Development of algorithms and architectures for driving assistance in adverse weather conditions using FPGAs

par Diego andres Botero galeano

Thèse de doctorat en Systèmes Embarqués et Robotique

Sous la direction de Michel Devy et de Jean-Louis Boizard.

Soutenue le 05-12-2012

à Toulouse, INSA , dans le cadre de École Doctorale Systèmes (Toulouse) , en partenariat avec Laboratoire d'Analyse et d'Architecture des Systèmes (laboratoire) et de Laboratoire d'analyse et d'architecture des systèmes [Toulouse] / LAAS (laboratoire) .

Le président du jury était Jean-Yves Fourniols.

Le jury était composé de Michel Devy, Jean-Louis Boizard, Richard Kleihorst, Johel Miteran, Jonathan Piat.

Les rapporteurs étaient Francois Berry, Ricardo Carmona galan.

  • Titre traduit

    Développement d'algorithmes et d'architectures pour l'aide à la conduite dans des conditions météorologiques défavorables en utilisant les FPGA


  • Résumé

    En raison de l'augmentation du volume et de la complexité des systèmes de transport, de nouveaux systèmes avancés d'assistance à la conduite (ADAS) sont étudiés dans de nombreuses entreprises, laboratoires et universités. Ces systèmes comprennent des algorithmes avec des techniques qui ont été étudiés au cours des dernières décennies, comme la localisation et cartographie simultanées (SLAM), détection d'obstacles, la vision stéréoscopique, etc. Grâce aux progrès de l'électronique, de la robotique et de plusieurs autres domaines, de nouveaux systèmes embarqués sont développés pour garantir la sécurité des utilisateurs de ces systèmes critiques. Pour la plupart de ces systèmes, une faible consommation d'énergie ainsi qu'une taille réduite sont nécessaires. Cela crée la contrainte d'exécuter les algorithmes sur les systèmes embarqués avec des ressources limitées. Dans la plupart des algorithmes, en particulier pour la vision par ordinateur, une grande quantité de données doivent être traitées à des fréquences élevées, ce qui exige des ressources informatiques importantes. Un FPGA satisfait cette exigence, son architecture parallèle combinée à sa faible consommation d'énergie et la souplesse pour les programmer permet de développer et d'exécuter des algorithmes plus efficacement que sur d'autres plateformes de traitement. Les composants virtuels développés dans cette thèse ont été utilisés dans trois différents projets: PICASSO (vision stéréoscopique), COMMROB (détection d'obstacles à partir d'une système multicaméra) et SART (Système d'Aide au Roulage tous Temps).


  • Résumé

    Due to the increase of traffic volume and complexity of new transport systems, new Advanced Driver Assistance Systems (ADAS) are a subject of research of many companies, laboratories and universities. These systems include algorithms with techniques that have been studied during the last decades like Simultaneous Lo- calization and Mapping (SLAM), obstacle detection, stereo vision, etc. Thanks to the advances in electronics, robotics and other domains, new embedded systems are being developed to guarantee the safety of the users of these critical systems. For most of these systems a low power consumption as well as reduced size is required. It creates the constraint of execute the algorithms in embedded devices with limited resources. In most of algorithms, moreover for computer vision ones, a big amount of data must be processed at high frequencies, this amount of data demands strong computing resources. FPGAs satisfy this requirement; its parallel architecture combined with its low power consumption and exibility allows developing and executing some algorithms more efficiently than any other processing platforms. In this thesis different embedded computer vision architectures intended to be used in ADAS using FPGAs are presented such as: We present the implementation of a distortion correction architecture operating at 100 Hz in two cameras simultaneously. The correction module allows also to rectify two images for implementation of stereo vision. Obstacle detection algorithms based on Inverse Perspective Mapping (IPM) and classiffication based on Color/Texture attributes are presented. The IPM transform is based in the perspective effect of a scene perceived from two different points of view. Moreover results of the detection algorithms from color/texture attributes applied on a multi-cameras system, are fused in an occupancy grid. An accelerator to apply homographies on images, is presented; this accelerator can be used for different applications like the generation of Bird's eye view or Side view. Multispectral vision is studied using both infrared images and color ones. Syn- thetic images are generated from information acquired from visible and infrared sources to provide a visual aid to the driver. Image enhancement specific for infrared images is also implemented and evaluated, based on the Contrast Lim- ited Adaptive Histogram Equalization (CLAHE). An embedded SLAM algorithm is presented with different hardware acceler- ators (point detection, landmark tracking, active search, correlation, matrix operations). All the algorithms were simulated, implemented and verified using as target FPGAs. The validation was done using development kits. A custom board integrating all the presented algorithms is presented. Virtual components developed in this thesis were used in three different projects: PICASSO (stereo vision), COMMROB (obstacle detection from a multi-cameras system) and SART (multispectral vision).


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?