Pathological synchronization in neuronal populations : a control theoretic perspective

par Alessio Franci

Thèse de doctorat en Physique

Sous la direction de Françoise Lamnabhi-Lagarrigue.

  • Titre traduit

    Vision Automatique de la synchronisation neuronale pathologique


  • Résumé

    Dans la première partie de cette thèse, motivée par le développement de la stimulation cérébrale profonde comme traitement des symptômes moteurs de la maladie de Parkinson, nous considérons le problème de réduire la synchronie d'une population neuronale par l'intermédiaire d'une stimulation électrique en boucle fermée. Ceci, sous les contraintes que seule la tension de membrane moyenne de l'ensemble est mesurée et qu'un seul signal de stimulation est disponible (retour du champ moyen). La population neuronale est modélisée comme un réseau d'oscillateurs de Landau-Stuart contrôlé par un dispositif de rétroaction mono-entrée mono-sortie. En nous basant sur la dynamique de phase associée au système, nous analysons l'existence et la robustesse des solutions à verrouillage de phase, modélisant l'état pathologique, et nous dérivons des conditions nécessaires à une désynchronisation efficace par retour du champ moyen. Des conditions suffisantes sont ensuite dérivées pour deux objectifs de contrôle: l'inhibition et la désynchronisation neuronale. Notre analyse suggère que, en fonction de l'intensité du gain de rétroaction, le retour du champ moyen peut soit bloquer l'oscillation collective (inhibition neuronale) soit désynchroniser l'ensemble.Dans la deuxième partie, nous explorons deux voies possibles pour l'analyse des problèmes similaires dans des modèles biologiquement plus plausibles. Dans la première, la population est modélisée comme une interconnexion d'opérateurs entrée-sortie non-linéaires et la synchronisation neuronale est analysée en s'appuyant sur une approche entré-sortie récemment développée. Dans la seconde, les propriétés d'excitabilité et de synchronisabilité des neurones sont analysées via les bifurcations sous-jacentes. En nous basant sur la théorie des formes normales, un nouveau modèle réduit est dérivé pour capturer les comportements d'une grande classe de neurones qui restent inexpliqués dans les modèles réduits existants.


  • Résumé

    In the first part of this thesis, motivated by the development of deep brain stimulation for Parkinson's disease, we consider the problem of reducing the synchrony of a neuronal population via a closed-loop electrical stimulation. This, under the constraints that only the mean membrane voltage of the ensemble is measured and that only one stimulation signal is available (mean-field feedback). The neuronal population is modeled as a network of interconnected Landau-Stuart oscillators controlled by a linear single-input single-output feedback device. Based on the associated phase dynamics, we analyze existence and robustness of phase-locked solutions, modeling the pathological state, and derive necessary conditions for an effective desynchronization via mean-field feedback. Sufficient conditions are then derived for two control objectives: neuronal inhibition and desynchronization. Our analysis suggests that, depending on the strength of feedback gain, a proportional mean-field feedback can either block the collective oscillation (neuronal inhibition) or desynchronize the ensemble.In the second part, we explore two possible ways to analyze related problems on more biologically sound models. In the first, the neuronal population is modeled as the interconnection of nonlinear input-output operators and neuronal synchronization is analyzed within a recently developed input-output approach. In the second, excitability and synchronizability properties of neurons are analyzed via the underlying bifurcations. Based on the theory of normal forms, a novel reduced model is derived to capture the behavior of a large class of neurons remaining unexplained in other existing reduced models.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.