Fragmentation et propriétés algébriques des groupes d'homéomorphismes

par Emmanuel Militon

Thèse de doctorat en Mathématiques

Sous la direction de Frédéric Le Roux.

Soutenue le 26-10-2012

à Paris 11 , dans le cadre de Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay) , en partenariat avec Laboratoire de mathématiques d'Orsay (laboratoire) .

Le président du jury était François Béguin.

Le jury était composé de Frédéric Le Roux, François Béguin, Étienne Ghys, Patrice Le Calvez, Frédéric Paulin, Pierre Py.

Les rapporteurs étaient Étienne Ghys, Shigenori Matsumoto.


  • Résumé

    Dans cette thèse, nous nous intéressons à diverses propriétés algébriques des groupes d'homéomorphismes et de difféomorphismes de variétés. On appelle fragmentation la possibilité d'écrire un homéomorphisme en tant que composé d'homéomorphismes supportés dans des boules. Tout d'abord, nous étudions la longueur des commutateurs sur le groupe des homéomorphismes du tore et de l'anneau, ainsi que la norme de fragmentation, qui associe à tout homéomorphisme le nombre minimal de facteurs nécessaires pour écrire cet homéomorphisme en tant que composé d'homéomorphismes supportés dans des boules. Dans une deuxième partie de la thèse, nous abordons una autre propriété algébrique des groupes d'homéomorphismes et de difféomorphismes : la distorsion. Celle-ci est reliée de manière surprenante à des propriétés de fragmentation des homéomorphismes.

  • Titre traduit

    Fragmentation and algebraic properties of homeomorphisms groups


  • Résumé

    In this thesis, we are interested in various algebraic properties of groups of homeomorphisms and diffeomorphisms of manifolds. We call fragmentation the possibility to write a homeomorphism as a composition of homeomorphisms supported in balls. First, we study the commutator length on the group of homeomorphisms of the torus and of the annulus, as well as the fragmentation norm, which associates to any homeomorphism the minimal number of factors necessary to write this homeomorphism as a composition of homeomorphisms supported in balls. In a second part of this thesis, we deal with another algebraic property of homeomorphism and diffeomorphism groups: the distortion. This last notion is surprisingly related to fragmentation properties of homeomorphisms.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.