Methods and algorithms for solving linear systems of equations on massively parallel computers

par Simplice Donfack

Thèse de doctorat en Informatique

Sous la direction de Laura Grigori.

Soutenue le 07-03-2012

à Paris 11 , dans le cadre de Ecole doctorale Informatique de Paris-Sud , en partenariat avec Laboratoire de recherche en informatique (Orsay, Essonne) (laboratoire) .

Le président du jury était Yannis Manoussakis.

Le jury était composé de Laura Grigori, Yannis Manoussakis, Raymond Namyst, Frédéric Desprez, Jack J. Dongarra, Thomas Guignon.

Les rapporteurs étaient Raymond Namyst, Frédéric Desprez.

  • Titre traduit

    Méthodes et algorithmes pour la résolution des systèmes d'équations linéaires sur les ordinateurs massivement parallèles


  • Résumé

    Les processeurs multi-cœurs sont considérés de nos jours comme l'avenir des calculateurs et auront un impact important dans le calcul scientifique. Cette thèse présente une nouvelle approche de résolution des grands systèmes linéaires creux et denses, qui soit adaptée à l'exécution sur les futurs machines pétaflopiques et en particulier celles ayant un nombre important de cœurs. Compte tenu du coût croissant des communications comparé au temps dont les processeurs mettent pour effectuer les opérations arithmétiques, notre approche adopte le principe de minimisation des communications au prix de quelques calculs redondants et utilise plusieurs adaptations pour atteindre de meilleures performances sur les machines multi-cœurs. Nous décomposons le problème à résoudre en plusieurs phases qui sont ensuite mises en œuvre séparément. Dans la première partie, nous présentons un algorithme basé sur le partitionnement d'hypergraphe qui réduit considérablement le remplissage ("fill-in") induit lors de la factorisation LU des matrices creuses non symétriques. Dans la deuxième partie, nous présentons deux algorithmes de réduction de communication pour les factorisations LU et QR qui sont adaptés aux environnements multi-cœurs. La principale contribution de cette partie est de réorganiser les opérations de la factorisation de manière à réduire la sollicitation du bus tout en utilisant de façon optimale les ressources. Nous étendons ensuite ce travail aux clusters de processeurs multi-cœurs. Dans la troisième partie, nous présentons une nouvelle approche d'ordonnancement et d'optimisation. La localité des données et l'équilibrage des charges représentent un sérieux compromis pour le choix des méthodes d'ordonnancement. Sur les machines NUMA par exemple où la localité des données n'est pas une option, nous avons observé qu'en présence de perturbations systèmes (" OS noise"), les performances pouvaient rapidement se dégrader et devenir difficiles à prédire. Pour cela, nous présentons une approche combinant un ordonnancement statique et dynamique pour ordonnancer les tâches de nos algorithmes. Nos résultats obtenues sur plusieurs architectures montrent que tous nos algorithmes sont efficaces et conduisent à des gains de performances significatifs. Nous pouvons atteindre des améliorations de l'ordre de 30 à 110% par rapport aux correspondants de nos algorithmes dans les bibliothèques numériques bien connues de la littérature.


  • Résumé

    Multicore processors are considered to be nowadays the future of computing, and they will have an important impact in scientific computing. In this thesis, we study methods and algorithms for solving efficiently sparse and dense large linear systems on future petascale machines and in particular these having a significant number of cores. Due to the increasing communication cost compared to the time the processors take to perform arithmetic operations, our approach embrace the communication avoiding algorithm principle by doing some redundant computations and uses several adaptations to achieve better performance on multicore machines.We decompose the problem to solve into several phases that would be then designed or optimized separately. In the first part, we present an algorithm based on hypergraph partitioning and which considerably reduces the fill-in incurred in the LU factorization of sparse unsymmetric matrices. In the second part, we present two communication avoiding algorithms that are adapted to multicore environments. The main contribution of this part is to reorganize the computations such as to reduce bus contention and using efficiently resources. Then, we extend this work for clusters of multi-core processors. In the third part, we present a new scheduling and optimization approach. Data locality and load balancing are a serious trade-off in the choice of the scheduling strategy. On NUMA machines for example, where the data locality is not an option, we have observed that in the presence of noise, performance could quickly deteriorate and become difficult to predict. To overcome this bottleneck, we present an approach that combines a static and a dynamic scheduling approach to schedule the tasks of our algorithms.Our results obtained on several architectures show that all our algorithms are efficient and lead to significant performance gains. We can achieve from 30 up to 110% improvement over the corresponding routines of our algorithms in well known libraries.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.