Codes de Gray généralisés à l'énumération des objets d'une structure combinatoire sous contrainte

par Aline Castro Trejo

Thèse de doctorat en Mathématiques

Sous la direction de Michel Mollard.

Soutenue le 15-10-2012

à Grenoble , dans le cadre de École doctorale mathématiques, sciences et technologies de l'information, informatique (Grenoble) , en partenariat avec Institut Fourier (équipe de recherche) .

Le président du jury était Sylvain Gravier.

Le jury était composé de Victor Chepoi, Mehdi Mhalla.

Les rapporteurs étaient Sandi Klavzar, Vincent Vajnovszki.


  • Résumé

    Le cube de Fibonacci est un sous-graphe isométrique de l'hyper- cube ayant un nombre de Fibonacci de sommets. Le cube de Fibonacci a été initialement introduit par W-J. Hsu comme un réseau d'interconnexion et, comme l'hypercube, il a des propriétés topologiques très attractives, mais avec une croissance plus modérée. Parmi ces propriétés, nous discutons de l'hamiltonicité dans le cube de Fibonacci et aussi dans le cube de Lucas qui est obtenu à partir du cube de Fibonacci en supprimant toutes les chaînes qui commencent et nissent avec 1. Nous trouvons également le nombre de som- mets des cubes de Fibonacci et Lucas ayant une certaine excentricité. En n, nous présentons une étude de deux cubes du point de vue de la domination et du 2-packing.

  • Titre traduit

    Generalised Gray codes for the enumeration of the objects of a combinatorial structure under certain restrictions.


  • Résumé

    The Fibonacci cube is an isometric subgraph of the hypercube having a Fibonacci number of vertices. The Fibonacci cube was originally proposed by W-J. Hsu as an interconnection network and like the hypercube it has very attractive topological properties but with a more moderated growth. Among these properties, we discuss the hamiltonicity in the Fibonacci cube and also in the Lucas cube which is obtained by removing all the strings that begin and end with 1 from the Fibonacci cube. We give also the eccentricity sequences of the Fibonacci and the Lucas cubes. Finally, we present a study of both cubes from the domination and the 2-packing points of view.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.