Perturbation et excitabilité dans des modèles stochastiques de transmission de l’influx nerveux

par Damien Landon

Thèse de doctorat en Mathématiques

Sous la direction de Nils Berglund.

Soutenue le 28-06-2012

à Orléans , dans le cadre de Ecole doctorale Sciences et technologies (Orléans) , en partenariat avec Laboratoire mathématiques - analyse, probabilités, modélisation (Orléans) (équipe de recherche) .

Le président du jury était Romain Abraham.

Le jury était composé de Nils Berglund, Romain Abraham, Gianbattista Giacomin, Bruno Cessac, Barbara Gentz, Samuel Herrmann, Simona Mancini.

Les rapporteurs étaient Gianbattista Giacomin, Bruno Cessac.


  • Résumé

    Le système de FitzHugh-Nagumo stochastique est un modèle qualitatif pour la propagation de l’influx nerveux dans un neurone. Ce système lent-rapide s’écrit εdxt = (xt - xt3 + yt) dt + √εσ1 dWt(1), dyt = (a - bxt - cyt) dt + σ2 dwt(2) où a, b et c sont des réels, ε est un petit réel positif, σ1 et σ2 sont deux réels positifs représentant l’intensité du bruit, Wt(1) et Wt(2) sont deux mouvements browniens standards indépendants. Dans cette thèse, nous étudions d’abord le système déterministe associé (σ1 = σ2 = 0) et montrons qu’il est excitable. Nous regardons ensuite le cas particulier où b = 0. Dans ce cas, le comportement au voisinage du point d’équilibre est le même que celui d’un autre modèle, celui de Morris-Lecar. Nous étudions alors la loi du temps de sortie de ce voisinage. Dans le cas général, après avoir mis en évidence trois principaux régimes, nous montrons des résultats généraux sur la distribution du nombre de petites oscillations N entre deux spikes consécutifs en introduisant une chaîne de Markov. Puis nous étudions le cas particulier du régime de bruit faible.

  • Titre traduit

    Perturbation and excitability in stochastic models of transmission of nerve impulses


  • Résumé

    The stochastic FitzHugh-Nagumo equations is a qualitative model for the dynamics of neuronalaction potential. This slow-fast system is written εdxt = (xt - xt3 + yt) dt + √εσ1 dWt(1), dyt = (a - bxt - cyt) dt + σ2 dwt(2) where a, b and c are real numbers, ε is a small positive real number, σ1 et σ2 are two positivereal number representing the intensity of noise, Wt(1) et Wt(2) are two standard Brownian motion independent.In this thesis, we first study the associated deterministic system (σ1 = σ2 = 0) and we show this system is excitable. Then we are interested in the particular case b = 0. In this case, the behaviorin the neighborhood of the equilibrium is the same as the Morris-Lecar model. We study the law ofthe exit time of this neighborhood. In the general case, we show there are three main regimes. Westudy the distribution of the number of small oscillations N between two consecutive spikes using a substochastic Markov chain. Then we obtain results in the case of the weak-noise regime.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université d'Orléans (Bibliothèque électronique). Service commun de la documentation.Division des affaires générales.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.