Development, characterization and modeling of interfaces for high efficiency silicon heterojunction solar cells

par Renaud Varache

Thèse de doctorat en Physique

Sous la direction de Jean-Paul Kleider et de Bernd Rech.

  • Titre traduit

    Développement, caractérisation et modélisation d’interfaces pour cellules solaires à haut rendement à base d’hétérojonctions de silicium


  • Résumé

    L’interface entre le silicium amorphe (a-Si:H) et le silicium cristallin (c-Si) est un constituent clés de cellules solaires à haut rendement reposant sur des procédés à basse température. Trois propriétés de l’interface déterminent le rendement des cellules solaires à hétérojonction de silicium: les décalages de bandes entre a-Si:H et c-Si, les défauts d’interface et la courbure de bande dans c-Si. Ces trois aspects sont traités dans ces travaux de thèse.Dans un premier un temps, un calcul analytique de la courbure de bande dans c-Si est développé. Il repose sur l’approximation d’une densité d’état (DE) constante dans la bande interdite de a-Si:H. L’influence des principaux paramètres de la structure sur la courbure de bande est étudiée : décalage de bande, densité d’état dans a-Si:H, défaut d’interface, etc. La présence d’un effet de confinement quantique est discutée. Grâce à une comparaison entre ces calculs et des mesures de conductance planaire en fonction de la température sur des structures (p)a-Si:H/(n)c-Si et (n)a-Si:H/(p)c-Si, les décalages de bande de valence et de conduction ont pu être estimés à 0.36 eV et 0.15 eV respectivement. En outre, il est montré que le décalage de la bande de valence est indépendant de la température, alors que le décalage de la bande de conduction suit les évolutions des bandes interdites de c-Si et a-Si:H. Ces mesures tendent à prouver que le ‘branch point’ dans a-Si:H est indépendant du dopage.Ensuite, les calculs analytiques sont approfondis pour prendre en compte différents aspects de la structure complète incorporée dans les cellules : contact avec un oxyde transparent conducteur, présence d’une couche de a-Si:H non-dopée à l’interface. A l’aide de simulations numériques et à la lumière de mesures de conductance planaire conjuguées à des mesures de la qualité de passivation de l’interface, des pistes pour optimiser les cellules à hétérojonction sont commentées. En particulier, il est montré qu’un optimum doit être trouvé entre une bonne passivation et une courbure de bande suffisante. Ceci peut être accompli par un réglage fin des propriétés de la couche tampon (épaisseur, dopage), du contact (travail de sortie élevé) et de l’émetteur (p)a-Si:H (densité de défauts et épaisseur). En particulier, un émetteur avec une DE importante conduit paradoxalement à de meilleures performances.Enfin, un nouveau type d’interface a été développé. La surface de c-Si a été oxydée volontairement dans de l’eau pure dé-ionisée à 80 °C avant le dépôt de (p)a-Si:H afin d’obtenir une structure (p)a-Si:H/SiO2/(n)c-Si. A l’aide d’un modèle de courant par effet tunnel implémenté dans le logiciel de simulation numérique AFORS-HET, l’effet d’une couche à grande bande interdite (comme c’est le cas pour SiO2) sur les performances de cellules est étudié : le facteur de forme et le courant de court-circuit sont extrêmement réduits. En revanche, une couche de SiO2 n’a que peu d’impact sur les propriétés optiques de la structure. Expérimentalement, les échantillons réalisés montrent une qualité de passivation à mi-chemin entre le cas sans couche tampon et le cas avec (i)a-Si:H : ceci est expliqué par la présence d’une charge fixe négative dans l’oxyde. La courbure de bande dans c-Si est moins affectée par la présence d’une couche d’oxyde que d’une couche de (i)a-Si:H. Les cellules solaires réalisées démontrent que le concept a le potentiel d’aboutir à de hauts rendements : sur des structures non-optimisées, une tension de court-circuit supérieure à 650 mV a été démontrée, alors que l’oxyde ne semble pas limiter le transport de charge.


  • Résumé

    The interface between amorphous silicon (a-Si:H) and crystalline silicon (c-Si) is the building block of high efficiency solar cells based on low temperature fabrication processes. Three properties of the interface determine the performance of silicon heterojunction solar cells: band offsets between a-Si:H and c-Si, interface defects and band bending in c-Si. These three points are addressed in this thesis.First, an analytical model for the calculation of the band bending in c-Si is developed. It assumes a constant density of states (DOS) in the a-Si:H band gap. The influence of most parameters of the structure on the band bending is studied: band offsets, DOS in a-Si:H, interface defects, etc. The presence of quantum confinement at the interface is discussed. Analytical calculations and temperature dependent planar conductance measurements are compared such that the band offsets on both (p)a-Si:H/(n)c-Si and (n)a-Si:H/(p)c-Si can be estimated: the valence band offset amounts 0.36 eV while the conduction band offset is 0.15 eV. In addition, it is shown that the valence band offset is independent of temperature whereas the conduction band offset follows the evolutions of c-Si and a-Si:H band gaps with temperature. A discussion of these results in the frame of the branch point theory for band line-up leads to the conclusion that the branch point in a-Si:H is independent of the doping.Then, analytical calculations are developed further to take into account the real solar cell structure where the a-Si:H/c-Si structure is in contact with a transparent conductive oxide and an undoped buffer layer is present at the interface. Measurements of the planar conductance and of the interface passivation quality are interpreted in the light of analytical calculations and numerical simulations to open a way towards a method for the optimization of silicon heterojunction solar cells. It is particularly shown that a trade-off has to be found between a good passivation quality and a significant band bending. This can be realized by tuning the buffer layer properties (thickness, doping), the TCO-contact (high work function) and the emitter (defect density and thickness). Interestingly, an emitter with a high DOS leads to better cell performances.Finally, a new type of interface has been developed, that was not applied to heterojunction solar cells so far. The c-Si surface has been oxidized in deionized water at 80 °C before the (p)a-Si:H emitter deposition such that (p)a-Si:H/SiO2/(n)c-Si structures were obtained. A tunneling current model has been developed, implemented in the 1D numerical device simulator AFORS-HET and used to study the effect of a wide band gap interfacial layer (as it is the case for SiO2) on cell performance: the fill-factor and the short-circuit current are dramatically reduced for thick and high barriers. However, a SiO2 layer has only little impact on optical properties. Fabricated samples show a passivation quality halfway between samples with no buffer layer and with an (i)a-Si:H buffer layer: this is explained by the presence of a negative fixed charge in the oxide. The band bending in (n)c-Si is higher with an oxide layer than with an (i)a-Si:H buffer layer. Solar cells demonstrate that this new concept has the potential to achieve high power conversion efficiencies: for non-optimized structures, an open-circuit voltage higher than 650 mV has been demonstrated, while the oxide does not seem to create a barrier to charge transport.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.