Commande en suivi de chemin et en roulis des robots mobiles rapides en présence de glissements et d’instabilités

par Mohamed Larbi Krid

Thèse de doctorat en Physique. Robotique

Sous la direction de Faïz Ben Amar.

Soutenue en 2012

à Paris 6 .


  • Résumé

    La robotique d'intervention doit répondre au besoin constant d'aller toujours plus loin et plus vite. Dans ce cadre, les robots mobiles tout terrain seront soumis à de fortes sollicitations telles que les glissements, impactes et pertes de contact, qui peuvent les déstabiliser et compromettre leur mission. Cette thèse contribue à l'élaboration de commandes garantissant une qualité de suivi du chemin de référence et une certaine marge de stabilité vis-à-vis des risques de retournement. Aussi, la thèse propose un nouveau dispositif mécatronique actif permettant le contrôle du roulis du véhicule et l'augmentation des performances de mobilité, et en particulier la maîtrise de sa dynamique lors des virages. Les commandes développées sont basées sur des modèles physiques qui prennent en compte la dynamique du véhicule ainsi que les glissements aux interfaces roue-sol. Ces modèles font l'objet d'une validation et d'une identification à partir de résultats expérimentaux effectués sur le robot FAST-A (un des deux démonstrateurs du projet ANR-FAST). Ces modèles analytiques et ces résultats expérimentaux sont aussi comparés à un modèle de simulation complet à 16 ddl développé sous MD Adams, dans lequel les mécanismes de suspension, de direction et de traction, ainsi que les conditions de contact roue-sol sont représentés plus finement. Une première commande basée sur l'approche LQR a été utilisée pour le problème de suivi de chemin. Elle considère une dynamique linéaire du véhicule, ainsi qu'un modèle linéarisé de la cinématique du robot en relation avec sa trajectoire de référence. La commande s'appuie sur une optimisation des erreurs de suivi et des entrées du système. Les performances de cette commande ont été évaluées sur le simulateur Adams ainsi que sur le robot réel. Elles ont été aussi comparées à une seconde commande de type prédictive MPC. Grâce à sa capacité de prédiction et d'anticipation sur les futures changements des signaux de consigne, cette dernière basée sur l'approche non-linéaire généralisée et à temps continu (NCGPC) s'est avérée plus précise en terme de suivi de chemin et plus douce en terme de signal de commande. La méthode utilisée a été étendue à tout système MIMO ayant des nombres arbitraires d'entrées et de sorties. Enfin, nous avons développé une commande linéaire MPC du dispositif de roulis. Celle-ci s'appuie sur une optimisation sur un horizon de temps fini d'un certain critère composé d'un indice de stabilité et d'un indice de consommation énergétique du dispositif intégré. Le comportement obtenu s'apparente au comportement d'un pilote de moto qui se penche à l'intérieur du virage pour contrecarrer la force centrifuge. L'indice de stabilité utilisé est défini par le transfert de charge latéral entre les roues droites et gauches. Les résultats de simulation de ce dispositif sont très encourageants puisqu'on observe une réduction du transfert de charge d'à peu près 30%, donc une augmentation de la sécurité de l'appareil et enfin une gamme de vitesses plus large (à rayon de courbure constant). Le dispositif en question est en cours de montage sur la plateforme FAST-B (second démonstrateur du projet ANR-FAST) et sera testé en situation réelle durant les mois de mars et avril 2012

  • Titre traduit

    A path tracking and roll dynamics controller in presence of sliding and instability for a fast rover


  • Résumé

    Intervention robotics must meet the continuing need to go farther and faster. Within this framework, all-terrain mobile robots undergoing high velocities endure complex dynamic excitation including vibration, shock, impact and the resulting deterioration in quality of forces transmission in the wheel-ground contact that can lead to a loss of stability and hence undermine their mission. This thesis contributes to the development of control laws that ensure a robust path tracking besides a certain degree of stability (minimize the risk of rollover). In addition, the thesis proposes a new mechatronic device for active control of vehicle roll and increase the performance of mobility, and in particular its dynamic control during cornering. The control laws are developed based on physical models that take into account the vehicle dynamics and slippage phenomenon resulting from the wheel-terrain interaction. Validation and identification of these models are achieved from experimental results performed on the robot FAST-A (one of the two prototypes of the ANR-FAST project). These analytical models and experimental results are also compared to a complete 16 DOF numerical model, developed under the multi-body system environment MSC. ADAMS, in which the mechanisms of suspension, steering and traction, and the conditions of wheel-terrain contact are more accurately represented. The first control algorithm based on the LQR approach is used for the path-tracking problem. It considers a linear vehicle dynamics, and a linearized model of the kinematics of the robot in relation to its reference trajectory. The control algorithm is based on an optimization of tracking errors and system inputs. The performance of this control law is evaluated using the results from both the numerical simulation on MSC. ADAMS and the actual experience performed using the prototype. Furthermore, a comparison with another enhanced control law based on Model Predictive Control (MPC) techniques has been provided. This control technique has the ability to predict and anticipate future changes on the reference. The latter approach based on nonlinear continuous-time generalized predictive (NCGPC) proved to be more accurate in terms of path tracking and smother in terms of control signal. The applied method is also extended to any MIMO system with arbitrary numbers of inputs and outputs. Finally, a linear MPC is developed for the anti-roll device. This is based on an optimization on a finite time horizon of a certain criterion consists of a stability index and an index of energy consumption of the integrated device. The behaviour obtained is similar to the behaviour of a motorcycle rider who leans into the turn to counteract the centrifugal force. The lateral load transfer between the right and left wheel sides defines the stability index. Simulation results of this device are very promising with a remarkable reduction of the charge transfer of about 30%, thus increasing the safety of the device and finally a larger speed range (at a constant radius of curvature). The device in question is being assembled on the platform FAST-B (second prototype of ANR-FAST project) and will be tested during March and April 2012

Autre version

Cette thèse a donné lieu à une publication en 2013 par [CCSD] [diffusion/distribution] à Villeurbanne

Commande en suivi de chemin et en roulis des robots mobiles rapides en présence de glissements et d’instabilités

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (147 p.)
  • Annexes : Bibliogr. p. [133] - 145. Réf. Bibliogr. 105

Où se trouve cette thèse ?

  • Bibliothèque : Université Pierre et Marie Curie. Bibliothèque Universitaire Pierre et Marie Curie. Section Biologie-Chimie-Physique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2012 094
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.