Techniques pour l'analyse formelle de systèmes dynamiques non-linéaires

par Romain Testylier

Thèse de doctorat en Informatique

Sous la direction de Thao Dang et de Oded Maler.

Soutenue le 07-12-2012

à Grenoble , dans le cadre de École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble) , en partenariat avec VERIMAG - Systèmes critiques (laboratoire) .


  • Résumé

    Cette thèse porte sur les techniques d'analyse formelle de systèmes hybrides à dynamiques continues non linéaire. Ses contributions portent sur les algorithmes d'atteignabilité et sur les problèmatiques liées à la representation des ensembles atteignables. This thesis deals with formal analysis of hybrid system with non linear continous dynamic. It contributes to the fields of reachability analysis algorithm and the set representation.

  • Titre traduit

    Techniques for the formal analysis of non-linear dynamical systems


  • Résumé

    In this thesis, we presented our contributions to the formal analysis of dynamical systems. We focused on the problem of efficiently computing an accurate approximation of the reachable sets under nonlinear dynamics given by differential equations. Our aim was also to design scalable methods which can handle large systems. The first contribution of this thesis concerns the dynamic hybridization technique for a large class of nonlinear systems. We focused on the hybridization domain construction such that the linear interpolation realized in this domain ensures a desired error between the original system trajectories and those computed with the approximated system. We propose a construction method which tends to maximize the domain volume which reduce the number of creation of new domains during the analysis. The second research direction that we followed concerns a subclass of nonlinear dynamical systems which are the polynomial systems. Our results for the reachability analysis of these systems are based on the Bernstein expansion properties. We approximate an initial reachability computation (which requires solving polynomial optimization problems) with an accurate over-approximation (which requires solving linear optimization problems). The last theoretical contribution concerns the reachability analysis of linear systems with polyhedral input which often result from approximation of nonlinear systems. We proposed a technique to refine


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.