Sélection de paramètres acoustiques pertinents pour la reconnaissance de la parole

par Abdenour Hacine-Gharbi

Thèse de doctorat en Electronique

Sous la direction de Tayeb Mohamadi et de Rachid Harba.

Le président du jury était Ameur Zegadi.

Le jury était composé de Tayeb Mohamadi, Ameur Zegadi, Olivier Alata, Mohamed Debyeche, Philippe Ravier.


  • Résumé

    L’objectif de cette thèse est de proposer des solutions et améliorations de performance à certains problèmes de sélection des paramètres acoustiques pertinents dans le cadre de la reconnaissance de la parole. Ainsi, notre première contribution consiste à proposer une nouvelle méthode de sélection de paramètres pertinents fondée sur un développement exact de la redondance entre une caractéristique et les caractéristiques précédemment sélectionnées par un algorithme de recherche séquentielle ascendante. Le problème de l’estimation des densités de probabilités d’ordre supérieur est résolu par la troncature du développement théorique de cette redondance à des ordres acceptables. En outre, nous avons proposé un critère d’arrêt qui permet de fixer le nombre de caractéristiques sélectionnées en fonction de l’information mutuelle approximée à l’itération j de l’algorithme de recherche. Cependant l’estimation de l’information mutuelle est difficile puisque sa définition dépend des densités de probabilités des variables (paramètres) dans lesquelles le type de ces distributions est inconnu et leurs estimations sont effectuées sur un ensemble d’échantillons finis. Une approche pour l’estimation de ces distributions est basée sur la méthode de l’histogramme. Cette méthode exige un bon choix du nombre de bins (cellules de l’histogramme). Ainsi, on a proposé également une nouvelle formule de calcul du nombre de bins permettant de minimiser le biais de l’estimateur de l’entropie et de l’information mutuelle. Ce nouvel estimateur a été validé sur des données simulées et des données de parole. Plus particulièrement cet estimateur a été appliqué dans la sélection des paramètres MFCC statiques et dynamiques les plus pertinents pour une tâche de reconnaissance des mots connectés de la base Aurora2.

  • Titre traduit

    Relevant acoustic feature selection for speech recognition


  • Résumé

    The objective of this thesis is to propose solutions and performance improvements to certain problems of relevant acoustic features selection in the framework of the speech recognition. Thus, our first contribution consists in proposing a new method of relevant feature selection based on an exact development of the redundancy between a feature and the feature previously selected using Forward search algorithm. The estimation problem of the higher order probability densities is solved by the truncation of the theoretical development of this redundancy up to acceptable orders. Moreover, we proposed a stopping criterion which allows fixing the number of features selected according to the mutual information approximated at the iteration J of the search algorithm. However, the mutual information estimation is difficult since its definition depends on the probability densities of the variables (features) in which the type of these distributions is unknown and their estimates are carried out on a finite sample set. An approach for the estimate of these distributions is based on the histogram method. This method requires a good choice of the bin number (cells of the histogram). Thus, we also proposed a new formula of computation of bin number that allows minimizing the estimator bias of the entropy and mutual information. This new estimator was validated on simulated data and speech data. More particularly, this estimator was applied in the selection of the static and dynamic MFCC parameters that were the most relevant for a recognition task of the connected words of the Aurora2 base.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Orléans (Bibliothèque électronique). Service commun de la documentation.Division des affaires générales.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.