Modélisation stochastique de processus pharmaco-cinétiques, application à la reconstruction tomographique par émission de positrons (TEP) spatio-temporelle

par Mame Diarra Fall

Thèse de doctorat en Traitement du signal et des images

Sous la direction de Ali Asghar Mohammad-Djafari.


  • Résumé

    L'objectif de ce travail est de développer de nouvelles méthodes statistiques de reconstruction d'image spatiale (3D) et spatio-temporelle (3D+t) en Tomographie par Émission de Positons (TEP). Le but est de proposer des méthodes efficaces, capables de reconstruire des images dans un contexte de faibles doses injectées tout en préservant la qualité de l'interprétation. Ainsi, nous avons abordé la reconstruction sous la forme d'un problème inverse spatial et spatio-temporel (à observations ponctuelles) dans un cadre bayésien non paramétrique. La modélisation bayésienne fournit un cadre pour la régularisation du problème inverse mal posé au travers de l'introduction d'une information dite a priori. De plus, elle caractérise les grandeurs à estimer par leur distribution a posteriori, ce qui rend accessible la distribution de l'incertitude associée à la reconstruction. L'approche non paramétrique quant à elle pourvoit la modélisation d'une grande robustesse et d'une grande flexibilité. Notre méthodologie consiste à considérer l'image comme une densité de probabilité dans (pour une reconstruction en k dimensions) et à chercher la solution parmi l'ensemble des densités de probabilité de . La grande dimensionalité des données à manipuler conduit à des estimateurs n'ayant pas de forme explicite. Cela implique l'utilisation de techniques d'approximation pour l'inférence. La plupart de ces techniques sont basées sur les méthodes de Monte-Carlo par chaînes de Markov (MCMC). Dans l'approche bayésienne non paramétrique, nous sommes confrontés à la difficulté majeure de générer aléatoirement des objets de dimension infinie sur un calculateur. Nous avons donc développé une nouvelle méthode d'échantillonnage qui allie à la fois bonnes capacités de mélange et possibilité d'être parallélisé afin de traiter de gros volumes de données. L'approche adoptée nous a permis d'obtenir des reconstructions spatiales 3D sans nécessiter de voxellisation de l'espace, et des reconstructions spatio-temporelles 4D sans discrétisation en amont ni dans l'espace ni dans le temps. De plus, on peut quantifier l'erreur associée à l'estimation statistique au travers des intervalles de crédibilité.

  • Titre traduit

    Stochastic modeling of pharmaco-kinetic processes, applied to PET space-time reconstruction


  • Résumé

    The aim of this work is to develop new statistical methods for spatial (3D) and space-time (3D+t) Positron Emission Tomography (PET) reconstruction. The objective is to propose efficient reconstruction methods in a context of low injected doses while maintaining the quality of the interpretation. We tackle the reconstruction problem as a spatial or a space-time inverse problem for point observations in a \Bayesian nonparametric framework. The Bayesian modeling allows to regularize the ill-posed inverse problem via the introduction of a prior information. Furthermore, by characterizing the unknowns with their posterior distributions, the Bayesian context allows to handle the uncertainty associated to the reconstruction process. Being nonparametric offers a framework for robustness and flexibility to perform the modeling. In the proposed methodology, we view the image to reconstruct as a probability density in(for reconstruction in k dimensions) and seek the solution in the space of whole probability densities in . However, due to the size of the data, posterior estimators are intractable and approximation techniques are needed for posterior inference. Most of these techniques are based on Markov Chain Monte-Carlo methods (MCMC). In the Bayesian nonparametric approach, a major difficulty raises in randomly sampling infinite dimensional objects in a computer. We have developed a new sampling method which combines both good mixing properties and the possibility to be implemented on a parallel computer in order to deal with large data sets. Thanks to the taken approach, we obtain 3D spatial reconstructions without any ad hoc space voxellization and 4D space-time reconstructions without any discretization, neither in space nor in time. Furthermore, one can quantify the error associated to the statistical estimation using the credibility intervals.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud 11. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.