Bases génétiques et écologiques de la diversification adaptative chez Escherichia coli

par Jessica Plucain

Thèse de doctorat en Microbiologie - Virologie

Sous la direction de Dominique Schneider.

Soutenue le 11-12-2012

à Grenoble , dans le cadre de École doctorale chimie et science du vivant (Grenoble) , en partenariat avec Laboratoire Adaptation et Pathogénie des Microorganismes (équipe de recherche) .

Le président du jury était Irène Till-Bottraud.

Le jury était composé de Dominique Schneider, Isabelle Meynial-salles, Guillaume Beslon, Thomas Hindre.

Les rapporteurs étaient Olivier Tenaillon, Thomas Lenormand.


  • Résumé

    Les processus de diversification adaptative, qui sont au cœur de la diversité du monde vivant, ont été étudiés grâce à une stratégie d'évolution expérimentale, initiée par le Pr Richard Lenski en 1988. Douze populations, fondées à partir d'un ancêtre commun d'Escherichia coli, sont propagées indépendamment depuis plus de 55 000 générations par transferts journaliers dans un milieu minimum limité en glucose. Un événement de diversification a émergé après 6500 générations d'évolution dans une seule des douze populations, appelée Ara-2, conduisant à deux lignées cellulaires différenciées, appelées S et L, qui continuent de co-exister depuis notamment grâce à des interactions négatives dépendant de leur fréquence. Deux propriétés confèrent à ce polymorphisme une grande originalité et donc un intérêt d'étude important : sa durée car il s'agit du plus long polymorphisme jamais identifié lors d'expériences d'évolution en laboratoire, et son unicité puisqu'il ne s'est produit qu'une seule fois au sein des douze populations initiées à partir d'un ancêtre commun. L'objectif de ce travail a été d'identifier les mécanismes du maintien au long terme des lignées S et L, ainsi que les bases génétiques de leur émergence. Le maintien du polymorphisme est lié à une forte dynamique des relations écologiques entre S et L, l'une des lignées envahissant systématiquement les niches écologiques de l'autre, qui réagit en conséquence pour éviter l'extinction. L'émergence de la lignée S est due à une succession précise de trois mutations, nécessaires et suffisantes pour établir les phénotypes de la lignée S. Les trois mutations affectent toutes des gènes codant des régulateurs globaux de la transcription, dont deux sont impliqués dans la régulation du métabolisme central. Pour l'un d'entre eux, l'allèle évolué altère les propriétés de liaison à l'ADN de la protéine évoluée. Bien que ce polymorphisme soit unique, ces trois gènes sont pourtant les cibles de la sélection naturelle dans la majorité des autres populations de l'expérience d'évolution. Pour deux d'entre eux, seul l'allèle substitué dans la population Ara-2 confère en fait les phénotypes de la lignée S. Ainsi, l'unicité de cet événement de diversification est liée à une succession d'événements mutationnels très précis, qui affectent par ailleurs les réseaux globaux de l'expression des gènes. Ces modifications graduelles ont ainsi conduit à l'émergence du plus long polymorphisme mis en évidence à ce jour dans des expériences d'évolution en laboratoire.

  • Titre traduit

    Genetic and ecological bases of adaptative diversification with Escherichia coli.


  • Résumé

    Adaptive diversification events that underly the diversity of the living world have been studied by an experimental evolution strategy initiated by Richard Lenski in 1988. Twelve populations founded from a common ancestor of Escherichia coli are propagated independently since more than 55,000 generations by daily transfer in a glucose-limited minimal medium. A diversification event emerged after 6500 generations of evolution in only one of the twelve populations, called Ara-2, resulting in two lineages of differentiated cells, called S and L, that coexist ever since owing to negative frequency-dependent interactions. Two properties make this polymorphism original and important: its length as the longest one ever observed in evolution experiments, and its uniqueness as it occurred only once in the twelve populations founded from the same ancestor. The aim of this work was to identify the mechanisms of the long-term coexistence of the S and L lineages, together with the genetic bases of their emergence. The maintenance of the polymorphism is characterized by a strong dynamic of the ecological relationships between S and L, with with L seeming to encroach over time on the niche of S, which reacts to avoid extinction. The emergence of the S lineage is due to the succession of three mutations, necessary and sufficient to establish its phenotypes. All three mutations affect genes encoding global transcriptional regulators, with two of them being involved in the regulation of central metabolism. For one of them, the evolved allele alters the DNA binding ability of the evolved protein. Although this polymorphism is unique, the same three genes are targets of natural selection in most other populations of the evolution experiment. For two of them, only the substituted allele of the Ara-2 population results in the phenotypes of the S lineage. Thus, the uniqueness of this diversification event is linked to a succession of precise mutational events that affect the global regulatory network in the cell. Those gradual modifications lead thus to the emergence of the longest polymorphism ever identified during evolution experiments in the laboratory.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.