Alliages base Cobalt en surfusion sous champ magnétique intense : propriétés magnétiques et comportement à la solidification

par Jun Wang

Thèse de doctorat en Physique

Sous la direction de Eric Beaugnon.

Soutenue le 24-09-2012

à Grenoble en cotutelle avec 216 Northwestern Polytechnic Univ , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Consortium de recherches pour l'Emergence des technologies Avancées (équipe de recherche) .

Le président du jury était Jacques Fouletier.

Le jury était composé de Eric Beaugnon, Jacques Noudem, Guo Yan, Xianghong Liu, Jinshan Li.

Les rapporteurs étaient Pingxiang Zhang, Yudong Zhang.


  • Résumé

    Ce travail est dédié à l'étude de l'effet des champs magnétiques sur les propriétés magnétiques et le comportement à la solidification d'alliages à base de Cobalt en surfusion sous champ magnétique intense. Les alliages à base Co sont d'excellents candidats pour obtenir une surfusion en dessous ou proche du point de Curie sous champ intense en raison du faible écart entre ce point de Curie et la température du liquidus. Dans cette étude, un dispositif haute température de surfusion intégrant une mesure magnétique a été construit dans un aimant supraconducteur, et est utilisé pour la mesure in situ de l'aimantation de liquides surfondus et pour l'étude du sur-refroidissement et de l'évolution de la microstructure de solidification en champ intense. Le cobalt liquide en surfusion est fortement magnétique sous champ, et son aimantation est même supérieure à celle du solide au chauffage à la même température. L'aimantation de l'alliage proche eutectique Co-B en surfusion dépend de la température de surchauffe, tandis que le Co-Sn en surfusion est toujours paramagnétique. La surfusion moyenne et l'étendue de la recalescence de différents métaux et alliages est affectée par un champ externe. En champ magnétique uniforme, la surfusion du Cuivre est amplifiée, tandis que la surfusion du Cobalt et de Co-Sn reste identique. Cependant, l'étendue de la recalescence du Cobalt et de Co-Sn est réduite, et l'effet est d'autant plus important pour des teneurs supérieures en Cobalt. Le champ magnétique promeut la précipitation de la phase dendritique a-Co et la formation d'eutectique anormal dans la microstructure des alliages Co-Sn surfondus. Les processus d'évolution de la microstructure sont affectés par le champ magnétique, et dépendent de l'intensité du champ et de la surfusion. Ce travail offre de nouveaux horizons dans l'étude des propriétés magnétiques d'alliages métalliques en forte surfusion et dans l'étude de la solidification hors équilibre sous champ magnétique intense.

  • Titre traduit

    Magnetic Properties and Solidification Behavior of Undercooled Co Based Alloys Under High Magnetic Field


  • Résumé

    This work is devoted to the investigation of the magnetic field effect on the magnetic properties and solidification behavior of undercooled Co based alloys in high magnetic field. Co based alloys are promising candidates to be undercooled below or approaching their Curie point in strong magnetic field due to their small temperature difference between liquid line and Curie point. In this dissertation, a high temperature undercooling facility with magnetization measurement system is built in a superconducting magnet, and is used for in situ measurement of the magnetization of the undercooled melts and study the undercoolability and solidification microstructure evolution in magnetic field. The deep undercooled Co melt is strongly magnetized in magnetic fields, and its magnetization is even larger than the magnetization of heated solid at the same temperature. The magnetization of undercooled Co-B near eutectic alloy is related with overheating temperature while the undercooled Co-Sn melt is always in paramagnetic state. Mean undercooling and recalescence extent of different metals and alloys are affected by external field. In uniform magnetic field, the undercooling of Cu is enhanced while the undercoolings of Co and Co-Sn keep constant. However, the recalescence extents of Co and Co-Sn alloys are reduced, and with the increasing Co content, the effect becomes larger. Magnetic field promotes the precipitation of αCo dendrite phase and the formation of anomalous eutectics in solidified microstructure of undercooled Co-Sn alloys. The microstructure evolution processes are affected by magnetic field depending on the field intensity and undercooling. This work opens a new way to investigate the magnetic properties of deeply undercooled metallic melts and non-equilibrium solidification in strong magnetic fields.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?