Vers une meilleure compréhension du mode d’action des strigolactones et de leur interaction avec les autres hormones du développement

par Alexandre de Saint Germain (De Saint Germain)

Thèse de doctorat en Biologie

Sous la direction de Catherine Rameau.

Soutenue le 30-11-2012

à Paris 11 , dans le cadre de Ecole doctorale Sciences du Végétal (1992-2015 ; Orsay, Essonne) , en partenariat avec Institut Jean-Pierre Bourgin (Versailles) (laboratoire) .

Le président du jury était Michel Dron.

Le jury était composé de Michel Dron, Michel Hernould, Mondher Bouzayen, Florian Frugier, Colin G. N. Turnbull.

Les rapporteurs étaient Michel Hernould, Mondher Bouzayen.


  • Résumé

    L'étude de la ramification chez le pois, à partir des mutants hyper-ramifiés ramosus (rms) a permis de mettre en évidence l'existence d'une nouvelle famille d'hormones végétales : les strigolactones, inhibant la ramification des plantes à graines. La découverte de cette hormone végétale ouvre de nouvelles pistes de recherche sur la biosynthèse et la perception de cette nouvelle hormone. Nous avons montré le rôle du gène PsBRC1, codant un facteur de transcription de type TCP et homologue du gène TEOSINTE BRANCHED1 du maïs, dans la voie de signalisation des strigolactones. L’étude de ce gène nous a permis d'avoir une meilleure compréhension de l’interaction entre strigolactones et cytokinines dans le contrôle de la ramification, de la dynamique de la levée de dormance des bourgeons axillaires, et d'effectuer les premières études de relations structure-activité des strigolactones sur l’inhibition de la ramification chez le pois.Nous avons étudié et caractérisé d'autres éléments dans la voie de signalisation. Chez le pois, deux mutants, autres que Psbrc1, ne répondent pas à l’application de strigolactones, rms3 et rms4. Le gène RMS4 code pour une protéine à boîte F. Nous nous sommes focalisés ici sur le mutant hyper-ramifié rms3. Nous avons montré que RMS3 est l'homologue du gène D14 du riz, codant pour une protéine de la superfamille des α-β/hydrolases. Ces protéines peuvent avoir une activité enzymatique et ainsi pourraient modifier les strigolactones en un composé actif. Le récepteur des gibbérellines GID1 appartient aussi à cette famille, RMS3 est donc un bon candidat pour être le récepteur des strigolactones. Nous avons utilisé une strigolactone radiomarquée afin d’étudier le métabolisme de l'hormone. Nous avons découvert que la strigolactone synthétique, 3H-GR24 est clivée en un composé inconnu au contact des racines, indépendamment de l'activité de la protéine RMS3. Ce composé de structure inconnue se retrouve aussi dans la sève du xylème alors que 3H-GR24 y est absent.Outre un phénotype hyperbranché les mutants rms présentent une diminution de la taille de leurs entre-nœuds, qui n'est pas due à l’augmentation de la ramification. Nous avons étudié l'origine du nanisme des mutants déficients en strigolactones et affectés dans la réponse à l’hormone. Des approches génétiques et moléculaires ont été utilisées pour tester une interaction possible entre les strigolactones et les gibbérellines. Nous avons montré que les strigolactones régulaient l’élongation des entre-nœuds indépendamment des gibbérellines.Le pois est un excellent modèle en génétique et en physiologie. Avec le développement de nouvelles techniques à l'INRA (TILLING; UNIGENE : ensemble de plus de 40000 séquences exprimées de pois), nous avons pu identifier de nouveaux gènes de biosynthèse des strigolactones chez le pois et obtenir plusieurs nouveaux mutants de pois. Ces mutants seront essentiels pour les futures études du laboratoire et pourront permettre d'identifier de nouveaux intermédiaires dans la biosynthèse et le métabolisme des strigolactones.

  • Titre traduit

    Towards a better understanding of strigolactone mode of action of and their interaction with other plant hormones


  • Résumé

    The study of shoot branching in pea, using the high branching ramosus (rms) mutants has highlighted the existence of a new family of plant hormones: the strigolactones, inhibiting shoot branching in seed plants. The discovery of this novel plant hormone opens novel research areas in the deciphering of strigolactone biosynthesis and strigolactone perception. We have shown the role of the pea TCP transcription factor, PsBRC1, the homolog of the maize TEOSINTE BRANCHED (TB1) in strigolactone signaling. The PsBRC1 gene was shown to have a role in integrating strigolactone and cytokinin pathways, and allowed to have a better understanding of the dynamics of bud outgrowth, and to perform the first strigolactone Structure-Activity Relationship studies for branching inhibition in pea. We investigated and characterized other elements in the signaling pathway, including the strigolactone receptor. In pea, two mutants, other than Psbrc1, do not respond to the application of strigolactones, rms3 and rms4. The RMS4 gene encodes an F-BOX protein and here we focused on the high branching rms3 pea mutant. We have shown that RMS3 is the homolog of the rice D14 gene encoding a protein of the α-β/hydrolase superfamily. Consequently RMS3 may have an enzymatic activity to modify strigolactone into an active compound. The gibberellin receptor GID1 also belongs to this family, therefore RMS3 is also a good candidate for the strigolactone receptor. We used a radiolabeled synthetic strigolactone, 3H-GR24, to investigate the metabolism of the hormone. We discovered that the synthetic strigolactone, 3H-GR24 is cleaved in an unknown compound in the root media independently of RMS3 activity, compound which is also found in the xylem sap in contrast to 3H-GR24. The rms mutants exhibit not only a high branching phenotype but also a reduced height which is not due to this high branching. We investigated the origin of the dwarfism of strigolactone-deficient and response mutants in pea. Genetic and molecular approaches have been used to test a possible interaction between strigolactones and gibberellins. We have shown that strigolactones regulate stem elongation independently of gibberellin. Pea is a powerful model plant for genetics and physiology. With the development of new facilities at INRA (TILLING; UNIGENE set of more than 40000 expressed sequences), we were able to identify new biosynthesis genes in pea and to obtain several novel pea mutants. These mutants will be essential for future studies of the laboratory in particular to identify new intermediates in strigolactone biosynthesis and metabolism.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.