Composites multiferroïques pour dispositifs magnéto-électriques intégrés

par Gor Lebedev

Thèse de doctorat en Sciences et technologie industrielles

Sous la direction de Bernard Viala et de Orphée Cugat.

Soutenue le 21-09-2012

à Grenoble , dans le cadre de École doctorale électronique, électrotechnique, automatique, traitement du signal (Grenoble) , en partenariat avec Laboratoire d'Electronique, de Technologie et d'Instrumentation (équipe de recherche) .

Le président du jury était Philippe Pernod.

Le jury était composé de Bernard Viala, Orphée Cugat, Eckhart Quandt, Jerome Delamare, Rostislav Grechishkin.

Les rapporteurs étaient Dafine Ravelosona, Nicolas Vukadinovic.


  • Résumé

    Ce travail de thèse porte sur l'étude de composites magnétoélectriques laminaires dans le but de réaliser des dispositifs innovants intégrés sur silicium tel que l'inductance RF variable. Grâce au couplage mécanique entre des couches adjacentes magnétostrictive ultra douce et piézoélectrique, il est possible d'obtenir un couplage magnétoélectrique indirect qui est supérieur de plusieurs ordres de grandeur à celui des matériaux multiferroïques naturels. Dans un premier temps, nous avons utilisé l'approche phénoménologique basée sur les énergies pour décrire le panorama des effets attendus dans des composites magnétoélectriques laminaires (multicouches). Ensuite, des composites magnétoélectriques macroscopiques à base de substrats piézoélectriques de type MFC et de couches minces de FeCoB ont été réalisés. L'étude du couplage magnétoélectrique en fonction de la composition de FeCoB a permis de déterminer les propriétés clés des matériaux, notamment le rapport λs/Ms, qui sont essentielles pour obtenir un effet magnétoélectrique élevé. Un coefficient magnétoélectrique record de 250 V∙cm‐1Oe‐1 a été obtenu. Par ailleurs, un microscope à effet Kerr a été spécialement développé pour pouvoir observer de manière quasi-instantanée la modification de la structure en domaines sous l'effet de la tension électrique dans ces composites. Pour la première fois, l'observation directe de la rotation de l'axe facile d'aimantation sous commande électrique a été réalisée. La deuxième partie de ce manuscrit est consacrée à la conception, simulation, fabrication et caractérisation d'un dispositif MEMS hybride d'inductance variable intégrée. Ce dispositif exploite l'effet magnétoélectrique indirect entre un élément moteur en PZT (sol gel) et un élément inductif à base de FeCoB. Etant donné le caractère multiphysique hors norme de ce dispositif, un ensemble de tests électriques, mécaniques, optiques et magnétiques a été déployé tout au long de la fabrication. Les résultats concluent à une preuve de concept partiellement fonctionnelle en raison principalement d'une mauvaise gestion des contraintes internes liées à la fabrication. Les pistes d'amélioration aux niveaux du design, des matériaux et des procédés sont identifiées.

  • Titre traduit

    Multiferroic composites for integrated magnetoelectric devices


  • Résumé

    This work is focused on the study of laminated magnetoelectric composites aiming at the realization of novel components integrated on silicon, such as variable inductors. Thanks to the mechanical coupling between two adjacent layers of ultra-soft magnetostrictive and piezoelectric materials it is possible to obtain an indirect magnetoelectric effect which is several orders of magnitude higher than in natural multiferroics. Firstly, we used an energy-based phenomenological approach to describe a range of expected effects in such laminated magnetoelectric composites. Thereupon, macroscopic magnetoelectric composites based on piezoelectric MFC substrates and magnetostrictive thin films of FeCoB were realized. The study of the magnetoelectric coupling vs. FeCoB composition leads to the identification of the key material parameters, such as λs/Ms, that are essential for high magnetoelectric effect. A record magnetoelectric coefficient of 250 V∙cm‐1Oe‐1 is obtained. In parallel, a specific Kerr effect microscope devoted to live observation of the magnetic domains change vs. applied electrical field was developed. For the first time, direct observation of the magnetic easy-axis rotation with voltage in such composites is reported. The second part of this work concerns the design, simulation, fabrication and characterization of a hybrid MEMS variable inductor. This device exploits the indirect magnetoelectric effect between a PZT sol gel driving element and a FeCoB-based inductive element. The unusual multi-physics nature of the device prompted us to deploy a set of electrical, mechanical, optical and magnetic tests throughout the manufacturing. The results conclude with partially functional proof of concept, mainly due to the lack of management of internal stress during the fabrication. Areas for improvement of design, materials and process are identified.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.