Simulation moléculaire de l'interaction de molécules polaires avec des matériaux de la famille des MOFs

par Marta De Toni

Thèse de doctorat en Chimie Physique

Sous la direction de Alain Fuchs.

Soutenue en 2012

à Paris 6 .


  • Résumé

    Mes travaux de thèse s’inscrivent dans le cadre de l’étude de l’adsorption de systèmes moléculaires confinés dans des matériaux nanoporeux. Ces phénomènes interviennent communément dans de nombreux processus et procédés industriels : échange ionique, séparations sélectives, catalyse hétérogène… En particulier, j’ai étudié par simulation moléculaire les propriétés d’adsorption de molécules polaires d’intérêt industriel (CO2 et H2O) dans une nouvelle classe de matériaux poreux cristallins hybrides organiques-inorganiques (MOFs Metal-Organic Frameworks). Il s’agit de systèmes avec des propriétés d’adsorption remarquables déterminées par leur variété topologique et versatilité dues à la richesse de la chimie organique et de coordination et au fait qu’ils peuvent être fonctionnalisés avant comme après synthèse. D’abord je me suis intéressée à l’adsorption du CO2 dans une famille de systèmes avec la même topologie mais des volumes poreux différents, les IRMOFs. J’ai pu ainsi caractériser l’effet du confinement sur leur capacité d’adsorption et un comportement universel a été mis en évidence : la température critique diminue lorsque le confinement augmente. Ensuite, j’ai étudié une nouvelle MOF cationique dénommée Zn2(CBTACN). Après avoir réussi à localiser les anions halogénure extra–charpente, j’ai caractérisé l’adsorption du CO2 dans ce matériau, d’abord comme corps pur et ensuite dans des mélanges. Enfin, je me suis intéressée à la stabilité hydrothermique de ces matériaux, qui est une thématique cruciale pour les applications. En particulier, j’ai observé le mécanisme d’hydratation d’un analogue de la MOF-5 qui se fait en deux étapes. Des effets collaboratifs, qui n’avaient pas été soulignés jusqu’à présent dans la littérature, ont été également mis en évidence

  • Titre traduit

    Molecular simulation of the interaction of polar molecules with Metal-Organic Frameworks


  • Résumé

    The topic of this thesis is the adsorption of simple molecular fluids in nanoporous materials. Many industrial processes are based on this phenomenon, including ionic exchange, selective separation and heterogeneous catalysis. I used molecular simulation to study the adsorption properties of polar molecules of industrial interest (CO2 and H2O) in a new class of crystalline microporous hybrid organic-inorganic materials called Metal-Organic Frameworks (MOFs). They have exceptional adsorption properties due to their topological variety and their versatility, allowed by the large range of possibilities offered by organic and coordination chemistry and functionalizations. I first studied the adsorption of CO2 in a family of materials called IRMOFs, which share the same topology but have different porous volume, in order to characterize the effect of confinement on their adsorption performance. In particular, a general behavior has been highlighted: the critical temperature decreases when the confinement increases. Then, I looked at a recently synthesized cationic MOF called Zn2(CBTACN). After having localized the extra-framework halogen anions in the unit cell of the material, something which was not possible experimentally, I characterized CO2 adsorption in this system first as a pure gas and then as a component of different mixtures. Finally, I was interested in the hydrothermal stability of MOFs, a crucial issue for their use in industrial applications. I observed the hydration mechanism of system that is analogous to the MOF-5 (IRMOF-0h) and shed light on some collaborative effects of the attack of water that were unknown to in the literature

Autre version

Cette thèse a donné lieu à une publication en 2013 par [CCSD] à Villeurbanne

Simulation moléculaire de l'interaction de molécules polaires avec des matériaux de la famille des MOFs

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (160 p.)
  • Annexes : Bibliogr. p. 145-157. 262 réf. bibliogr.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque Biologie-Chimie-Physique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2012 296
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.