Image quality assessment using an artificial neural network approach

par Atidel Bouraoui

Thèse de doctorat en Signaux et images

Sous la direction de Emmanuel Viennet.

Soutenue en 2012

à Paris 13 .

  • Titre traduit

    Estimation de qualité d’image par réseaux connexionnistes


  • Résumé

    L’évaluation de la qualité d'image présente un intérêt substantiel pour les services ainsi que pour les systèmes de traitement d'images où le dernier maillon de la chaîne est l’observateur humain. En effet, la qualité d'image peut être mesurée de deux manières différentes. La première, appelée «évaluation subjective de la qualité", est l'approche évidente étant donnée la nature subjective de la qualité visuelle des médias. La seconde est appelée «évaluation objective de la qualité» qui permet de produire automatiquement des valeurs mesurant la qualité de l'image de manière quantitative. Il existe un large éventail de mesures d'évaluation objective de la qualité d'image pour lesquelles une taxonomie a été proposée au début de ce manuscrit. Le premier objectif de cette thèse est de fournir une évaluation statistique complète et approfondie des performances prédictives d'une large variété de mesures objectives de qualité avec référence complète sur un certain nombre de bases de données étiquetées avec des scores indiquant la qualité des images qui sont évaluées de manière subjective selon des protocoles strictes. Le second objectif consiste à définir les attributs de l'image qui sont les plus pertinents pour l’évaluation de sa qualité. Deux méthodes de sélection de caractéristiques ont été utilisées, à savoir la minimisation du risque structurel et l’approche basée sur le modèle connexionniste. Cela nous a permis de développer deux nouvelles métriques objectives de qualité d'image avec référence réduite où l’estimation de la qualité de l'image nécessite l'utilisation de seulement quelques uns des descripteurs de l’image de référence et celle de test. Le troisième objectif de ce travail de recherche est d'exploiter les techniques d'apprentissage supervisé, en particulier le modèle du perceptron multicouche, pour l’estimation automatique de la qualité de l'image. Le système apprend à partir des étiquettes de la qualité subjective issues des bases d’images utilisées et construit un modèle capable de généraliser après un certain temps d’entraînement. En d’autres termes, le modèle doit continuer à fournir une mesure objective toujours corresponde à l'avis de l'homme à toute image qui lui est présentée. L'objectif principal était d'optimiser la performance prédictive des mesures développées en fonction de la corrélation, la monotonicité et la précision. La fonction de coût par défaut basée sur l'erreur a été employée pour la première mesure développée (que nous avons appelé ECF) et une fonction de coût personnalisée basée sur la corrélation a été proposée pour concevoir la deuxième mesure (que nous avons appelé le CCF). L’étude comparative de ces deux nouvelles métriques à dix-huit autres algorithmes de qualité d'image avec référence complète sur trois bases de données de qualité d'image montre que les algorithmes d’ECF et CCF prennent en considération les non-linéarités du système visuel humain. L'ECF est plus précise que la majorité des mesures étudiées, tandis que la CCF améliore largement les résultats de toutes les métriques concurrentes en termes de corrélation et de monotonicité.


  • Résumé

    Image quality assessment presents a substantial interest for image services that target human observers. Indeed, Image quality can be measured in two different ways. The first, called “subjective quality assessment”, is the obvious approach given the subjective nature of the visual data quality. The second one is called “objective quality assessment” that automatically allow to produce values that score image quality. There exists a large array of objective image quality assessment measures for which a taxonomic scheme has been proposed in the beginning of this manuscript. In fact, the first objective of this thesis is to provide a complete and thorough statistical predictive performance assessment of a variety of full‐reference objective quality measures over number of subjectively rated image quality databases. The second is to define the image attributes that are the most relevant to its quality evaluation. Two feature selection methods have been used including the structural risk minimization and the neural network based approaches. This allowed us to develop two new objective reduced‐reference image quality metrics where the image quality assessment requires the use of only a few features of the reference and the test images. The third objective of this research work is to exploit the supervised machine learning techniques, especially the multilayer perceptron based model, for automatic image quality appreciation. The system learns from the subjective quality scores and builds a model capable to further provide an objective measure that continues to match with the human opinion to any other image. The main target was to optimize the predictive performance of the developed measures according to correlation, monotonicity and accuracy. The default cost function based on error was employed for the first developed measure (that we called ECF) and a customized cost function based on correlation was proposed to design the second metric (that we called CCF). The comparative investigation to eighteen other full‐reference image quality algorithms over three image quality databases shows that both ECF and CCF take into consideration the nonlinearities of the human visual system. The ECF is more accurate than the majority of the metrics under study, while the CCF outperforms all its counterparts in terms of correlation and hence monotonicity.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (130-11 p.)
  • Annexes : Bibliogr. p. 119-130. appendice

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris 13 (Villetaneuse, Seine-Saint-Denis). Bibliothèque universitaire.
  • PEB soumis à condition
  • Cote : TH 2012 015
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.