Retournement temporel électromagnétique : cartographies d'énergie et localisation, du modèle numérique à l'expérimentation contrôlée

par Mehdi Benhamouche

Thèse de doctorat en Physique

Sous la direction de Lionel Pichon et de Dominique Lesselier.

Le président du jury était Jean Bigeon.

Le jury était composé de Lionel Pichon, Dominique Lesselier, Jean Bigeon, Hervé Tortel, Laurent Besnard.

Les rapporteurs étaient Alain Reineix, Hervé Tortel.


  • Résumé

    Le retournement temporel exploite la réversibilité temporelle de l’équation d’onde dans les milieux sans perte. Cela implique qu’une onde émise par une source peut rebrousser chemin et se focaliser sur sa source originale par le biais d’un miroir à retournement temporel. Cette focalisation permet de situer l’emplacement de cette source. Le but de cette thèse est d’exploiter le phénomène de retournement temporel d’ondes électromagnétiques en vue de la localisation et la caractérisation partielle d’objets diffractants enfouis dans un milieu sans perte. Notre étude est menée dans le domaine temporel large bande en se basant sur une modélisation numérique par la technique d’intégration finie.Le domaine temporel est un domaine assez peu exploré dans la littérature contrairement au domaine fréquentiel. La principale problématique est la détermination de l’instant de focalisation qui nous permet de choisir la distribution des champs à partir de laquelle les objets diffractants seront localisés. Nous introduisons dans ce manuscrit un critère de choix d’instant de focalisation qui est comparé tout au long des études entreprises au critère du minimum d’entropie.La démarche empruntée exploite l’analyse de cartographies d’énergie électromagnétique en deux et trois dimensions. Elle est validée dans un premier temps par l’analyse de configurations canoniques exploitant des données synthétiques obtenues par simulation. L’influence de divers paramètres relatifs aux objets diffractants est étudiée de même que l’impact du nombre d’émetteurs récepteurs du miroir à retournement temporel. Dans une seconde étape une expérimentation contrôlée en chambre anéchoïque à SUPELEC est réalisée en utilisant des antennes en régime harmonique et en régime impulsionnel.

  • Titre traduit

    Electromagnetic time reversal : energy mapping and localization, from the numerical model to the controlled experimentation


  • Résumé

    Time reversal is, as is now well-known, exploiting the temporal reversibility of the wave equation in assumed lossless media. To summarize, it implies that a wave emitted by a given source may turn back and thereupon focus onto its original source by means of a so-called Time Reversal Mirror (TRM), which operation, properly simulated from field data acquired in a given measurement domain, could enable us to locate the source indeed. The aim of this thesis is to exploit the phenomenon of time reversal for the localization and the partial characterization, whenever possible, of diffracting objects (dielectric and conducting scatterers, in which sources are induced by given antennas, usually dipole-like) that are buried in a lossless medium (it can be a free space or a half-space) within a fully 3-D transient electromagnetic context. Time-domain certainly is a less explored area in the literature than frequency-domain, and this 3-D context (even if some 2-D validation studies are led also in the present work) is particularly demanding, computatinally speaking as well as at the level of real laboratory experiments. In addition, it requires that we be able to accurately compute the vector electromagnetic field in this time domain in an appropriate wideband situation, as well as whatever field is time reversed during the experiments, which are tasks performed via a full-wave Finite Integration Technique (FIT) developed at LGEP as is validated and discussed in some length in the manuscript. The main problem however is the determination of the moment of focus which would enable us determine the location of the scatterers at least to some extent. Here, to that effect, we introduce and discuss in depth a new criterion of choice of the instant of focus, which is in particular compared throughout the studies undertaken to the usually employed minimum entropy criterion. Influences of the various parameters of the scatterers themselves and of the measurement set-ups are thoroughly discussed on the way. Let us emphasize that what matters to us is the behavior of the (time-reversed) electromagnetic energy and not only of the electric field as standard, that is, the approach taken builds and uses the analysis of energy maps obtained by the aforementioned 3-D numerical modeling. Beyond the modeling of pure synthetic field data and discussions thereof, much attention is also given to leading controlled experiments on canonical targets using both transient and frequency-diverse time-harmonic sources within an anechoic chamber which was made available to us in SUPELEC.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.