Mesures de corrélations dans un gaz de bosons unidimensionnel sur puce

par Thibaut Jacqmin

Thèse de doctorat en Physique

Sous la direction de Isabelle Bouchoule.

Soutenue le 22-11-2012

à Paris 11 , dans le cadre de Ecole doctorale Ondes et Matière (1998-2015 ; Orsay, Essonne) , en partenariat avec Laboratoire Charles Fabry (Palaiseau, Essonne) (laboratoire) et de Laboratoire Charles Fabry / Optique atomique (laboratoire) .


  • Résumé

    Nous présentons dans ce manuscrit des mesures de corrélations spatiales à un et deux corps effectuées sur un gaz de bosons unidimensionnel et ultra-froid piégé à la surface d'une microstructure. Les corrélations à deux corps sont mises en évidence par des mesures de fluctuations de densité in situ ; les corrélations à un corps sont sondées grâce à des mesures de distributions en impulsion. Nous avons observé des fluctuations de densité sub-poissoniennes dans le régime d'interactions faibles, mettant ainsi en évidence pour la première fois le sous-régime du régime de quasi-condensat dans lequel la fonction de corrélation à deux corps est dominée par les fluctuations quantiques. Nous avons également observé des fluctuations sub-poissoniennes quelle que soit la densité dans le régime d'interactions fortes ; notre mesure constitue la première observation d'un unique gaz de bosons unidimensionnel dans ce régime. Le piège magnétique que nous avons utilisé est un piège modulé qui possède la propriété remarquable de découplage entre confinements transverse et longitudinal. Cette spécificité nous a permis de façonner à volonté la forme du confinement longitudinal. En particulier, nous avons pu obtenir des pièges harmoniques et quartiques. Nous avons également utilisé les propriétés de ce piège modulé afin de réaliser une lentille magnétique longitudinale. Cette technique nous a permis de mesurer la distribution en impulsion du gaz, dans le régime d'interactions faibles. Nous présentons deux résultats, obtenus de part et d'autre de la transition molle entre les régimes de gaz de Bose idéal et de quasi-condensat. Sur le plan théorique, nous montrons qu'une théorie de champ classique ne suffit pas à décrire quantitativement cette transition molle pour les paramètres typiques de l'expérience. Nous avons donc recours à des calculs Monte-Carlo quantiques. La température extraite de l'ajustement de nos donnée par ces calculs est en bon accord avec celle obtenue en ajustant les fluctuations de densité in situ avec la thermodynamique de C. N. Yang et C. P. Yang. Enfin, nous démontrons une méthode de compensation de la gravité (piégeage harmonique résiduel) lors de la phase de lentille magnétique, qui nous permet d'améliorer considérablement la résolution en impulsion de cette technique.

  • Titre traduit

    Probing correlations in a one-dimensional gas of bosons on an atom chip


  • Résumé

    In this manuscript, we present spatial one and two-body correlation measurements performed on a one-dimensional gas of ultra-cold bosons trapped at the surface of a microstructure. Two body correlations are highlighted by measurements of in situ density fluctuations and one-body correlations are probed through measurements of momentum distributions.We observed sub-Poissonian density fluctuations in the regime of weak interactions, thus demonstrating for the first time the regime of quasi-condensate in which the two-body correlation function is dominated by quantum fluctuations. We also observed sub-Poissonian fluctuations regardless of the density in the regime of strong interactions. Our measurement is the first observation of a single one-dimensional gas of bosons in this regime.The magnetic trap that we used is a modulated trap that has the remarkable property of decoupling between transverse and longitudinal confinements. This specificity has enabled us to engineer at will the shape of the longitudinal confinement. In particular, we were able to obtain harmonic and quartic traps.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?