Organization of intracellular reactions with rationally designed scaffolding systems

par Camille Delebecque

Thèse de doctorat en Biologie synthétique

Sous la direction de Ariel Lindner.

Soutenue le 15-11-2012

à Paris 5 , dans le cadre de École doctorale Frontières du vivant .

Le président du jury était Miroslav Radman.

Le jury était composé de Ariel Lindner, Miroslav Radman, Thomas Ellis, Gilles Truan, Eva Pebay-Peyroula, Vincent Schachter.

Les rapporteurs étaient Thomas Ellis, Gilles Truan.

  • Titre traduit

    Organisation des réactions intracellulaires avec les systèmes d'échafaudage rationnellement conçus


  • Résumé

    Au sein des cellules, les voies enzymatiques sont souvent organisées spatialement sous forme de complexes, sur des structures protéiques ou dans des micro-compartiments. Cette organisation spatiale aide au déroulement optimal des réactions enzymatiques en limitant les pertes d’intermédiaires métaboliques, en isolant les voies de signalisations et en augmentant le rendement des réactions enzymatiques. Dans ce travail de thèse nous avons étudié la possibilité de créer des outils permettant de contrôler et optimiser de novo l’organisation spatiale de voies métaboliques in vivo.Nous avons dessiné et assemblé des structures d’ARN non codants utilisées comme support pour organiser le métabolisme bactérien. Ces ARN s’assemblent spontanément in vivo en des structures à une ou deux dimensions avec des sites distincts d’attachement protéique. Nous démontrons l’utilité de cette approche via l’optimisation d’une voie enzymatique de synthèse de biohydrogène et démocratisons l’utilisation de ces structures d’ARN en développant un protocole simplifié. Nous étendons cette étude à d’autres stratégies d’organisation, notamment via l’ingénierie des cellules spécialisées dans la fixation de l’azote atmosphérique de la cyanobactérie Anabaena PCC7120, les hétérocystes. Ce travail de thèse ouvre de nouvelles portes à la biologie de synthèse à la biologie structurale et aux nanotechnologies


  • Résumé

    In cells bio-enzymatic pathways are often spatially organized into complexes, into organelles or onto protein scaffolds. Spatial organization limits diffusion and helps channels substrates between enzymatic cores, limiting competing reactions, insulating and increasing yields of sequential metabolic reactions. In this PhD thesis work, we engineered new tools to control the precise spatial organization of enzymes and increase the titer of specific pathways. We design and engineer “artificial organelles” made of assembling RNA nanostructures. These scaffolds are made out of assembling non-coding RNA molecules we specifically design to polymerize into multi-dimensional nanostructures inside bacterial cells. These structures have docking sites to target enzymes onto them and control their respective distance and stochiometry. We demonstrate the validity of our approach by optimizing and improving the production of biohydrogen and designing a protocol to simplify and standardize the use of RNA scaffold. Moreover, we develop a new synthetic biology “chassis” by developing strategies to engineer AnabaenaPCC7120 and control the spatial localization of metabolic pathway at the cellular level. By targeting specific enzymes into oxygen-depleting heterocysts, metabolic engineers can now implement oxygen-sensitive pathways into oxygen evolving cyanobacteria. This PhD work opens the door to an array of new applications spanning synthetic biology, structural biology to nanotechnology

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Descartes-Bibliothèque électronique. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.