Aspects différentiels et métriques de la géométrie non commutative : application à la physique

par Eric Cagnache

Thèse de doctorat en Physique mathématique

Sous la direction de Jean Christophe Wallet.

Soutenue le 25-06-2012

à Paris 11 , dans le cadre de Ecole doctorale Physique de la Région Parisienne (....-2013) , en partenariat avec Laboratoire de physique théorique (Orsay, Essonne) (laboratoire) .

Le président du jury était Michel Dubois-Violette.

Le jury était composé de Michel Dubois-Violette, Pierre Martinetti, Patrizia Vitale, Thierry Masson.

Les rapporteurs étaient Pierre Martinetti, Patrizia Vitale.


  • Résumé

    La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique des champs et la relativité générale dans un seul cadre. Elle peut être abordée selon différents points de vue et deux d'entre eux sont présentés dans cette thèse. Le premier, le calcul différentiel basé sur les dérivations, nous a permis de construire une action de Yang-Mills-Higgs dans laquelle apparait des champs pouvant être interprétés comme des champs de Higgs. Avec le second, les triplets spectraux, on peut généraliser la notion de distance entre état et calculer des formules de distance. C'est ce que nous avons fait dans le cas de l'espace de Moyal et du tore non commutatif.

  • Titre traduit

    Aspects of the metric and differential noncommutative geometry : application to physics


  • Résumé

    Noncommutative geometry offers interesting prospects to gather the quantum field theory and relativity in one general framework because it allows one to generalize geometric objects algebraically. It can be approached from different points of view and two of them are presented in this PhD. The first, calculus based on derivations, allowed us to construct a Yang-Mills-Higgs action which appears in fields that can be interpreted as Higgs fields. With the second, spectral triples, we can generalize the notion of distance between states. We calculated the distance formulas in the case of the Moyal space and the noncommutative torus.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.