Exploration intégrée probabiliste pour robots mobiles évoluant en environnements complexes

par Alfredo Toriz Palacios

Thèse de doctorat en SYAM - Systèmes Automatiques et Microélectroniques

Sous la direction de René Zapata.

Soutenue le 20-03-2012

à Montpellier 2 en cotutelle avec Benemérita Universidad autónoma (Puebla, Mexique) , dans le cadre de Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014) , en partenariat avec LIRMM - Laboratoire d'Informatique, Robotique et Micro-électronique de Montpellier (laboratoire) .


  • Résumé

    L'un des défis fondamentaux de la robotique d'aujourd'hui est d'obtenir des cartes robustes en utilisant des mécanismes efficaces pour l'exploration et la modélisation des environnements toujours plus complexes. Ce problème est connu comme celui de la planification, de la localisation et de la cartographie simultanée (SPLAM).Dans cette thèse nous avons développé des outils pour obtenir une stratégie de SPLAM. D'abord, l'exploration est faite par le graphe d'exploration aléatoire (REG) basé sur la création d'une structure de graphe et sur un contrôle de frontières. Ensuite, le problème de localisation et de cartographie simultanée (SLAM) est résolu avec une stratégie topologique basée sur des B-Splines. Pour valider notre stratégie, nous avons créé une autre approche de SPLAM basée sur des outils connus comme le Filtre de Kalman étendu pour le SLAM et sur l'arbre aléatoire (SRT) pour l'exploration. Ces résultats sont comparés avec les résultats de notre stratégie.

  • Titre traduit

    Probabilistic Integrated Exploration for Mobile Robots in Complex Environments


  • Résumé

    One of the fundamental challenges of today's robotics is to obtain robust maps using efficient mechanisms for exploring and modeling increasingly complex environments. This is known as simultaneous planning, localization and mapping (SPLAM) problem.Considering this problem, in this thesis we have developed some tools to obtain a SPLAM strategy. First, the exploration is made by the Random Exploration Graph approach (REG) which is based on the creation of a graph structure and on a frontier control. Next, the simultaneous localization and mapping (SLAM) problem is solved using a B-Spline based topologic strategy. To validate our strategy, we have created another SPLAM approach based on well known tools as the Extended Kalman Filter for SLAM and on the Sensor based Random tree (SRT) for the exploration problem. Its results are confronted with the results obtained by our strategy.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque interuniversitaire. Section Sciences.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.