Gestion de flux de données pour l'observation de systèmes

par Loïc Petit

Thèse de doctorat en Informatique

Sous la direction de Claudia Lucia Roncancio et de Cyril Labbé.

Soutenue le 10-12-2012

à Grenoble , dans le cadre de École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble) , en partenariat avec Laboratoire d'Informatique de Grenoble (équipe de recherche) .

Le président du jury était Laurence Duchien.

Le jury était composé de François-gaël Ottogalli.

Les rapporteurs étaient Jean-marc Petit, Chantal Taconet.


  • Résumé

    La popularisation de la technologie a permis d'implanter des dispositifs et des applications de plus en plus développés à la portée d'utilisateurs non experts. Ces systèmes produisent des flux ainsi que des données persistantes dont les schémas et les dynamiques sont hétérogènes. Cette thèse s'intéresse à pouvoir observer les données de ces systèmes pour aider à les comprendre et à les diagnostiquer. Nous proposons tout d'abord un modèle algébrique Astral capable de traiter sans ambiguïtés sémantiques des données provenant de flux ou relations. Le moteur d'exécution Astronef a été développé sur l'architecture à composants orientés services pour permettre une grande adaptabilité. Il est doté d'un constructeur de requête permettant de choisir un plan d'exécution efficace. Son extension Asteroid permet de s'interfacer avec un SGBD pour gérer des données persistantes de manière intégrée. Nos contributions sont confrontées à la pratique par la mise en œuvre d'un système d'observation du réseau domestique ainsi que par l'étude des performances. Enfin, nous nous sommes intéressés à la mise en place de la personnalisation des résultats dans notre système par l'introduction d'un modèle de préférences top-k.

  • Titre traduit

    Data stream management for systems monitoring


  • Résumé

    Due to the popularization of technology, non-expert people can now use more and more advanced devices and applications. Such systems produce data streams as well as persistent data with heterogeneous schemas and dynamics. This thesis is focused on monitoring data coming from those systems to help users to understand and to perform diagnosis on them. We propose an algebraic model Astral able to treat data coming from streams or relations without semantic ambiguity. The engine Astronef has been developed on top of a service-oriented component framework to enable a large adaptability. It embeds a query builder which can select a composition of components to provide an efficient query plan. Its extension Asteroid interfaces with a DBMS in order to manage persistent data in an integrated manner. Our contributions have been confronted to practice with the deployment of a monitoring system for the digital home and with a performance study. Finally, we extend our approach with an operator to personalize the results by introducing a top-k preference model.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. Documentation électronique.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Documentation électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.