Thèse soutenue

Conception d'une architecture manycoeurs distribuée adaptative pour systèmes embarqués
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Céline Azar
Direction : Jean-Philippe DiguetStéphane ChevobbeYves Lhuillier
Type : Thèse de doctorat
Discipline(s) : STIC
Date : Soutenance en 2012
Etablissement(s) : Lorient
Ecole(s) doctorale(s) : École doctorale Santé, information-communication et mathématiques, matière (Brest, Finistère)
Partenaire(s) de recherche : autre partenaire : Université européenne de Bretagne (2007-2016)

Mots clés

FR

Résumé

FR  |  
EN

Chip design challenges emerged lately at many levels: the increase of the number of cores at the hardware stage, the complexity of the parallel programming models at the software level, and the dynamic requirements of current applications. Facing this evolution, the PhD thesis aims to design a distributed adaptive manycore architecture, named CEDAR (Configurable Embedded Distributed ARchitecture), which main assets are scalability, flexibility and simplicity. The CEDAR platform is an array of homogeneous, small footprint, RISC processors, each connected to its four nearest neighbors. No global control exists, yet it is distributed among the cores. Two versions are designed for the platform, along with a user-familiar programming model. A software version, CEDAR-S, is the basic implementation where adjacent cores are connected to each other via shared buffers. A co-processor called DMC (Direct Management of Communications) is added in the CEDAR-H version, to optimize the routing protocol. The DMCs are interconnected in a mesh fashion. Two novel concepts are proposed to enhance the adaptiveness of CEDAR. First, a distributed dynamic routing strategy, based on a bio-inspired algorithm, handles routing in a non-supervised fashion, and is independent of the physical placement of communicating tasks. The second concept presents dynamic distributed task migration in response to several system and application requirements. Results show that CEDAR scores high performances with its optimized routing strategy, compared to state-of-art networks. The migration cost is evaluated and adequate protocols are presented. CEDAR is shown to be a promising design concept for future manycores.