Developpement de nouveaux catalyseurs au palladium supporté sur polymères ou nanoparticules de cobalt : application à la formation de liaisons carbone-carbone

par Carine Diebold

Thèse de doctorat en Chimie

Sous la direction de Claude Le Drian.


  • Résumé

    Les réactions pallado-catalysées permettant la formation de liaisons carbone-carbone trouvent de nombreuses applications en synthèse organique et constituent l’étape clé de la synthèse d’un grand nombre de molécules. La première partie de cette thèse décrit la préparation et l’étude de catalyseurs hétérogènes et réutilisables comportant du palladium supporté sur un polymère portant des groupements phosphinés, polymère dérivé soit d'une résine de Merrifield soit d’une résine Rasta. De très bons résultats ont été obtenus pour leur utilisation dans les couplages croisés de Hiyama, Heck et Suzuki et dans chaque cas la possibilité de réutilisation jusqu’à 4 fois du catalyseur a été vérifiée. Notre travail constitue une des premières utilisations d’un catalyseur réutilisable dans le couplage de Hiyama. Nous avons aussi mis au point des conditions permettant d’effectuer le couplage de Heck en présence d’une quantité infime de palladium. Notre étude sur les résines Rasta constitue la première application de ces supports en pallado-catalyse. La deuxième partie de la thèse décrit l’étude de la préparation de catalyseurs où le palladium serait supporté sur des nanoparticules superparamagnétiques et qui pourraient donc être récupérés de tout milieu réactionnel grâce à un champ magnétique externe. Des nanoparticules de cobalt ont été préparées puis recouvertes de pyrocarbone par dépôt chimique en phase vapeur. Des groupements organiques ont été fixés sur la coque de carbone, ce qui permet l’introduction de ligands phosphinés. La structure de ces particules a été étudiée par microscopie électronique en transmission et leur préparation optimisée en fonction des résultats structuraux.

  • Titre traduit

    Development of new catalysts containing palladium supported on polymer or on cobalt nanoparticles : application to carbone-carbone bond forming reactions


  • Résumé

    Palladium-catalyzed reactions forming carbon-carbon bonds have found widespread applications in organic synthesis as they represent the key step of many important syntheses in various domains. The first part of this work describes the preparation and study of heterogeneous, reusable, catalysts containing palladium supported on a polymer bearing phosphino groups derived from either a Merrifield resin or a Rasta resin. Very good results have been obtained for the use of these catalysts in Hiyama, Heck and Suzuki cross-couplings and, in each case, the possibility of reuse of the catalyst at least 4 times has been verified. Our work constitutes one of the first use of a reusable catalyst in a Hiyama coupling. We have also found experimental conditions allowing to run the Heck coupling in the presence of only a minimal amount of palladium. Our work constitutes the first use of Rasta resins to prepare heterogeneous palladium catalysts. The second part of the thesis describes the study of the preparation of catalysts where palladium would be supported on superparamagnetic nanoparticles and which could therefore be recovered from any reaction medium by using a magnetic field. Cobalt nanoparticles were prepared and then covered by pyrocarbon by Chemical Vapor Deposition. Organic groups, allowing the subsequent introduction of phosphino ligands, were then grafted on the carbon shells. The structure of the particles was determined by Transmission Electron Microscopy and their preparation optimized according to these structural results.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Haute-Alsace (Mulhouse). Service Commun de Documentation. Section Sciences et Techniques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.