Contrôle, synchronisation et chiffrement

par Jérémy Parriaux

Thèse de doctorat en Automatique, Traitement du Signal et des Images, Génie informatique

Sous la direction de Gilles Millerioux et de Philippe Guillot.

Le président du jury était Taha Boukhobza.

Le jury était composé de Joan Daemen, Antoine Girard, Marc Mouffron.

Les rapporteurs étaient Jean-Pierre Barbot, Thierry Berger.


  • Résumé

    Cette thèse traite de la synchronisation des systèmes dynamiques.La synchronisation est étudiée pour une configuration de type maître-esclave, c'est-à-dire pour des systèmes couplés de façon unidirectionnelle. Ce type de configuration s'avère d'un intérêt tout particulier car elle correspond à des architectures de communications chiffrées un-vers-un ou un-vers-plusieurs. Une attention spécifique est portée sur l'autosynchronisation, comportement qui caractérise la synchronisation par le simple couplage maître-esclave et donc en l'absence de tout contrôle extérieur. Elle joue un rôle majeur dans les communications impliquant des chiffreurs par flot autosynchronisants. L'étude de l'autosynchronisation dans le contexte cryptographique s'appuie sur la théorie du contrôle. Un lien original entre l'autosynchronisation et le principe de chiffrement/déchiffrement en cryptographie est mis en évidence. Il fait appel à la propriété de platitude des systèmes dynamiques, un concept emprunté à l'automatique. On montre que les systèmes dynamiques plats définissent complètement l'ensemble des systèmes autosynchronisants et permettent d'élargir les structures existantes des chiffreurs autosynchronisants. La platitude est tout d'abord étudiée pour deux types de systèmes non linéaires~: les systèmes linéaires commutés et à paramètres variants (LPV). La caractérisation des sorties plates s'appuie sur le concept de semigroupes nilpotents et un algorithme performant est proposé. Une approche constructive pour réaliser des structures maître-esclave autosynchronisantes est proposée sur la base de systèmes plats et les notions d'inversibilité à gauche et à droite empruntées à la théorie du contrôle. Par la suite, l'autosynchronisation est étudiée dans le contexte booléen, privilégié en cryptographie.Elle est caractérisée en premier lieu au travers la notion d'influence. Ensuite, différentes représentations matricielles associées aux fonctions booléennes sont proposées. Ces représentations s'avèrent particulièrement intéressantes pour l'analyse des propriétés liées à la sécurité. Un lien entre l'autosynchronisation et les structures propres des représentations matricielles est établi. Une approche orientée graphes est finalement élaborée pour la caractérisation. De nouvelles constructions de structures autosynchronisantes en sont déduites et des éléments de sécurité sont discutés. Enfin, une plateforme de test à base de FPGA qui a été réalisée est décrite

  • Titre traduit

    Control, synchronization and encryption


  • Résumé

    This thesis deals with the synchronization of dynamical systems. The synchronization considered is called master-slave, that is, the dynamical systems are connected in a unidirectional way. This configuration is of interest because it corresponds to an architecture encountered in secured communications of type one-to-one or one-to-many. A special attention is paid to self-synchronization. A behaviour that characterizes synchronization achieved with a simple master-slave coupling and so, without any external control. It is a central feature of self-synchronizing stream ciphers. The study of self-synchronization in the cryptographic context relies on control theory. An original connection between self-synchronization and encryption/decryption is provided. It is based on the flatness property of dynamical systems, a property borrowed from automatic control. It is shown that flat dynamical systems completly define the set of all self-synchronizing systems and thus, enlarge the existing structures of self-synchronizing stream ciphers. Flatness is first of all studied for the case of two nonlinear systems: switched linear systems and linear parameter-varying (LPV) systems. Flatness caracterization is based on the concept of nilpotent semigroups and an efficient algorithm is provided. A constructive approach for self-synchronizing master-slave structures is proposed. It relies on the construction of flat systems as well as on left and right invertibility also borrowed from control theory. Then, self-synchronization is studied in the Boolean context which is preferred in cryptography. Self-synchronization is caracterized through the notion of influence. Several matrix representations of Boolean functions are proposed. These representations are especially interesting for security analysis. A connection between self-synchronization and the eigenstructures of these matrices is established. Then, a graph oriented approach is provided. New self-synchronizing constructions are deduced and security elements are discussed. Eventually, the description of a realized FPGA based test plateform is provided


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. BU Ingénieurs.
  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèques Metz et Moselle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.