Supraconductivité, Onde de Densité de Charge et Phonons Mous dans les dichalcogénures 2H-NbSe2 et 2H-NbS2, et le composé intermétallique Lu5Ir4Si10

par Maxime Leroux

Thèse de doctorat en Physique

Sous la direction de Klaus Hasselbach et de Pierre Rodière.

Soutenue le 29-11-2012

à Grenoble , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Institut Néel (Grenoble) (laboratoire) .

Le président du jury était Manuel Nunez-Regueiro.

Le jury était composé de Pierre Rodière, Alain Pautrat, Pierre Monceau.

Les rapporteurs étaient Sylvain Ravy, Laszlo Forro.


  • Résumé

    Cette thèse présente une étude expérimentale de l'interaction entre la supraconductivité et une onde de densité de charge (ODC). Dans la théorie standard, la température critique d’un matériau supraconducteur est favorisée principalement par deux paramètres : une grande densité d’états au niveau de Fermi (nF), et un fort couplage électron-phonon. Cependant, un fort couplage électron-phonon favorise aussi l’apparition d’une ODC, ce qui réduit nF et rivalise ainsi avec la supraconductivité.Notre démarche a consisté à étudier deux composés où supraconductivité et ODC coexistent, et dans lesquels on peut faire disparaître l’ODC grâce à un paramètre externe : pression ou substitution. Le premier composé, 2H-NbSe2, présente une ODC en dessous de 33 K à pression ambiante. Celle-ci coexiste avec la supraconductivité en dessous de 7 K. Sous pression, l’ODC disparaît au-dessus de 4.6 GPa, sans que la température critique varie notablement. L’ODC disparaît aussi en remplaçant le sélénium par du soufre : 2H-NbS2 est ainsi un supraconducteur sans ODC (Tc = 6 K), et peut donc servir de composé témoin pour une étude comparative. Dans le second composé, Lu5Ir4Si10, une ODC est présente en dessous de 77 K à pression ambiante. Celle-ci disparaît sous pression au-dessus de 2 GPa, tandis que la température critique saute simultanément de 4 à 9 K. Pour étudier ces composés, j’ai utilisé trois techniques expérimentales : la mesure de la dispersion des phonons à basse température (300-2 K) et sous pression (0-16 GPa) par diffusion inélastique des rayons X, la mesure de la dépendance en température de la longueur de pénétration magnétique grâce à un oscillateur à diode tunnel et la mesure des champs critiques via des microsondes Hall.Dans la première partie, je présente la dépendance en température de la dispersion des phonons dans 2H-NbS2. Nous observons la présence d’un phonon mou dont l’énergie reste toujours positive, même extrapolée à température nulle. Ce composé est ainsi à la limite d'une instabilité ODC. De plus, nous montrons qu’il est relativement unique, car seuls les effets anharmoniques empêchent l’amollissement complet des phonons. Je présente ensuite la dépendance en température et en pression de la dispersion des phonons dans 2H-NbSe2. Ces expériences montrent qu’un mode de phonon mou persiste jusqu’à 16 GPa, même quand l'état à température nulle n'est pas l’ODC. La dépendance en température de ce phonon mou est alors similaire à celle de 2H-NbS2. Dans les deux composés, ces phonons mous semblent liés à la présence d'un couplage électron-phonon à la fois fort et anisotrope. Nous suggérons qu’il s’agit d’un élément essentiel pour expliquer leurs propriétés supraconductrices.Dans la seconde partie, je mesure l'anisotropie et la dépendance en température de la longueur de pénétration magnétique dans l’état supraconducteur de 2H-NbS2 et Lu5Ir4Si10. La dépendance en température de la densité superfluide dans 2H-NbS2 confirme la présence d'un gap supraconducteur réduit dont l'amplitude est très proche de celle mesurée dans 2H-NbSe2. Les phonons mous et le gap réduit étant présents dans 2H-NbS2 et 2H-NbSe2, nous prouvons expérimentalement qu'il faut raisonner en termes de renforcement de la supraconductivité par les phonons mous plutôt qu'en termes d’interaction avec l'état fondamental (ODC ou métal). Nous proposons que ce renforcement soit lié à l'anisotropie du couplage électron-phonon.En revanche, cet effet n’est pas général aux composés où supraconductivité et ODC coexistent. Les propriétés supraconductrices de Lu5Ir4Si10 sont en effet bien décrites par le modèle BCS couplage faible. Ceci est peut être lié aux caractéristiques de l’ODC : la présence d’une hystérésis montre que la transition ODC est du premier ordre. D’autre part, les mesures de diffraction X sous pression et à basse température révèlent que cette ODC est multiple : en plus de la périodicité 1/7, nous observons une seconde périodicité de 1/20.

  • Titre traduit

    Superconductivity, Charge Density Wave and Soft Phonons, in the dichalcogenides 2H-NbSe2 and 2H-NbS2, as well as the intermetallic compound Lu5Ir4Si10


  • Résumé

    This thesis presents an experimental study of the interaction between superconductivity and a charge density wave (CDW). In the standard theory, the critical temperature of a superconductor is principally enhanced by two parameters: a large density of states at the Fermi level (nF) and a strong electron-phonon coupling. However, a strong electron-phonon coupling also favors the appearance of a CDW, which reduces nF and therefore competes with superconductivity.Our strategy was to study two compounds in which superconductivity and CDW coexist, and in which the CDW can be suppressed through an external parameter: pressure or substitution. The first compound is 2H-NbSe2, it presents a CDW below 33 K at ambient pressure. This CDW coexists with superconductivity below 7 K. Under pressure, the CDW disappears above 4.6 GPa, meanwhile the critical temperature slowly changes. The CDW also disappears when replacing selenium by sulfur: 2H-NbS2 is a superconductor without CDW (Tc=6 K), it can therefore serve as a “test compound” for a comparative study. The second compound is Lu5Ir4Si10, it presents a CDW below 77 K at ambient pressure. Under pressure, this CDW disappears above 2 GPa, meanwhile the critical temperature abruptly jumps from 4 to 9 K.For this study, I used three experimental techniques: inelastic x-ray scattering at low temperature (300-2 K) and under pressure (0-16 GPa) to measure the dispersion of phonons, a tunnel diode oscillator to measure the temperature dependence of the magnetic penetration depth, and Hall microprobes to measure the first and second critical fields. In the first part, I present the temperature dependence of the phonon dispersion in 2H-NbS2. We observe a soft phonon that always remains at positive energies, even extrapolated to zero temperature. Thus, this compound is on the verge of CDW instability. It is also relatively unique, since we show anharmonicity is the only effect that prevents the complete softening of the phonons.Then I present the temperature and pressure dependence of the phonon dispersion in 2H-NbSe2. These experiments show that a soft phonon persists up to 16 GPa, even if the ground state is not a CDW. The temperature dependence of this soft phonon is then similar to that of 2H-NbS2. In both compounds, these soft modes seem to be related to the strength and anisotropy of the electron-phonon coupling. We suggest this is a fundamental element to explain their superconducting properties.In the second part, I measure the anisotropy and temperature dependence of the magnetic penetration depth in the superconducting state of 2H-NbS2 and Lu5Ir4Si10. The temperature dependence of the superfluid density in 2H-NbS2 confirms the presence of a reduced superconducting gap. Its amplitude is very similar to the one measured in 2H-NbSe2. The soft modes and the reduced gap being present in both 2H-NbSe2 and 2H-NbS2, we prove experimentally that the enhancement of superconductivity is related to the soft modes rather than to the nature of the ground state (CDW or metal). We suggest this enhancement is due the anisotropy of the electron-phonon coupling.However, this effect is not general to all compounds where superconductivity and CDW coexist. The superconducting properties of Lu5Ir4Si10 are indeed well fitted by the BCS model in the weak coupling limit. This may be related to the characteristics of the CDW: the presence of hysteresis shows that the CDW transition is first order. In addition, under pressure and at low temperature, x-ray diffraction measurements indicate that the CDW is multiple: aside from the periodicity of 1/7, we observe a second periodicity of 1/20.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.