Horloge à réseau optique à mercure neutre : détermination de la longueur d’onde magique

par Sinda Mejri

Thèse de doctorat en Physique atomique

Sous la direction de Philip Tuckey.

Soutenue en 2012

à Paris 6 .


  • Résumé

    Une horloge à réseau optique combine les avantages de piégeage des horloges à ions et les horloges à atomes neutres. En effet cette configuration idéale permet de réaliser un régime de confinement fort comme le régime Lamb-Dicke tout en travaillant avec un grand nombre d’atomes. Contrairement aux horloges à ions une horloge à réseau optique nécessite des puissances de lasers importantes pour placer les atomes dans le régime Lamb-Dicke, ce qui induit généralement un décalage différentiel des niveaux d’horloge. Cependant le concept de la longueur d’onde magique a permis de supprimer, à premier ordre, les perturbations induites par le piège. Ce mémoire présente les dernières avancées de l’horloge à réseau optique à atomes de mercure du LNE-SYRTE. Dans ce mémoire on passe en revue les performances actuelles des différentes horloges optiques actuellement développées, l’accent est mis sur le concept d’horloge à réseau optique et sur les particularités de l’atome de mercure qui rendent de lui un excellent candidats pour la réalisation d’une horloge à réseau optique. La deuxième partie est consacrée à la caractérisation du piège magnéto-optique via un système de détection assez sensible, ce qui nous a permis d’évaluer la température des différents isotopes présents dans PMO ainsi que la mise en évidence d’un refroidissement sub-Doppler des isotopes fermioniques. Suit la réalisation du piégeage des atomes de mercure est une tache redoutable vu la gamme de longueurs d’ondes magiques prédites par la théorie (362±5 nm). La troisième partie présente les aspects expérimentaux de la réalisation et la mise en place de la source laser nécessaire au piégeage des atomes de mercure fonctionnant à la longueur d’onde magique prédite par la théorie. Suit d’une description de la cavité de surtension mise en place pour la réalisation du réseau optique. Tout ce travail a permis de réaliser la première spectroscopie de la transition 1S0 →3 P0 dans le régime Lamb-Dicke pour l’isotope 199Hg. Avec l’utilisation du système laser ultra-stable lié à la référence primaire du LNE-SYRTE, nous avons déterminé la fréquence centrale de la transition pour une large gamme de longueur d’onde et profondeurs du piège et l’analyse de ces mesures nous a permis de réaliser la première détermination expérimentale de la longueur d’onde magique, démontrons ainsi la faisabilité d’une horloge optique à atomes de mercure de haute exactitude.

  • Titre traduit

    Optical lattice clock based on neutrel mercury atoms : determination of the magic wavelength


  • Résumé

    A lattice clock combines the advantages of ion and neutral atom based clocks, namely the recoil and first order Doppler free spectroscopy allowed by the Lamb-Dicke regime. This lattice light field shifts the energy levels of the clock transition. However a wavelength can be found where the light-shift of the clock states cancelled to first order. In this thesis, we present the latest advances in optical lattice clock with mercury atoms developed at LNE-SYRTE. After a review of the current performances of different optical clock are currently under development, we focus on the concept of optical lattice clock and the features of the mercury that make him an excellent candidate for the realization of an optical lattice clock achievement the uncertainty of the level of 10−17. The second part is devoted to the characterization of the mercury MOT, using a sensitive detection system, which allowed us to evaluate the temperature of different isotopes present in the MOT and have a good evidence of sub-Doppler cooling for the fermonic isotopes. The third part of this these, present the experimental aspects of the implementation and the development of the laser source required for trapping mercury atoms operating near the predicted magic wavelength. Finally, we report on the Lamb-Dicke spectroscopy of the 1S0 →3 P0 clock transition in the 199Hg atoms confined in lattice trap. With use of the ultra-stable laser system, linked to LNE-SYRTE primary frequency reference, we have determined the center frequency of the transition for a range of lattice wavelengths and different lattice depths. Analyzing these measurement, we have carried out the first experimental determination of the magic wavelength, which is the crucial step towards achieving a highly accurate frequency standard using mercury.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (122 p.)
  • Annexes : Bibliogr. p.117-122

Où se trouve cette thèse\u00a0?