Champs de vecteurs, flots et géodésiques sur les supervariétés

par Stéphane Garnier

Thèse de doctorat en Mathématiques

Sous la direction de Tilman Wurzbacher.

Soutenue le 07-03-2012

à l'Université de Lorraine , dans le cadre de IAEM - Ecole Doctorale Informatique, Automatique, Électronique - Électrotechnique, Mathématiques , en partenariat avec LMAM - Laboratoire de Mathématiques et Applications de Metz - UMR 7122 (laboratoire) .

Le président du jury était Simone Gutt.

Le jury était composé de Angela Pasquale, Gijs Tuynman.

Les rapporteurs étaient Daniel Bennequin, Joachim Hilgert.


  • Résumé

    Le résultat principal de cette thèse est de donner une définition de géodésique sur les supervariétés riemanniennes $(\ca,g)$ paires (et aussi impaires) et de la justifier par un théorème reliant les courbes géodésiques avec le flot géodésique sur $\text{T}^*\ca$. Pour ce faire, nous construisons la 2-forme symplectique canonique sur $\text{T}^*\ca$ et l'analogue $H$ de la fonctionnelle énergie dans le contexte des supervariétés. Nous prenons ainsi le flot du champ de vecteurs hamiltonien associé à $H$ que nous nommons "flot géodésique''. Alors, nous relions les supergéodésiques, que nous définissons à l'aide de la dérivée covariante comme des courbes à vitesse auto-parallèle, avec le flot géodésique via des conditions initiales adaptées aux supervariétés. Une autre définition de géodésique a été proposée en 2006 par O. Goertsches mais ces courbes ne sont pas en bijection avec les courbes intégrales du flot géodésique que nous construisons. Notre définition de géodésique semble donc présenter plus d'avantages. Par ailleurs, nous pouvons, à l'aide du flot, construire l'application exponentielle. Nous en profitons pour démontrer le résultat, bien connu au cas de cadre des variétés classiques (non-graduées), de linéarisation des isométries en utilisant l'exponentielle. Dans la dernière partie, nous redémontrons un résultat de J. Monterde et O.M. Sánchez-Valenzuela concernant l'intégration des champs de vecteur pairs, impairs et aussi non homogènes dans le but d'éviter d'utiliser un modèle de Batchelor. Ceci permet par exemple, de généraliser leurs résultats aux supervariétés holomorphes.

  • Titre traduit

    Vector fields, flows and geodesics on supermanifolds


  • Résumé

    We give a natural definition of geodesics on a Riemannian supermanifold $(\ca, g)$ and extend the usual geodesic flow on $T^*M$ associated to the underlying Riemannian manifold $(M,g)$ to a geodesic "superflow" on $T^*\ca$. Integral curves of this flow turn out to be in natural bijection with geodesics on $\ca$. We also construct the corresponding exponential map and generalize the well-known faithful linearization of isometries to Riemannian supermanifolds. We give also a new proof of the Monderde et al. result about flows of non-homogeneous supervector fields. We give a treatment which allows extensions for instance to the holomorphic category. The original proof given by Monderde et al. is only applicable to split supermanifolds, since their proofs relied on Batchelor's Theorem. Finally, we reproves a characterization of vector fields whose flows are local $\sbb$-actions of an appropriate Lie supergroups structure


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. BU Ingénieurs.
  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèques Metz et Moselle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.