and correction of aberrations in light and electron microscopy

par Jonas Rolf Hans Binding

Thèse de doctorat en Physique

Sous la direction de Albert-Claude Boccara et de Winfried Denk.

Soutenue en 2012

à Paris 6 en cotutelle avec Ruprecht-Karls-Universität (Heidelberg, Allemagne) .

  • Titre traduit

    Mesure et correction des aberrations en microscopie optique et microscopie électronique


  • Résumé

    Imperfections in image formation, called aberrations, often preclude microscopes from reaching diffraction-limited resolution. Aberrations can be caused either by the microscope itself or by the sample and can be compensated for by using an active element integrated into the beam path which is functioning as a corrector. The optimal settings for this corrector need to be determined without excessive damage to the sample. In particular, for sensitive biological samples, the potential gain for signal and/or resolution needs to be weighed against sample damage. Here I present the development of a special type of optical coherence microscopy (called deep-OCM), which allows the precise determination of the average rat brain refractive index in vivo. The conclusion is that two-photon microscopy is affected by optical aberrations in this sample starting at depths around 200 µm. Deep-OCM is well suited for imaging myelinated nerve fibers. Individual fibers can be visualized in the living brain in unprecedented depths beyond 300 µm. In the second part of this thesis I describe the development and testing of an auto-focuser and auto-stigmator (called MAPFoSt) for a scanning electron microscope to ensure optimal imaging quality after switching samples or during long acquisition series. MAPFoSt determines the three focus and stigmation parameters from only two test images


  • Résumé

    La diffraction constitue une limite fondamentale en microscopie, mais souvent cette limite n’est même pas atteinte. Des imperfections dans la formation d’image, appelées aberrations, peuvent être induites par le microscope ou l’échantillon. Un élément actif, dit correcteur, est intégré au chemin optique pour leur compensation. Les paramètres de ce correcteur doivent être déterminés sans dommage excessif pour l’échantillon. Il faut comparer le gain en signal et/ou en résolution avec cet endommagement, surtout pour des échantillons biologiques fragiles. En première partie de cette thèse je présente une modalité particulière de la microscopie par cohérence optique (nommé deep-OCM). Ce développement a permis la mesure exacte et in vivo de l’indice de réfraction moyen du cerveau du rat. Cette valeur implique que la microscopie bi-photonique est limitée par des aberrations optiques à partir d’une profondeur de 200 µm dans ce type d’échantillon. Le deep-OCM est bien adapté à l’imagerie de fibres nerveuses myélinisées. Des fibres individuelles peuvent être visualisées in vivo dans le cerveau à des profondeurs auparavant inaccessibles, supérieures à 300 µm. Dans la deuxième partie de cette thèse je présente le développement d’un autofocus et auto-stigmateur (nommé MAPFoSt) pour le microscope électronique à balayage qui permet d’assurer la qualité maximale des images lors d’un changement d’échantillon ou pendant des séries d’acquisitions de longue durée. MAPFoSt permet de déterminer avec précision les trois paramètres du focus et du stigmatisme en utilisant seulement deux images de test

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (147 p.)
  • Annexes : Bibliogr. p. 125-130. 125 réf. bibliogr.

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Section Biologie-Chimie-Physique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2012 145
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.