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Abstract

Co0-20Cr-15W-10Ni alloy (I-605) is a cobalt-based superalloy combining high strength, high duc-
tility, biocompatibility and corrosion resistance. It has been used successfully for heart valves for
its chemical inertia, and this alloy is a good candidate for stent elaboration. The control of grain
size distribution can lead to significant improvement of mechanical properties: in one hand grain
refinement enhance the material strength, and on the other hand large grains provide the ductility
necessary to avoid the rupture in use. Therefore, tailoring the grain size distribution is a promising
way to adapt the mechanical properties to the targeted applications. The grain size can be properly
controlled by dynamic recrystallization during the forging process. Therefore, the comprehension
of the recrystallization mechanism and its dependence on forging parameters is a key point of mi-
crostructure design approach. Thus this work aims at determining the optimal conditions for the
occurrence of dynamic recrystallization, and investigating the link between microstructure evolution

and mechanical behavior.

Compression tests are carried out at high-temperature on Thermec-master Z and Gleeble thermome-
chanical deformation devices, followed by gas or water quench. Mechanical behavior of the material
at high temperature is analyzed in detail, and innovative methods are proposed to determine the
metallurgical mechanisms at stake during the deformation process. Mechanical properties of the ma-
terial after hot-working and annealing treatments is investigated. The grain growth kinetics of L-605
alloy is determined, and experimental results are compared with the static recrystallization process.
Microstructures after hot deformation are evaluated using SEM-EBSD and TEM. Significant grain
refinement occurs by dynamic recrystallization for high temperature and low strain rate (T>1100
°C,¢é < 0.1s71), and at high strain rate (¢ > 10s~!). Dynamic recrystallization is discontinuous and
takes place from the grain boundaries, leading to a necklace structure. The nucleation mechanism
is most likely to be bulging of grain boundaries. However, recrystallization occurs also by rotation

of annealing twins, thereafter the twin boundaries can bulge as well.
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A new insight of the modeling of dynamic recrystallization taking as a starting point the experimental
data is proposed. By combining the results from the mechanical behavior study and microstructure
observation, the recrystallization at steady-state is thoroughly analyzed and provides the mobility
of grain boundaries. The nucleation criterion for the bulging from grain boundaries is reformulated
to a more general expression suitable for any initial grain size. Nucleation frequency can be deduced
from experimental data at steady-state through modeling, and is extrapolated to any deformation
condition. From this point, a complete analytical model of the dynamic recrystallization is estab-
lished, and provides a fair prediction on the mechanical behavior and the microstructure evolution

during the hot-working process.
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