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Abstract
This work presents the constitutive modeling of a geomaterial consisting of a deformable
and saturated porous matrix including a periodic distribution of evolving �uid-�lled cav-
ities. The homogenization method based on two-scale asymptotic developments is used
in order to deduce a model able to describe the macroscopic hydro-mechanical coupling.
By taking into account the cavity growth and without any phenomenological assumption,
it is proposed a mesoscopic energy analysis coupled with the homogenization scheme which
provides a damage evolution law. In this way, a direct link between the meso-structural
fracture phenomena and the corresponding macroscopic damage is established.
Lastly, a numerical study of the local macroscopic hydro-mechanical damage behaviour
is presented.
Keywords: homogenization; meso-fracture; damage; porous media; hydro-mechanical
coupling.

Resumé
Le présent travail montre la modélisation constitutive d'un géomatériau composé d'une
matrice poreuse saturée et déformable contenante une distribution périodique de �ssures
évolutives remplies de �uide. La méthode d'homogénéisation des développements asymp-
totiques est utilisée a�n de déduire un modèle capable de décrire le couplage hydro-
mécanique macroscopique.
Prenant en considération l'évolution de �ssures et sans faire des hypothèses
phénoménologiques, un'analyse énergétique mésoscopique couplé avec un schéma
d'homogénéisation a été développée et elle fournit une loi d'évolution d'endommagement
macroscopique. De cette façon, un lien direct entre les phénomènes de rupture
de la structure mésoscopique et l'endommagement macroscopique correspondant est
établie. Finalement, on présente une étude numérique du comportement macroscopique
d'endommagement hydro-mécanique.
Mots clés: homogénéisation; méso-�ssuration; endommagement; milieux poreux; cou-
plage hydro-mécanique.

Sommario
In questa tesi si presenta la modellazione costitutiva di un geomateriale composto da
una matrice porosa satura, deformabile e contenente una distribuzione periodica di cavità
riempite da �uido che si propagano. Il metodo di omogeneizzazione basato sugli sviluppi
asintotici a doppia scala viene utilizzato con l'obiettivo di dedurre un modello capace di
descrivere l'accoppiamento idro-meccanico macroscopico.
Prendendo in considerazione la propagazione delle cavità e senza nessuna ipotesi
fenomenologica, si propone un'analisi energetica mesoscopica accoppiata ad uno schema
di omogeneizzazione che fornisce una legge di evoluzione del danno.
In questo modo, una relazione diretta tra i fenomeni di frattura meso-strutturali ed il
corrispondente danno macroscopico viene stabilita. In�ne, uno studio numerico del com-
portamento macroscopico locale di danno idro-meccanico viene presentato.
Parole chiave: omogeneizzazione; meso-frattura; danno; mezzi porosi; accoppiamento
idro-meccanico.
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Notation

In this dissertation, the analytical developments follow the notation employed by Caillerie
(2011) and described below.
Let E be a three-dimensional Euclidean space, and let V be the associated vector space.
Let L(V) denote the set of all the linear trasformations of V into itself, that is, the space
of all second-order tensors.
The inner product between two elements a,b ∈ V is denoted by a.b.
Let A@a = Aijaj be the image of the vector a by means of the linear transformation A.
The transpose of A ∈ L(V) is a linear transformation as well and it is denoted by At; its
de�nition ∀a,b ∈ V reads:

(A@a).b = (At
@b).a (Aijaj)bi = (Ajibi)aj

The composition of two elements A,B ∈ L(V) is denoted by A ◦B = AikBkj and de�ned
as follows ∀a ∈ V :

(A ◦B)@a = A@(B@a) (AikBkj)aj = Aik(Bkjaj)

The symmetric and anti-symmetric parts of A ∈ L(V) are denoted by AS and AA re-
spectively; their de�nitions read:

AS :=
1

2
(A+At), AA :=

1

2
(A−At) ASij :=

1

2
(Aij+Aji), AAij :=

1

2
(Aij−Aji)

A linear transformation A is symmetric if A = At, that is if AA = 0. On the contrary,
A is anti-symmetric if A = −At, that is if AS = 0.
Let L(V) be endowed with a Euclidean structure by de�ning the inner product A : B as
follows:

A : B := tr(A ◦Bt) AijBij := tr(AikBkj) = AikBkjδij

where the trace of a linear transformation A is denoted by trA ans its de�nition reads:

tr(A) := A : I = Aijδij

with I denoting the identity of V , that is, I satis�es the equality I@a = a.
It is easily proved that the inner product between a symmetric linear transformation A
and an anti-symmetric one B is equal to zero: A : B = 0

xv
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The tensor product of two elements a,b ∈ V is an element of L(V) denoted by a⊗b and
de�ned as follows ∀x ∈ V :

(a⊗ b)@x = (b.x)a (a⊗ b)ijxj = (bjxj)ai = (aibj)xj



General introduction

Objectives

In this work, the macroscopic behaviour of a geomaterial consisting of a saturated and
deformable porous matrix with a (quasi-)periodic distribution of �uid-�lled cavities is in-
vestigated.

The �rst objective is to deduce, by means of a upscaling technique, the description of a
macroscopic continuous medium which is equivalent to the �nely heterogenous medium of
the smaller scale. It is worth precising that the chosen upscaling technique is the method
of homogenization based on the double-scale asymptotic developments (Bensoussan, Lions
and Papanicolaou 1978; Sanchez-Palencia 1974, 1980), and that the observation scales of
interest are three (�g. 1): the microscopic or pore scale, the mesoscopic or cavity scale
and the macroscopic scale. Despite that, the upscaling is performed only between the
mesoscopic scale and the macroscopic one: in fact, the porous matrix is already consid-
ered as a continuum by means of the classic poroelastic model proposed by Biot (1941).
The interest in the microscopic scale is due, �rstly, to the choice to make some minor
modi�cations to the mesoscopic description of the porous matrix provided in the work by
Auriault and Sanchez-Palencia (1977) where the Biot's model is reobtained by means of
asymptotic homogenization, and then also to understand the physical meaning of some
energy terms appearing in the energy balance at larger scales.

Figure 1: Macroscopic, mesoscopic and microscopic scales of observation and corresponding

periodic distributions of �uid-�lled mesoscopic cavities and microscopic pores.
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2 General introduction

The second objective is to enrich the macroscopic description, previously obtained, by
taking into account the damage evolution, that is, by considering that the mesoscopic
cavities may propagate. In order to model the hydro-mechanical damage, a mesoscopic
energy analysis coupled with the homogenization scheme is performed and a damage evo-
lution law is obtained. The main advantage of this approach is that the modeling does
not require any phenomenological assumption.

The �nal ojective is the understanding of how, according to the damage evolution law
previously deduced, the �uid pressure in�uences the damage evolution. With such an aim,
a numerical time-integration analysis of the local macroscopic hydro-mechanical damage
behaviour is performed.

Upscaling Techniques

In the modeling of heterogeneous media, a description which takes into account every
single heterogeneity would yield to intractable boundary value problems and to extremely
expensive computations. Then, it is necessary to deduce a overall behaviour which is valid
at a very large scale with respect to the heterogeneity scale. There are mainly two ways
of deriving this macroscopic description:

i. The phenomenological approach which is a directly macroscopic technique and
it is often associated with experiments. For istance, the Biot's constitutive
equations have been derived in this way (Biot 1941).

ii. The upscaling techniques which are continuous approaches and require the
description at the heterogeneity scale only over a representative elementary
volume (REV).

In this thesis work, the second approach is adopted.
Therefore, the de�nition and the existence of the REV are issues which deserve a special
attention. For what concerns the choice of the REV size, even if it is a subject of various
discussions (see for istance Dormieux, Kondo and Ulm (2006b)), it can be said that the
REV is a volume subdomain that needs to be small with respect to the macroscopic
structure, but it also needs to be able to consider enough heterogeneities. Then, it is
fundamental to ensure its existence by imposing the condition of separation between the
length scales which characterize the heterogeneities. With referring to the object studied
in this work (�g. 1), the separation condition reads:

L >> ε >> e (1)

where L is the characteristic dimension of the whole body, while e and ε are the char-
acteristic lengths of the microscopic and mesoscopic scale respectively. And it is worth
remarking that, even if the form of this condition intuitively calls up only a geometrical
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meaning, this fundamental condition has to be satis�ed also in terms of the physical pro-
cess as explained in Auriault (2002).

Di�erent upscaling techniques are available for both random and periodic heterogeneous
media, and most analytical or semi-analytical homogenization methods are based on the
computation of the homogenized (e�ective) coe�cients using various methods shortly
summarized below:

• based on averaging theory. This is the simplest homogenization method and con-
sists of the computation of global properties of a heterogeneous material using the
averaging technique on each composant weighted by its volume. This method is
used and/or enriched by di�erent researchers, such as Eshelby (1957) or Mori and
Tanaka (1973).

• �self-consistent� method developed by Hill (1965) or Christensen and Lo (1979). In
this case, global properties of the material are obtained by analytical solving of a
boundary value problem on a micro-structure composed of a �rst phase of consti-
tuting the matrix and a second phase of a spherical or ellipsoidal inclusion. This
homogenization technique works very well in the case of linear problems, but much
more di�cult in non-linear cases, even if interesting results were obtained by Guery
(2007) using an elasto-plastic damage model on Callovo-Oxfordian argilites, or, in
more general works like Deudé, Dormieux, Kondo and Maghous (2002); Dormieux
and Kondo (2005); Dormieux, Kondo and Ulm (2006b);

• asymptotic developments based method of displacement and stress �elds with re-
spect to a natural material length de�ned as the ratio between heterogeneities length
and macroscopic characteristic length (Bakhvalov and Panasenko 1989; Bensoussan,
Lions and Papanicolaou 1978; Sanchez-Palencia 1980).

In this thesis work, the homogenization method based on double-scale asymptotic expan-
sion is used for upscaling the mesoscopic structure.

Besides analytical homogenization methods, one can �nd also numerical improvements
(Geers, Kouznetsova and Brekelmans 2001; Guedes and Kikuchi 1990; S. Lee and Moor-
thy 1995; Terada and Kikuchi 1995). The weak point of a purely numerical homogeniza-
tion technique is the computational time. Indeed, in this process, for each time increment,
in each macroscopic integration (Gauss) point, a full computation on the micro-structure
is necessary.

Dissertation overview

An outline of this thesis is as follows.



4 General introduction

Chapter 1: Mesoscopic and macroscopic porosity. Both in the framework of large
and small deformations, and with the aim of determining the expressions of the porosity
variation induced by the motion of the solid-skeleton, both the porosities at the di�erent
observation scales and in Lagrangian and Eulerian descriptions are studied.

Chapter 2: From the mesoscopic scale to the macroscopic scale. In this chapter,
the starting scale of observation is the mesoscopic one. It means that the heterogeneous
microscopic structure, composed by a solid-skeleton within a network of �uid-saturated
pores, is here replaced by a porous and deformable saturated solid.
Notwithstanding that, because of the set of mesoscopic �uid-�lled cavities included in
the porous matrix, the medium here investigated is still heterogeneous. Then, a further
equivalent and macroscopic continuum is required in order to have governing equations
and hydro-mechanical properties de�ned in every single point of the whole body.
The targeted macroscopic description is searched by applying the method of the asymp-
totic homogenization to the mesoscopic description. The main developments of the ana-
lytical calculus which leads to the homogenized equations and also provides the e�ective
poroelastic coe�cients are presented.
Lastly, in order to evaluate numerically the homogenized coe�cients, the solutions of some
boundary value problems de�ned in the periodic cell are required and they are obtained
by means of the FEM software Comsol Multiphysics. Then, the numerical values of the
homogenized coe�cients is obtained by evaluting the integrals appearing in their de�ni-
tions. Even if the problems are quasi-static, this procedure is repeated for several values
of the cavity length and, by polynomial intepolation of the sampling points, continuous
functions are obtained.

Chapter 3: Energy analysis and damage evolution law. The mesoscopic energy
analysis is the tool which provides the macroscopic damage evolution law. Actually, both
a global and a cell energy analysis are performed at the mesoscopic scale. From the �rst
one the energy release rate is identi�ed. Moreover, a cell energy analysis is developed also
at the microscopic scale in order to interpret properly some energetic terms at the larger
scales.

Chapter 4: Numerical study of the macroscopic local behaviour. The hydro-
mechanical damage model presented in the previous chapters is here exploited from a
numerical point of view in order to investigate his constitutive behaviour in a single
Gauss point. The objective is to understand how the �uid pressure in�uences the damage
evolution.

Lastly, conclusions and perspectives are reported in the �nal chapter.



Chapter 1

From mesoscopic to macroscopic

porosity

1.1 Introduction

In this chapter, both in the framework of large and small deformations, and with the aim
of determining the expressions of the porosity variations induced by the motion of the
solid-skeleton, the porosities at the two observation scales and their rates are studied.
Furthermore, following Coussy (2004), both the Eulerian and the Lagrangian porosities
are de�ned and then investigated in order to determine their mutual relations and their
induced variation rates.
All the relations here presented are useful in the following chapters.

Figure 1.1: Macroscopic body, mesoscopic and microscopic REV. The double-scale hetero-

geneities are empty and randomly distributed. The condition of separation of scales is satis�ed:

L >> lε >> le.
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6 Chapter 1. From mesoscopic to macroscopic porosity

1.2 Assumptions and nomenclature

In this chapter, the attention is focused on the geometry, then the whole body Ω, that is
the porous solid with the cavites, is considered to be dry: in fact, both the microscopic
pores and the mesoscopic cavities are assumed to be empty (Fig. 1.1). In terms of
nomenclature, it implies that the superscripts p and c, standing for empty pores and
empty cavities respectively, are here used. On the contrary, in all the following chapters,
it is assumed that the pores are �uid-saturated and the cavities are �uid-�lled; then, the
superscripts pf and cf will replace the corresponding ones.
Moreover, let the subscript r denote the reference con�guration; while the subscript t
denotes the current con�guration but, in order to simplify the notation, it will be omitted
as much as possible.
Lastly, in this chapter, the distributions of the two-scales heterogeneities are assumed to
be random (Fig. 1.1). On the contrary, the relations here presented hold for both random
and periodic heterogeneous media.

1.3 Mesoscopic porosity

1.3.1 De�nitions

At the microscopic observation level and in the reference con�guration, the porous domain
Ωpm
r is the union of two disjoint subdomains: the solid phase subdomain, denoted by Ωs

r,
and the set of empty pores, denoted by Ωp

r, that is, Ωpm
r = Ωs

r ∪ Ωp
r and ∅ = Ωs

r ∩ Ωp
r.

The microscopic displacement �eld us of the solid phase is prolonged by continuity to the
empty pores, that is, this �eld is assumed to be continuous at the interface between the
solid phase and the void.
Then, being us de�ned in Ωpm

r , for the corresponding deformation function ϕs it reads:

X ∈ Ωpm
r → x = ϕs (X, t) = X + us(X, t) (1.1)

Figure 1.2: Mesoscopic structure of the body and microscopic REV.
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where X and x are the material particle positions in the reference and in the current
con�guration respectively.
Let Vpmr denote the representative elementary volume (REV) of the porous matrix around
the point X ∈ Ωpm

r , that is, the microscopic REV. It is a special subset of the porous
matrix domain and his size le is such that only the heterogeneities of the microscopic scale
are visible (Fig. 1.2):

lp < le << lc (1.2)

with lp and lc being the characteristic dimensions of the microscopic pores and of the
mesoscopic cavities respectively. Let the disjoint subdomains Vsr and Vpr be the solid
phase domain and the empty pores domain included in the microscopic REV respectively,
that is Vpmr = Vsr ∪Vpr and ∅ = Vsr ∩Vpr . Then, the corresponding quantities in the current
con�guration read:

Vs :=ϕs (Vsr , t) (1.3a)

Vp :=ϕs (Vpr , t) (1.3b)

Vpm :=ϕs (Vpmr , t) (1.3c)

Moreover, in the following the measures of the volume subdomains Vpm, Vs and Vp will
be denoted by V pm, V s and V p respectively.
Following Coussy (2004), let φ denote the Lagrangian mesoscopic porosity which, at the
time t and around the material point x ∈ Vpm, is de�ned as the ratio between the current
volume of the pores V p and the initial total volume V pm

r :

φ :=
V p

V pm
r

=
V pm − V s

V pm
r

(1.4)

Let η denote the Eulerian mesoscopic porosity which, at the time t and around the material
point x ∈ Vpm, is de�ned as the ratio between the current volume of the pores V p and
the current total volume V pm:

η :=
V p

V pm
= 1− V s

V pm
(1.5)

Let Fs and Js be the gradient and the Jacobian of the deformation function ϕs respec-
tively; their de�nitions read:

Fs := ∇Xϕ
s Js := det Fs (1.6)

The measures V α are evaluated through simple integrals:

V α =

∫
Vα

dvx with α = pm, s (1.7)

which, by using the change of variables X↔ x = ϕs (X, t), become:

V α =

∫
Vαr
Js dVX with α = pm, s (1.8)
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Then, the relation (1.5) is rewritten as follows:

η = 1−

∫
Vsr
Js dVX∫

Vpmr Js dVX
(1.9)

1.3.2 Mesoscopic porosity rate

From the de�nition (1.5) of the Eulerian mesoscopic porosity, it follows also that:

V s = (1− η)V pm (1.10)

the material time derivative of which reads:

V̇ s = (1− η) V̇ pm − η̇ V pm (1.11)

or equivalently:

η̇ = (1− η)

(
V̇ pm

V pm
− V̇ s

V s

)
(1.12)

By using the relation (1.8) and the Taylor's development (C.16), the time derivative of
V α with respect to the motion of the solid phase reads:

V̇ α =

∫
Vαr

tr
(
Ḟs ◦ (Fs)−1

)
Js dVX with α = pm, s (1.13)

where the symbol �◦� denotes the composition of linear transformations, as shown in the
initial pages dedicated to the notation. So, the Eulerian mesoscopic porosity rate η̇ is
rewritten as follows:

η̇ = (1− η)

(
1

V pm

∫
Vpmr

tr
(
Ḟs ◦ (Fs)−1

)
Js dVX −

1

V s

∫
Vsr

tr
(
Ḟs ◦ (Fs)−1

)
Js dVX

)
(1.14)

1.3.3 Small transformation framework

Being us the displacement �eld of the solid phase extended by continuity to the micro-
scopic pores, it reads:

us (X, t) = ϕs (X, t)−X (1.15)

Then, the gradient Fs of the deformation function ϕs reads:

Fs = I +∇Xus (1.16)

In the framework of the small transformations approximation, the inverse of the gradient
of the deformation function is expanded by using the Taylor's development (C.19) and it
reads:
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(Fs)−1 = I−∇Xus + · · · (1.17)

In the same way, by using the Taylor's development (C.11), the Jacobian Js of the trans-
formation reads:

Js = det (I +∇Xus) = 1 + tr (∇Xus) + · · · = 1 + divX us + · · · (1.18)

1.3.3.1 Expansion of the mesoscopic porosity

By using the expansion (1.18) of Js, the expression (1.8) of V α is expanded as follows:

V α =

∫
Vαr
Js dVX =

∫
Vαr

(1 + divXus + · · · ) dVX with α = pm, s (1.19)

which, by regrouping, becomes:

V α = V α
r

(
1 +

1

V α
r

∫
Vαr

divXus dVX + · · ·
)

with α = pm, s (1.20)

By using the expansions above, de�nition(1.5) of the Eulerian mesoscopic porosity η is
expanded as well by means of the Taylor's development (C.6) and it reads:

η = 1− V s
r

V pm
r

(
1 +

1

V s
r

∫
Vsr

divXus dVX + · · ·
)(

1− 1

V pm
r

∫
Vpmr

divXus dVX + · · ·
)

= 1− V s
r

V pm
r

(
1 +

1

V s
r

∫
Vsr

divXus dVX −
1

V pm
r

∫
Vpmr

divXus dVX + · · ·
)

(1.21)

or it can be rewritten in a more compact form as follows:

η = ηr + ηu (1.22)

where ηr denotes the Eulerian mesoscopic porosity in the reference con�guration and ηu
denotes the variation of the Eulerian mesoscopic porosity induced by the motion of the
solid-skeleton:

ηr =
V p
r

V pm
r

= 1− V s
r

V pm
r

(1.23a)

ηu =(1− ηr)
(

1

V pm
r

∫
Vpmr

divXus dVX −
1

V s
r

∫
Vsr

divXus dVX

)
(1.23b)

Therefore, in this approximated framework, the mesoscopic porosity η of the deformed
porous matrix is described as the sum of two terms written in the reference con�gura-
tion. But, whereas ηr is a data of the problem, ηu is an unknown which depends on the
displacements. It is worth remarking that the smallness of the displacement gradients
implies the smallness of ηu with respect to ηr.
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1.3.3.2 Expansion of the mesoscopic porosity rate

From the de�nitions (1.15) of the displacement �eld us and (1.6) of the gradient of the
deformation function Fs, it follows that:

u̇s
(
X, t

)
= ϕ̇s

(
X, t

)
=⇒ Ḟs = ∇Xu̇s (1.24)

Given the expansions (1.17) of Fs−1 and (1.18) of the Jacobian of the deformation function
Js, it reads:

tr
(
Ḟs◦Fs−1

)
Js = tr

(
∇Xu̇s◦(I−∇Xus + · · · )

)
(1 + divXus + · · · ) = divX u̇s+· · · (1.25)

Therefore, the expansion (1.14) of the Eulerian mesoscopic porosity rate η̇ becomes:

η̇ = (1− ηr)
(

1

V pm
r

∫
Vpmr

divXu̇s dVX −
1

V s
r

∫
Vsr

divX u̇s dVX + · · ·
)

(1.26)

which corresponds exactly to the relation (A.19) provided in Callari and Abati (2011) and
which could have been obtained directly by deriving the expansion (1.22) of the Eulerian
mesoscopic porosity η.

Remark 1.3.1. In this approximated framework, given the expressions (1.23, 1.22) about
the Eulerian mesoscopic porosity, it is apparent that η is of order zero in terms of the
displacement us. While, the expression (1.26) makes clear that η̇ is of order one.
In reason of the assumed smallness of us, the material time derivative can be approximated
by the partial time derivative:

η̇ = ∂tη +∇xη.u̇
s = ∂tη + · · · (1.27)

Moreover, given the decomposition (1.22) of the Eulerian mesoscopic porosity η and being
ηr a constant, it follows that:

η̇ = η̇u (1.28)

1.4 Macroscopic porosity

1.4.1 De�nitions and symbols

At the mesoscopic observation level and in the reference con�guration, the whole body
Ωr is the union of two disjoint subdomains: the porous matrix subdomain Ωpm

r and the
set of empty cavities Ωc

r, that is, Ωr = Ωpm
r ∪ Ωc

r and ∅ = Ωpm
r ∩ Ωc

r.
The mesoscopic displacement �eld upm of the porous matrix is prolonged by continuity to
the empty cavities, that is, this �eld is assumed to be continuous at the interface between
the porous matrix and the void.
Then, being upm de�ned in Ωr, for the corresponding deformation function ϕpm it reads:
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X ∈ Ωr → x = ϕpm (X, t) = X + upm(X, t) (1.29)

where X and x are the material particle positions in the reference and in the current
con�guration respectively.
Let Br denote the REV of the whole body around the point X ∈ Ωr, that is, the mesoscopic
REV. It is a special subset of the porous solid with the cavities and his size lε is such that
only the heterogeneities of the mesoscopic scale are visible (Fig. 1.3), that is:

lc < lε << L (1.30)

with lc and L being the characteristic dimensions of the mesoscopic cavities and of the
whole body respectively. Let the disjoint subdomains Bpmr and Bcr be the porous matrix
domain and the empty cavities domain included in the mesoscopic REV respectively, that
is Br = Bpmr ∪ Bcr and ∅ = Bpmr ∩ Bcr. Then, the corresponding quantities in the current
con�guration read:

Bpm :=ϕpm (Bpmr , t) (1.31a)

Bc :=ϕpm (Bcr, t) (1.31b)

B :=ϕpm (Br, t) (1.31c)

In the following, the measure of the subdomains B and Bc will be denoted, respectively,
by V and V c. While, in order to distinguish with the corresponding quantities of the
microscopic REV, the measure of Bpm is denoted by V pm

B . In the same way, the measure
of the set of all the microscopic pores contained in Bpm is denoted by V p

B and reads:

V p
B =

∫
Bpm

η dvx (1.32)

where η is the Eulerian mesoscopic porosity already de�ned in (1.5).
Let Φ denote the Lagrangian macroscopic porosity which, at the time t and around the
material point x ∈ Bpm, is de�ned as the ratio between the current volume of all the

Figure 1.3: Macroscopic body and mesoscopic REV.
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multi-scale voids, microscopic pores and mesoscopic cavities, and the initial total volume,
Vr:

Φ :=
V c + V p

B
Vr

(1.33)

Let H denote the Eulerian macroscopic porosity which, at the time t and around the
material point x ∈ Bpm, is de�ned as the ratio between the current volume of all the
multi-scale voids, and the current total volume V :

H :=
V c + V p

B
V

(1.34)

Let Fpm and Jpm be the gradient and the Jacobian of the deformation function ϕ of the
porous matrix respectively; their de�nitions read:

Fpm := ∇Xϕ
pm Jpm := det Fpm =

V pm

V pm
r

(1.35)

By using the change of variables X ↔ x = ϕpm (X, t) in the (1.32), the relation (1.34)
becomes:

H =
V c +

∫
Bpmr η JpmdvX

V
(1.36)

Remark 1.4.1. Given the de�nition of the Jacobian Jpm as ratio of the measures of
volume subdomains of the porous matrix (1.35b), the following relation between the meso-
scopic porosities η and φ, the Eulerian and the Lagrangian one respectively, follows:

φ = Jpm η (1.37)

1.4.2 Small transformation framework

Being upm the displacement �eld of the porous matrix extended by continuity to the
mesoscopic cavities, it reads:

upm (X, t) = ϕpm (X, t)−X (1.38)

Then, the gradient Fpm of the deformation function ϕ reads:

Fpm = I +∇Xupm (1.39)

In the framework of the small transformations approximation, the inverse of the deforma-
tion gradient is expanded by using the Taylor's development (C.19) and it reads:

(Fpm)−1 = I−∇Xupm + · · · (1.40)

In the same way, by using the Taylor's development (C.11), the Jacobian Jpm of the
transformation reads:
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Jpm = det (I +∇Xupm) = 1 + tr (∇Xupm) + · · · = 1 + divX upm + · · · (1.41)

Remark 1.4.2. Given expansion (1.41) of the Jacobian Jpm and relation (1.22) of the
Eulerian mesoscopic porosity η, in this framework, the relation (1.37) between the meso-
scopic porosities is expanded as well and it reads:

φ = Jpm η = (1 + divXupm + · · · )(ηr + ηu) = ηr + ηu + ηrdivXupm + · · · (1.42)

then, the Lagrangian mesoscopic porosity φ reads:

φ = φr + φu (1.43)

where φr denotes the Lagrangian mesoscopic porosity in the reference con�guration and
φu denotes the variation of the Lagrangian mesoscopic porosity induced by the motion of
the solid-skeleton:

φr =ηr (1.44a)

φu =ηu + ηrdivXupm (1.44b)

Given the relations (1.27, 1.28) about η̇, and the relations (1.43, 1.44b) about φ and φu,
for the Lagrangian mesoscopic porosity rate φ̇ the following relations hold:

φ̇ =∂tφ+ · · · (1.45a)

φ̇ =φ̇u (1.45b)

φ̇u =η̇u + ηrdivXu̇pm (1.45c)

1.4.2.1 Expansion of the macroscopic porosity

By using the expansion (1.41) of Jpm, the volume V c is expanded as follows:

V c =

∫
Bcr
Jpm dVX =

∫
Bcr

(1 + divXupm + · · · ) dVX (1.46)

and, in the same way, the volume V is expanded as well. While, given the expression
(1.42), the expansion of the expression (1.32) of the volume V p

B reads:

V p
B =

∫
Bpmr

(
ηu + ηr

(
1 + divXupm

))
dVX + · · · (1.47)

Therefore, the relation (1.36) is expanded as follows:

H =
V c
r +

∫
Bcr

divXupm dVX +
∫
Bpmr

(
ηu + ηr

(
1 + divXupm

))
dVX + · · ·

Vr

(
1 + 1

Vr

∫
Br divXupm dVX + · · ·

) (1.48)
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which is expanded as well by using the Taylor's development (C.6) and it becomes:

H =

(
V c
r +

∫
Bcr

divXupm dVX + · · ·
Vr

)(
1− 1

Vr

∫
Br

divXupm dVX+· · ·
)

+

(∫
Bpmr

(
ηu + ηr

(
1 + divXupm

))
dVX + · · ·

Vr

)(
1− 1

Vr

∫
Br

divXupm dVX + · · ·
)

(1.49)

that is also:

H =

(
V c
r +

∫
Bpmr ηr dVX

Vr

)(
1− 1

Vr

∫
Br

divXupm dVX + · · ·
)

+

∫
Bcr

divXupm dVX +
∫
Bpmr

(
ηu + ηrdivXupm dVX

)
Vr

(1.50)

or in a more compact form:

H = Hr +Hu (1.51)

where Hr is the Eulerian macroscopic porosity in the reference con�guration and Hu is
the variation of the Eulerian macroscopic porosity induced by the motion of the porous
matrix:

Hr =
V c
r + V p

B r
Vr

=
V c
r + ηrV

pm
B r

Vr
(1.52a)

Hu =
−Hr

∫
Br divXupm dVX +

∫
Bcr

divXupm dVX +
∫
Bpmr

(
ηu + ηrdivXupm

)
dVX

Vr
+ · · ·

(1.52b)

Moreover, given that Br = Bpmr ∪Bcr, the variation Hu of the Eulerian macroscopic porosity
reads also:

Hu =

∫
Bpmr ηu dVX + (ηr − 1)

∫
Bpmr divXupm dVX + (1−Hr)

∫
Br divXupm dVX

Vr
+ · · · (1.53)

or:

Hu =

∫
Bpmr ηu dVX + (ηr −Hr)

∫
Bpmr divXupm dVX + (1−Hr)

∫
Bcr

divXupm dVX

Vr
+ · · ·
(1.54)
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Remark 1.4.3. By analogy with the relations (1.44, 1.45) about the Lagrangian meso-
scopic porosity, the corresponding relations at the macroscopic scale can be deduced by
means of the concept of macroscopic displacement �eld upm(0) which is properly explained
in the chapter 2 (section 2.3.4.2). Actually, in order to write the relation between the
macroscopic Eulerian and Lagrangian porosities H and Φ, it is necessary to de�ne the
deformation function ϕ(0) of the homogenized body as follows:

X ∈ Ωr → x = ϕ(0) (X, t) = X + upm(0)(X, t) (1.55)

and its Jacobian J (0), that is the macroscopic Jacobian:

J (0) := det F(0) = det∇Xϕ
(0) =

V

Vr
(1.56)

where V denotes a small subset of the whole body Ω in the current con�guration. So, the
searched relation between the Lagrangian and the Eulerian macroscopic porosities reads:

Φ = J (0)H (1.57)

Moreover, in the small transformation framework, its expansion reads:

Φ = J (0)H = (1 + divXupm(0) + · · · )(Hr +Hu) = Hu +Hr(1 + divXupm(0)) + · · · (1.58)

So, the Lagrangian macroscopic porosity reads:

Φ = Φr + Φu (1.59)

where Φr is the Lagrangian mesoscopic porosity in the reference con�guration and Φu is
the variation of the Lagrangian mesoscopic porosity induced by the motion of the porous
matrix:

Φr =Hr (1.60a)

Φu =Hu +HrdivXupm(0) (1.60b)

And the time derivative of the latter one yields:

Φ̇u = Ḣu +HrdivXu̇pm(0) (1.61)

Remark 1.4.4. With referring to the asymptotic developments (2.51a) that are introduced
in the section 2.3, it is worth pointing out that, just like the macroscopic displacement �eld
upm(0) is the term of order zero in the asymptotic expansion of the mesoscopic displacement
�eld upm of the porous matrix, this latter one is the term of order zero of the microscopic
displacement �eld us of the solid phase.
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1.5 Conclusions

In this chapter, di�erent useful relations about the porosities have been deduced. At
both the mesoscopic scale and the macroscopic one, the relations (1.37, 1.57) between the
Eulerian porosity and the Lagrangian one are deduced.
In the small transformation framework, both in the Eulerian de�nition and in the La-
grangian one, both the mesoscopic porosity and the macroscopic one can be described
as the sum of two terms (1.22, 1.43, 1.51, 1.59): the �rst one is written in the reference
con�guration and it is a data of the problem, while the second one depends on the dis-
placement �eld and it is an unknown.
By means of the Taylor's expansions shown and proved in the appendix C, at both the
scales, the relations between the Eulerian porosities variation, ηu and Hu, and the La-
grangian ones, φu and Φu, are provided (1.44b, 1.60b).
Moreover, the relation (1.26) which describes the Eulerian microscopic porosity rate η̇ is
deduced and then validated by comparison with the relation (A.19) provided in Callari
and Abati (2011).
Lastly, the relation (1.45c) between the variation of the Eulerian microscopic porosity rate
η̇u and the corresponding Lagrangian quantity φ̇u is determined.
In the following chapter, all the relations here presented are useful for writing the �uid
mass balance (sections 2.2.2 and 2.4.4) and the constitutive law for the variation of the
porosity at both the macroscopic scale and the macroscopic one (sections 2.2.3.3 and
2.4.3).



Chapter 2

From mesoscale to macroscale

2.1 Introduction

In this chapter, the starting scale of observation is the mesoscopic one. It means that
the heterogeneous microscopic structure, composed by a solid-skeleton within a network
of �uid-saturated pores, is here replaced by a porous saturated and deformable matrix,
that is, the equivalent continuum whose description is given by the equations of poroelas-
ticity obtained by Biot (1941) using a phenomenologic approach, and re-obtained also by
means of upscaling techniques in (Auriault 2004; Auriault and Sanchez-Palencia 1977).
Notwithstanding that, because of the set of mesoscopic �uid-�lled cavities included in the
porous matrix, the medium here investigated is still heterogeneous (�g. 2.1). Therefore,
a further equivalent and macroscopic continuum is required in order to have governing
equations and hydro-mechanical properties de�ned in every single point of the whole body
Ω.
The aimed macroscopic description is searched by applying the method of the asymp-
totic homogenization to the mesoscopic description and without any phenomenological

Figure 2.1: At the macroscopic observation scale the body Ω appears as a continuum. The

mesoscopic REV B shows the �uid-�lled cavities surrounded by the porous matrix and its size

is much smaller than the characteristic dimension of Ω, that is, L >> lε.

17
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assumptions. The main developments of the analytical calculus which leads to the ho-
mogenized equations and also provides the e�ective poroelastic coe�cients are presented
in this chapter.

2.2 Mesoscopic description

In this section, the mesoscopic description of the whole body Ω is provided. It is composed
by the linear momentum balance and the �uid mass balance, the constitutive relations
and the conditions at the cavity boundary.
Even if in (Auriault 2004; Auriault and Sanchez-Palencia 1977) an equivalent form of the
Biot's equations is already obtained by means of the method of the asymptotic homoge-
nization, in this thesis a further formulation of them is proposed and adopted. Actually,
in the appendix B, a look to the microscopic scale is taken by recalling the Auriault's
analytical calculus, very likely the most instructive example available in the literature
about the application of the method to the porous media; but then it is also enriched by
splitting the �uid mass balance from the II Biot's equation, and by changing the de�nition
of the mean value of the pore �uid absolute velocity.

As said above, at the mesoscopic scale of observation, the whole body Ω appears as a
porous solid which contains a distribution of �uid-�lled cavities. So, it is can be described
as the union of two disjoint subdomains: the porous matrix subdomain Ωpm and the set
of �uid-�lled cavities Ωcf ; that is, Ω = Ωpm ∪ Ωcf and ∅ = Ωpm ∩ Ωcf (�g. 2.2).

Figure 2.2: Mesoscopic structure of the whole body Ω: the porous matrix Ωpm with the set Ωcf

of �uid-�lled cavities. N pm is a generic subset volume of Ωpm, whileM is a subset volume of Ω
which intersects a single cavity.
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2.2.1 Linear momentum balance

The equilibrium in the whole body Ω reads: ∀x ∈ Ω,

divxσ = 0 (2.1)

where the body forces are not taken into account and σ is the Cauchy stress tensor de�ned
as follows:

σ =

{
σpm in Ωpm

σcf in Ωcf
(2.2)

so, σpm is the Cauchy stress tensor in the porous matrix and σcf is the Cauchy stress
tensor of the cavity �uid .

2.2.2 Fluid mass balance

In this section, both in the framework of large and small deformations, it is shown how
to write the local form of the conservation of the �uid mass in the porous matrix Ωpm.
Both the Lagrangian and the Eulerian formulations of this balance are provided.

2.2.2.1 Eulerian description

Let N pm denote a generic subset volume of Ωpm (�g. 2.2). A �uid volume is identi�ed
with the set of �uid particles which occupy the pores of N pm at the time t and, by means
of a Lagrangian approach, these particles are followed in their motion. Let N pm

t+dt denote
the special volume subset of the porous matrix Ωpm

t+dt whose pores, at the time t + dt,
host the selected �uid particles. It is worth remarking that N pm

t+dt is not the deformed
con�guration of N pm due to the motion of the solid-skeleton.
By de�nition, the mass of a material volume is constant and, by assuming the �uid to be
incompressible, its volume is constant as well. Then, the conservation of the �uid volume
reads: ∫

N pmt+dt

η(x̃, t+ dt) dvx̃ =

∫
N pm

η(x, t) dvx (2.3)

where η is the Eulerian mesoscopic porosity, already de�ned in (1.5), and x̃ denotes the
position vector at the time t+ dt of the �uid particle labeled as x.
From the (2.3) it is clear that if η(x, t) = η(x̃, t+ dt), then even the volumes of N pm and
of N pm

t+dt would be equal.
Let vpm(x, t) denote the average �uid velocity �eld of the pore �uid in N pm such that:

x̃ = x + vpm(x, t)dt (2.4)

Then, by using the change of variables x↔ x̃, the left member of the equality (2.3) reads:
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∫
N pm

η(x + vpm(x, t)dt, t+ dt) det(I +∇xv
pmdt) dvx (2.5)

and, by means of the Taylor's expansions (C.4, C.11), its expansion reads:∫
N pm

(
η(x, t) +∇xη.v

pmdt+ ∂tη dt+ · · ·
) (

1 + divxv
pmdt+ · · ·

)
dvx

=

∫
N pm

η(x, t) dvx +

∫
N pm

(
∇xη.v

pm + ∂tη + η divxv
pm
)

dvxdt+ · · · (2.6)

So, the equality (2.3) can be rewritten as follows:∫
N pm

(
∇xη.v

pm + ∂tη + η divxv
pm
)
dt dvx = 0 (2.7)

which, in view of the arbitrariness of N pm ⊆ Ωpm, is equivalent to: ∀x ∈ Ωpm,

divx
(
ηvpm

)
+ ∂tη = 0 (2.8)

which is the Eulerian form of the �uid mass balance in terms of porosity for the particular
case of an incompressible pore �uid.

2.2.2.2 Lagrangian description

The material time derivative of the Eulerian mesoscopic porosity η with respect to the
motion of the porous medium reads:

η̇ = ∂tη +∇xη.u̇
pm (2.9)

where u̇pm is the velocity �eld of the porous medium. Then, by substituting the (2.9) in
the balance (2.8), it yields:

η̇ + η divxu̇
pm + divx

(
η(vpm − u̇pm)

)
= 0 (2.10)

Taking into account the relation (1.37) between the Lagrangian and the Eulerian meso-
scopic porosities, φ = Jpmη, and writing the time derivative of the Jacobian J as follows:

J̇pm = Jpm divxu̇
pm (2.11)

the balance (2.10) can be rewritten in a more compact form as:

φ̇+ Jpm divx
(
η(vpm − u̇pm)

)
= 0 (2.12)

In the change of variables X ↔ x = ϕpm (X, t), that is to say from the reference con�g-
uration to the current one, the following relations hold for a generic vector a(x) and a
generic scalar function f(x):
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∇Xa = ∇x a ◦ Fpm =⇒ ∇x a = ∇Xa ◦ (Fpm)−1 =⇒ divx a = tr
(
∇Xa ◦ (Fpm)−1

)
(2.13)

and

∇xf = (Fpm)−t@∇Xf (2.14)

where, as shown in the initial pages dedicated to the notation, the symbol �◦� denotes the
composition of two linear transformations, while �@� provides the image of a vector by a
linear transformation. Therefore, the Lagrangian formulations (2.10, 2.12), with respect
to the motion of the porous medium, of the �uid volume balance read:

η̇ + η tr
(
∇Xu̇pm ◦ (Fpm)−1

)
+ tr

(
∇X

(
η(vpm − u̇pm)

)
◦ (Fpm)−1

)
= 0 (2.15)

and

φ̇+ Jpm tr

(
∇X

(
η(vpm − u̇pm)

)
◦ (Fpm)−1

)
= 0 (2.16)

respectively.

2.2.2.3 Small transformation framework

In this approximated framework, the Eulerian microscopic porosity η is described by the
relations (1.22, 1.23), while the Lagrangian one φ by the relations (1.43, 1.44): clearly, ηr
and φr does not depend on time. Moreover, in the Lagrangian representation, as already
shown in (1.27), the material time derivative can be approximated by the partial time
derivative. So, the formulations (2.15, 2.16) are rewritten as:

∂tηu+(ηr+ηu) tr
(
∇Xu̇pm◦(Fpm)−1

)
+tr

(
∇X

(
(ηr+ηu)(v

pm−u̇pm)
)
◦(Fpm)−1

)
= 0 (2.17)

and

∂tφu + Jpm tr

(
∇X

(
(ηr + ηu)(v

pm − u̇pm)
)
◦ (Fpm)−1

)
= 0 (2.18)

respectively. It is taken into account that the displacement upm and its gradient are small.
Then, it is assumed that the velocity u̇pm is small as well and that the �uid velocity �eld
vpm is of the same order. So, by using the expansions (1.17) of (F pm)−1 and (1.18) of
Jpm, the formulations (2.17, 2.18) become:

∂tηu + ηr divXu̇pm = −divXqpm (2.19)

and
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∂tφu = −divXqpm (2.20)

where qpm denotes the Lagrangian relative �ow vector of �uid volume, that is, the �uid
volume which �ows through a unit surface of the porous matrix during the unit time, and
it is de�ned as follows:

qpm := ηr(v
pm − u̇pm) (2.21)

It is worth remarking that:

i. clearly, the formulations (2.19) and (2.20) have to be identical and the proof
is given by the relation (1.45c) between η̇u and φ̇u;

ii. it is worth remarking that, being in the framework of the small transformations
and by taking into account the de�nition (2.21) of qpm, the balance (2.19) can
be rewritten in terms of the absolute pore �uid velocity vpm as follows:

∂tηu = −divX
(
ηrv

pm
)

(2.22)

iii. the Lagrangian relative �ow vector of �uid mass, that is, the �uid mass which
�ows through a unit surface of the porous matrix during the unit time, is
denoted by qm and de�ned as follows:

qpmm := ρpfηr(v
ppm − u̇pm) (2.23)

where ρpf is the density of the �uid. It is obvious that the relation between
qpm and qpmm , de�ned in the (2.21, 2.23), reads:

qpmm := ρpfqpm (2.24)

Then, let mpm denote the mesoscopic current Lagrangian �uid mass content
per unit of the initial volume of the porous medium; following Biot (1941), it
can be de�ned as a variation:

mpm :=
(V pf − V pf

r ) ρpf

V pm
r

= φu ρ
pf (2.25)

where, as already done in the section 1.3.1 for the mesoscopic porosities in
the dry case, V pm and V pf are the measures of the microscopic REV and of
the set of �uid-saturated microscopic pores included in the microscopic REV
respectively. Taking into account the assumed incompressibility of the �uid,
the balance (2.20) is, as expected, a particular case of the following �uid mass
balance written in terms of �uid mass content (Biot 1941; Coussy 2004):

∂tm
pm = −divXqpmm (2.26)
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In the following, among all the aforementioned formulations of the �uid volume balance,
the relation (2.20) will be mainly used.

2.2.3 Constitutive relations

2.2.3.1 Porous matrix

The deformable and saturated porous matrix Ωpm is assumed to be elastic and its hydro-
mechanical behaviour is described by the Biot's equation:

σpm = c@ex(u
pm)− b ppm (2.27)

where σpm is the Cauchy (total) stress tensor; ppm is the pressure of the pore �uid, that
is the �uid which saturates the pores; c and b are the solid-skeleton elasticity tensor and
the Biot's tensor respectively; ex(upm) is the in�nitesimal strain tensor de�ned as the
symmetric part of the gradient of the displacement �eld, that is:

ex(u
pm) := (∇xu

pm)S (2.28)

2.2.3.2 Cavities and cavity �uid

The set of cavities Ωcf is assumed to be �uid-�lled. With the aim of understanding how to
model the cavity �uid, that is the �uid which �lls the cavities, it is worth having a look at
the microscopic scale (appendix B, Auriault 2004, Auriault and Sanchez-Palencia 1977):
the pore �uid was assumed to be viscous Newtonian and, in order to have a homogenized
diphasic behaviour, that is in order to have a �uid motion through the small pores not
requiring extremely high �uid pressures, it is imposed a constant viscosity µpf of order
two in the power of the separation scale parameter e, which is very small (�g. B.2). Then,
the constitutive law for the pore �uid in Auriault (2004) reads:

σpf = 2µpf e2 D− ppf I (2.29)

where D denotes the strain rate tensor, that is the symmetric part of the gradient of
the velocity �eld vpf of the pore �uid, that is D := (∇xv

pf )S. Clearly, in reason of the
upscaling approach, at the mesoscopic scale only the terms of order zero in the power
of e are kept, then the pore �uid is considered inviscid. So, from this remark about the
microscopic structure and in order to have a consistent set of constitutive hypothesis, also
the cavity �uid is modelled as inviscid. So, its constitutive hypothesis is isotropic and
reads:

σcf = −pcf I (2.30)

where pcf is the �uid pressure in the cavities.
Moreover, the cavity �uid is assumed to be incompressible:

divxvcf = 0 (2.31)
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where vcf is the absolute velocity of the cavity �uid.

For what concerns the cavities, it is worth remarking that if they would be connected
in a network, then the �uid �ux through the connecting channels would be signi�cant
and the assumption of inviscid �uid would not be suitable anymore and some boundary
conditions at the interface which separates the channel �ow and the porous matrix should
be determined and imposed, e.g. as proposed by Beavers and Joseph (1967).
So, in this work, it is assumed that the cavities are not connected in a network, that is, the
cavity �uid is not exchanged among the cavities but only between the single cavity and
the surrounding matrix. In such a way the consistency with the assumption of inviscid
cavity �uid is ensured: in fact, it is reasonable to assume that the velocity vcf of the
cavity �uid is very small or, equivalently, that it is of the same order of the pore �uid
velocity vpf in the Auriault's problem quoted above.

Lastly, it is worth remarking that:

i. given the governing equations for the cavity �uid, its velocity vcf is indeter-
minable;

ii. given the linear momentum balance (2.1) in Bcf , the pressure of the cavity
�uid is homogeneous in a single cavity:

divx
(
pcfI

)
= 0 =⇒ ∇xp

cf = 0 (2.32)

Notwithstanding that, in every cavity the pressure has a di�erent value.

2.2.3.3 Variation of the mesoscopic porosities

The Biot's constitutive law for the �uid mass content mf , de�ned by (2.25), is particu-
larized to the case of incompressible �uid and rewritten in terms of the variation of the
Lagrangian mesoscopic porosity φu, de�ned in (1.44b), as follows:

φu =
mpm

ρpf
= s ppm + b : ex(u

pm) (2.33)

or, as in (appendix B, Auriault (2004)), rewritten in terms of the variation of the Eulerian
mesoscopic porosity ηu, de�ned in (1.23b), as:

ηu = s ppm +
(
b− ηrI

)
: ex(u

pm) (2.34)

In both the cases s denotes the Biot's modulus and the equivalence of the (2.33, 2.34) is
easily proven by taking into account the relation (1.44b) between φu and ηu.
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2.2.4 Darcy's law

In the porous matrix Ωpm, the motion of the �uid is described by the Darcy's law:

qpm = −k@∇xp
pm (2.35)

where k is the permeability tensor.

2.2.5 Conditions at cavity boundary

In the present section, it is useful to de�ne more precisely the �uid-�lled cavity volume
subdomain as follows:

Ωcf =
A⋃
α=1

cα (2.36)

where cα is the α-th cavity out of A. The boundary ∂Ωpm of the porous matrix is composed
by an external part ∂Ω and an internal one ∂Ωcf :

∂Ωcf =
A⋃
α=1

∂cα (2.37)

where ∂cα is the boundary of the α-th cavity, that is, the interface between a single
cavity and the surrounding porous matrix. Being this latter deformable, ∂cα is a moving
interface with velocity u̇pm. And, it reads: ∂Ωpm = ∂Ω ∪ ∂Ωcf .
With the aim of writing a well-posed mesoscopic boundary value problem, the proper
interface conditions are introduced below.

2.2.5.1 Stress continuity

LetM denote a subdomain of Ω which intersects a single �uid-�lled cavity (�g. 2.2). It
is composed by the union of the porous subpart, denoted byMpm, and a portion of the
�uid-�lled cavity which is embodied, denoted by Mcf , that is M = Mpm +Mcf (�g.
2.3).
The boundaries ofMpm andMcf are denoted by ∂Mpm and ∂Mcf respectively. While,
the interface separatingMpm fromMcf is denoted by S int. Then, it reads:

∂Mpm = Spm ∪ S int (2.38a)

∂Mcf = Scf ∪ S int (2.38b)

∂M =Mpm ∪Mcf (2.38c)

The equilibria inMpm and ofMcf read respectively:
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Figure 2.3: The volume subsetM of Ωpm contains a portion of a �uid-�lled cavity.

∫
Sint

σpm@n ds+

∫
Spm

σpm@n ds = 0 (2.39a)

−
∫
Sint

σcf@n ds+

∫
Scf

σcf@n ds = 0 (2.39b)

where the sign minus is due to the inward orientation of the normal unit vector n to ∂cα
with respect toMpm. The equilibrium ofM reads:∫

Spm
σpm@n ds+

∫
Scf
σcf@n ds = 0 (2.40)

then, by comparison, it follows that:∫
Sint

σpm@n ds−
∫
Sint

σcf@n ds = 0 (2.41)

In the end, as S int is an arbitrary portion of ∂cα, it follows that:

σpm@n = σcf@n (2.42)

and, by taking into account the constitutive hypothesis (2.30) for the cavity �uid, it reads:

σpm@n = −pcf@n (2.43)

2.2.5.2 Fluid pressure continuity

The cavity �uid and the pore �uid are in contact at interface ∂Ωcf , then:

ppm = pcf (2.44)

Moreover, by taking into account the homogeneity (2.32) of the �uid pressure in each
cavity, it follows that the pore �uid pressure is homogeneous too at each interface ∂cα.
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2.2.5.3 Fluid mass balance

The interface is moving with the same velocity of the porous matrix, then the local �uid
volume conservation through ∂cα reads:

qpm.n =
(
vcf − u̇pm

)
.n (2.45)

and it is worth remarking that it does not imply that the velocity of the �uid is discon-
tinuous at the interface: in fact, as already said, vpm is the average velocity of the pore
�uid and not the true velocity of the �uid in the pores.
Moreover, by taking into account the incompressibility of the cavity �uid, a global con-
servation condition is easily deduced:∫

∂cα

qpm.nds = −
∫
∂cα

u̇pm.nds (2.46)

2.2.6 Synopsis of mesoscopic description

The mesoscopic equations governing the hydro-mechanical behaviour of the porous solid
with �uid-�lled cavities are listed below.

0 = divxσ Linear momentum balance in Ω (2.47a)

0 = divxvcf Fluid incompressibility in Ωcf (2.47b)

φ̇u = −divxq
pm Fluid mass balance in Ωpm (2.47c)

qpm = −k@∇xp
pm Darcy law in Ωpm (2.47d)

σpm = c@ex(u
pm)− b ppm I Biot's constitutive relation in Ωpm (2.47e)

σcf = −pcfI Constitutive hypothesis in Ωcf (2.47f)

φu = b : ex(u
pm) + s ppm II Biot's constitutive relation in Ωpm (2.47g)

ppm = pcf Fluid pressure continuity on ∂Ωcf (2.47h)

σpm@n = σcf@n Stress continuity on ∂Ωcf (2.47i)

qpm.n =
(
vcf − u̇pm

)
.n Fluid mass balance on ∂Ωcf (2.47j)

where n is the outward normal to Ωpm.

The relative �ow vector of �uid volume qpm is de�ned in Ωpm as:

qpm := ηr(v
pm − u̇pm) (2.48)
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2.3 Homogenization

In this section the upscaling of the mesoscopic structure is presented. The upscaling
technique chosen is the method of double-scale asymptotic expansions. It is applied to
the mesoscopic description obtained in the previous section.

2.3.1 Method of double-scale asymptotic expansions

The method has been introduced by (Bensoussan, Lions and Papanicolaou 1978; Keller
1977; Sanchez-Palencia 1974, 1980). More recently, a more physical methodology based
on dimensionless analysis has been introduced by Auriault (1991).
As usual in micromechanical approaches, the �elds are split into the contributions corre-
sponding to the di�erent length scales which are assumed to be well separated. With this
aim, two di�erent space variables are introduced :

i. let x denote the �slow� space variable which describes the macroscopic varia-
tions;

ii. let y denote the �fast� space variable which describes the �uctuations at the
small length scale of the heterogeneities;

They are related by means of the scaling parameter ε in the following change of variable
(�g. 2.5):

y =
x

ε
(2.49)

which may be viewed as a zooming-in of the macroscale in order to make the heterogeneity
scale comparable with. By assuming a macroscopic point of view, any space dependent
quantity f = f(x) appears as a function of the two variables, f = f(x,y). While, by
using the chain rule, the total derivative with respect to x reads:

d

dx
=

∂

∂x
+

1

ε

∂

∂y
(2.50)

Figure 2.4: The macroscopic continuum and its locally periodic mesoscopic structure.
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Figure 2.5: Resizing the mesoscopic periodic cell Bε = [0, ε] × [0, ε] to the unit cell, Y =
[0, 1]× [0, 1].

The distribution of �uid-�lled cavities is assumed to be periodic (�g.2.4). Then, a meso-
scopic periodic cell Bε is identi�ed and it is rescaled by the small parameter ε, to a unit
cell Y = [0, 1]× [0, 1], such that the period of the material is ε Y . In this way, the param-
eter ε appears, naturally, as a characteristic length of the mesostructure.

2.3.2 Double-scale asymptotic expansions

The primary variables of the problem upm(ε), ppm(ε) and vcf(ε) are looked for in the form
of asymptotic expansions with respect to the powers of ε as follows (Bensoussan, Lions
and Papanicolaou 1978; Sanchez-Palencia 1980):

upm(ε)(x) = upm(0)
(
x,

x

ε

)
+ εupm(1)

(
x,

x

ε

)
+ · · · (2.51a)

ppm(ε)(x) = ppm(0)
(
x,

x

ε

)
+ ε ppm(1)

(
x,

x

ε

)
+ · · · (2.51b)

vcf(ε)(x) = vcf(0)
(
x,

x

ε

)
+ εvcf(1)

(
x,

x

ε

)
+ · · · (2.51c)

and, as shown in the section 2.3.4.1 for the displacement �eld, the physical meaning
of which is the following (�g. 2.6): upm(0) usually denotes the e�ective or macroscopic
displacement �eld and upm(1) stands for the �rst order displacement perturbations due
to the smaller scale structure. This latter one is assumed to periodic and the size of the
periodic cell is denoted by ε. Moreover, a serie of �nely heterogeneous materials with
ε → 0 is considered; it implies that all the �elds depend on ε and that is the meaning
of the superscript (ε) for all the exact �elds, for istance upm(ε). Only the �rst order
terms in the powers of ε are retained because this order of approximation is judged to be
appropriate for the studied problem. As a consequence of (2.51) the following expansions
are deduced for the in�nitesimal strain tensor de�ned by (2.28) and for the pore pressure
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gradient respectively:

ex
(
upm(ε)

)
= ε−1 ey

(
upm(0)

)
+
(
ex
(
upm(0)

)
+ ey

(
upm(1)

))
+ ε ex

(
upm(1)

)
+ · · · (2.52a)

∇x

(
ppm(ε)

)
= ε−1∇y

(
ppm(0)

)
+
(
∇x

(
ppm(0)

)
+∇y

(
ppm(1)

))
+ ε∇x

(
ppm(1)

)
+ · · · (2.52b)

In the expansions of σpm(ε), σcf(ε), φ(ε)
u and vpm(ε) the order in the powers of ε of the

�rst term depends on the constitutive relations (2.27, 2.30, 2.33), and on the Darcy's law
(2.35), respectively, leading to:

σcf(ε)(x) = σcf(0)
(
x,

x

ε

)
+ εσcf(1)

(
x,

x

ε

)
+ · · · (2.53a)

σpm(ε)(x) = ε−1 σpm(−1)
(
x,

x

ε

)
+ σpm(0)

(
x,

x

ε

)
+ εσpm(1)

(
x,

x

ε

)
+ · · · (2.53b)

φ(ε)
u (x) = ε−1 φ(−1)

u

(
x,

x

ε

)
+ φ(0)

u

(
x,

x

ε

)
+ ε φ(1)

u

(
x,

x

ε

)
+ · · · (2.53c)

vpm(ε)(x) = ε−1 vpm(−1)
(
x,

x

ε

)
+ vpm(0)

(
x,

x

ε

)
+ εvpm(1)

(
x,

x

ε

)
+ · · · (2.53d)

Given these expansions, the following ones are deduced:

divx
(
σpm(ε)

)
= ε−1divy

(
σpm(0)

)
+
(

divx
(
σpm(0)

)
+ divy

(
σpm(1)

))
+ ε divx

(
σpm(1)

)
+ · · ·
(2.54a)

divx
(
vpm(ε)

)
= ε−1divy

(
vpm(0)

)
+
(

divx
(
vpm(0)

)
+ divy

(
vpm(1)

))
+ ε divx

(
vpm(1)

)
+ · · ·
(2.54b)

Moreover, in view of the asymptotic expansions (2.53d, 2.51a, 2.53c) of vpm(ε), upm(ε) and
φ

(ε)
u , the form of the expansions of qpm(ε) and η(ε)

u is deduced from de�nitions (1.44b, 2.21)
as follows:

qpm(ε)(x) = ε−1 qpm(−1)
(
x,

x

ε

)
+ qpm(0)

(
x,

x

ε

)
+ εqpm(1)

(
x,

x

ε

)
+ · · · (2.55a)

η(ε)
u (x) = ε−1 η(−1)

u

(
x,

x

ε

)
+ η(0)

u

(
x,

x

ε

)
+ ε η(1)

u

(
x,

x

ε

)
+ · · · (2.55b)

Figure 2.6: Physical meaning of the asymptotic expansions of the displacement �eld upm(ε).
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Finally, it is worth remarking that the functions upm(i), ppm(i), vcf(i), σ(i), vpm(i), φ(i)
u ,

qpm(i) and η(i)
u are smooth and y-periodic functions in y, with period Y .

2.3.3 Asymptotic expansions of the governing equations

The asymptotically expanded variables above, from the (2.51a) to the (2.55b), are substi-
tuted in the mesoscopic governing equations recalled at section 2.2 and then, taking into
account that ε → 0, the relations below are deduced by identi�cation of the like powers
of ε.

2.3.3.1 Constitutive Relations

Porous matrix The constitutive law (2.27) in the powers −1, 0 and 1 of ε respectively
reads:

σpm(−1) = c@ey
(
upm(0)

)
(2.56a)

σpm(0) = c@

(
ex
(
upm(0)

)
+ ey(u

pm(1))
)
− b ppm(0) (2.56b)

σpm(1) = c@ex
(
upm(1)

)
− b ppm(1) (2.56c)

Cavity �uid. The constitutive hypothesis (2.30) in the powers 0 and 1 of ε respectively
reads:

σcf(0) = −pcf(0)I, σcf(1) = −pcf(1)I (2.57)

while the incompressibility condition (2.31) in the powers −1, 0 and 1 of ε respectively
reads:

0 = divy
(
vcf(0)

)
, 0 = divx

(
vcf(0)

)
+ divy

(
vcf(1)

)
, 0 = divx

(
vcf(1)

)
(2.58)

Variation of the mesoscopic porosities. The constitutive relations (2.33, 2.34) for
the variation of the mesoscopic porosities in the powers −1, 0 and 1 of ε respectively read:

φ(−1)
u = b : ey(u

pm(0)) (2.59a)

φ(0)
u = b :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0) (2.59b)

φ(1)
u = b : ex(u

pm(1)) + s ppm(1) (2.59c)

and

η(−1)
u = (b− ηrI) : ey(u

pm(0)) (2.60a)

η(0)
u = (b− ηrI) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0) (2.60b)

η(1)
u = (b− ηrI) : ex(u

pm(1)) + s ppm(1) (2.60c)
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Moreover, it is useful to write the corresponding expressions for the relation (1.44b) be-
tween φ(ε)

u and η(ε)
u which in the powers −1, 0 and 1 of ε reads respectively:

φ(−1)
u = η(−1)

u + ηr I : ey(u
pm(0)) (2.61a)

φ(0)
u = η(0)

u + ηr I :
(
ey(u

pm(1)) + ex(u
pm(0))

)
(2.61b)

φ(1)
u = η(1)

u + ηr I : ex(u
pm(1)) (2.61c)

2.3.3.2 Linear momentum balance

Both in Ωpm and in Ωcf , the equilibrium (2.1) in the powers −2, −1, 0 and 1 of ε reads
respectively:

0 =divy
(
σ(−1)

)
(2.62a)

0 =divx
(
σ(−1)

)
+ divy

(
σ(0)

)
(2.62b)

0 =divx
(
σ(0)

)
+ divy

(
σ(1)

)
(2.62c)

0 =divx
(
σ(1)

)
(2.62d)

Given that the cavity �uid is assumed to be inviscid, in Ωcf the equilibrium (2.62a) in
the powers −1, 0 and 1 of ε reads respectively:

0 = ∇y

(
pcf(0)

)
, 0 = ∇x

(
pcf(0)

)
+∇y

(
pcf(1)

)
, 0 = ∇x

(
pcf(1)

)
(2.63)

which, by integration, yield:

pcf(0) = pcf(0)
(
x, t
)
, pcf(1) = −∇x

(
pcf(0)

)
.y + p̃cf(1) (2.64)

where pcf(0) is homogeneous in every single cavity; while pcf(1) represents the oscillation
of the pressure of the cavity �uid which can be observed only from a mesoscopic point of
view and p̃cf(1) is an integration constant.

2.3.3.3 Fluid mass balance

The balance (2.20) in the powers −2, −1, 0 and 1 of ε reads respectively:

0 = divy
(
qpm(−1)

)
(2.65a)

−φ̇(−1)
u = divy

(
qpm(0)

)
+ divx

(
qpm(−1)

)
(2.65b)

−φ̇(0)
u = divy

(
qpm(1)

)
+ divx

(
qpm(0)

)
(2.65c)

−φ̇(1)
u = divx

(
qpm(1)

)
(2.65d)

where

qpm(−1) =ηrv
pm(−1) (2.66a)

qpm(0) =ηr(v
pm(0) − u̇pm(0)) (2.66b)

qpm(1) =ηr(v
pm(1) − u̇pm(1)) (2.66c)
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In the same way, the alternative form (2.22) of the �uid mass balance in the powers −2,
−1, 0 and 1 of ε reads respectively:

0 = divy
(
ηrv

pm(−1)
)

(2.67a)

−η̇(−1)
u = divy

(
ηrv

pm(0)
)

+ divx
(
ηrv

pm(−1)
)

(2.67b)

−η̇(0)
u = divy

(
ηrv

pm(1)
)

+ divx
(
ηrv

pm(0)
)

(2.67c)

−η̇(1)
u = divx

(
ηrv

pm(1)
)

(2.67d)

2.3.3.4 Darcy's law

The Darcy's law (2.35) in the powers −1, 0 and 1 of ε respectively reads:

qpm(−1) =− k@∇yp
pm(0) (2.68a)

qpm(0) =− k@
(
∇xp

pm(0) +∇yp
pm(1)

)
(2.68b)

qpm(1) =− k@∇xp
pm(1) (2.68c)

2.3.3.5 Conditions at the cavity boundary

Stress continuity. The (2.43) in the powers −1, 0 and 1 of ε reads respectively:

σpm(−1)
@n = 0, σpm(0)

@n = −pcf(0)n, σpm(1)
@n = −pcf(1)n (2.69)

Fluid pressure continuity. The (2.44) in the powers 0 and 1 of ε reads respectively:

ppm(0) = pcf(0), ppm(1) = pcf(1) (2.70)

which, by taking into account the (2.64), become:

ppm(0) = pcf(0)
(
x, t
)
, ppm(1) = −∇x

(
pcf(0)

)
.y + p̃cf(1) (2.71)

Fluid mass balance. The (2.45) in the powers −1, 0 and 1 of ε reads respectively:

qpm(−1).n = 0 (2.72a)

qpm(0).n =
(
vcf(0) − u̇pm(0)

)
.n (2.72b)

qpm(1).n =
(
vcf(1) − u̇pm(1)

)
.n (2.72c)

while, its integrated form (2.46) on the resized interface Γ between the porous solid and
the cavity yields:
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∫
Γ

qpm(−1).n ds = 0 (2.73a)∫
Γ

qpm(0).n ds = −
∫

Γ

u̇pm(0).n ds (2.73b)∫
Γ

qpm(1).n ds =

∫
Y cf

divx
(
vcf(0)

)
dv −

∫
Γ

u̇pm(1).n ds (2.73c)

where Y cf is the cavity domain included in the resized periodic cell Y (�g. 2.7).
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2.3.4 Unit cell problems

By means of a proper selection of the like powers of ε equalities of the di�erent governing
equations presented in the previous section, from the (2.56) to (2.73), a set of successive
boundary-value problems de�ned on the unit cell Y = Y pm ∪ Y cf (�g. 2.7) are built and
investigated below. Their analytical solving provides the expected informations about the
macroscopic nature of the �elds upm(0) and ppm(0), while analytical solutions are obtained
for the �elds upm(1) and ppm(1).

Figure 2.7: Notation in the periodic unit cell Y . Orientation of the unit normal vector n:
outward with respect to Y pm

2.3.4.1 BVP for upm(0)

At the lowest power of ε, the linear momentum balance (2.62a), the constitutive equation
(2.56a) in Y pm and the stress continuity condition (2.69a) on Γ set up a pure mechanical
boundary-value problem for upm(0):

in Y pm, divyσpm(−1) = 0

in Y pm, σpm(−1) = c@ey
(
upm(0)

)
on Γ, σpm(−1)

@n = 0

(2.74)

It worths pointing out that the functions σpm(−1) and upm(0) are y-periodic.
In order to investigate this problem, the space Z of vectors z is introduced:

Z :=
{

z(x,y) | (x,y) ∈ Y pm,y-periodic
}

(2.75)

The virtual power formulation of the problem (2.74) reads:

∀z ∈ Z,
∫
Y pm

(
c@ey

(
upm(0)

))
: ey(z) dv = 0 (2.76)
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and it is apparent that the solution does not depend on the fast space variable y:

in Y pm, upm(0) = upm(0)(x) (2.77)

Then, as expected, upm(0) is the macroscopic contribution to the displacement �eld and,
by taking into account (2.74b, 2.59a, 2.60a), it follows respectively that:

σpm(−1) = 0 φ(−1)
u = 0 η(−1)

u = 0 (2.78)

Consequently, the form of the corresponding asymptotic expansions (2.51a, 2.53b, 2.55b,
2.53c) will be updated in the section 2.3.5.

2.3.4.2

At the lowest power of ε, the �uid mass balance (2.65a) and the Darcy's law (2.68a)
in Y pm, the linear momentum balance (2.63a) in Y cf , and the �uid pressure continuity
(2.71a) on Γ set up a pure hydraulic boundary-value problem for ppm(0):

in Y pm, 0 = divyqpm(−1)

in Y pm, qpm(−1) = −k@∇yp
pm(0)

in Y cf , 0 = ∇yp
cf(0)

on Γ, ppm(0) = pcf(0)

(2.79)

where, as already written in the (2.66a), qpm(−1) = φrv
pm(−1).

It is worth reminding that both the functions qpm(−1) and ppm(0) are y-periodic.
In order to investigate this problem, the space H of scalars functions h is introduced:

H :=
{
h(x,y) | (x,y) ∈ Y pm,y-periodic

}
(2.80)

The virtual power formulation of the problem (2.79) reads:

∀h ∈ H,
∫
Y pm

(
k@∇yp

pm(0)
)
.∇yh dv = 0 (2.81)

Then, it is clear that the solution does not depend on the fast space variable y:

ppm(0) = ppm(0)(x) in Y pm. (2.82)

So, as expected, ppm(0) is the macroscopic contribution to the pore �uid pressure �eld and,
by taking into account (2.79b, 2.66a), it follows that:

qpm(−1) = 0 =⇒ vpm(−1) = 0 (2.83)

Moreover, given the relations (2.82, 2.79c, 2.79d), it is clear that the �uid pressure at
order zero in the powers of ε is homogeneous over all the unit cell:
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p(0) = p(0)(x) in Y = Y pm ∪ Y cf . (2.84)

Then, the double notation ppm(0) and pcf(0) could be already put aside, but it is kept until
the end of the chapter 3 with the aim of making the procedure more clear.
Consequently, the form of the corresponding asymptotic expansions (2.51b, 2.53d, 2.55a)
will be updated in the section 2.3.5.

2.3.4.3 BVP for upm(1)

At a higher power of ε, the linear momentum balance (2.62ab), the constitutive equation
(2.56b) in Y pm and the stress continuity (2.69b) on Γ set up a pure mechanical boundary-
value problem for upm(1), being given both upm(0) and ppm(0):


inY pm, divy

(
σpm(0) + ppm(0)I

)
= 0

inY pm, σpm(0) + ppm(0)I = c@

(
ex
(
upm(0)

)
+ ey(u

pm(1))
)

+ ppm(0)(I− b)

onΓ, σpm(0)
@n = −ppm(0)n

(2.85)

where the �rst two equations are written taking into account that ppm(0) is a macroscopic
term.
It is worth reminding that also the functions σpm(0) and upm(1) are y-periodic.
This problem is investigated by means of the vector space Z, previously de�ned by the
(2.75), and its virtual power formulation reads: ∀z ∈ Z,

∫
Y pm

c@ey(u
pm(1)) : ey(z) dv = −

∫
Y pm

(
c@ex

(
upm(0)

)
+ ppm(0)(I− b)

)
: ey(z) dv (2.86)

let us de�ne the macroscopic and symmetric second order tensor, T(x), as:

T(x) := c@ex
(
upm(0)

)
(x) + (I− b)ppm(0)(x) (2.87)

It can be decomposed on any orthonormal basis as:

T = Tij(ei ⊗ ej) (2.88)

Therefore, the weak formulation (2.86) is rewritten as: ∀z ∈ Z,∫
Y pm

c@ey(u
pm(1)) : ey(z) dv = −Tij

∫
Y pm

(ei ⊗ ej) : ey(z) dv (2.89)

Let the vector ξij(y) verify:

∀z ∈ Z,
∫
Y pm

c@ey(ξ
ij) : ey(z) dv = −

∫
Y pm

(ei ⊗ ej) : ey(z) dv (2.90)
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Let the superscript symm denote the symmetric part of a second order tensor and let us
take into account that ey(z) is symmetric by de�nition. So, it follows that:

(ei ⊗ ej) : ey(z) = (ei ⊗ ej)symm : ey(z) =⇒ ξij = ξji (2.91)

And given the linearity of the problem, by comparing the (2.89) and the (2.90) it is easily
deduced that the solution of the boundary-value problem (2.85) reads:

upm(1)(x,y) = Tij(x)ξij(y) with Tij = T : (ei ⊗ ej) (2.92)

where it is already clear that the dependency on the two space variables, x and y, is
separated.
let us de�ne a linear application from L(V) to V as1:

Ξ(y) := ξij(y)⊗ (ei ⊗ ej) (2.93)

actually, it tranforms a secord order tensor, S ∈ L(V), into a vector such that:

∀S ∈ L(V), Ξ@S = ξij ⊗ (ei ⊗ ej) : S = Sijξ
ij (2.94)

Therefore, the (2.92) is rewritten as:

upm(1)(x,y) = Ξ(y)@T(x) (2.95)

which given the (2.87) becomes:

upm(1)(x,y) = Ξ(y)@

(
c@ex

(
upm(0)(x)

))
+ Ξ(y)@(I− b)ppm(0)(x) (2.96)

or, by using the properties of the composition of tensors:

upm(1)(x,y) =
(
Ξ(y) ◦ c

)
@ex
(
upm(0)(x)

)
+ Ξ(y)@(I− b)ppm(0)(x) (2.97)

Moreover, given the de�nition of Ξ, (2.93), it also reads:

upm(1)(x,y) = ξlm(y)exlm
(
upm(0)(x)

)
+ π(y) ppm(0)(x) (2.98)

where the vector π is de�ned as:

π(y) = Ξ(y)@(I− b) = ξij(y)(δij − bij). (2.99)

In the end, it is clear that upm(1) depends linearly on the macroscopic strain tensor
ex(u

pm(0)) and on the macroscopic pressure �eld ppm(0); while, the dependency on the
small length scale is concentrated in the coe�cients ξij.

1The result of the dyadic product between a second order tensor and a vector is a third order tensor.
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2.3.4.4 BVP for ppm(1), vpm(0) and vcf(0)

At a higher power of ε, the �uid mass balance (2.65b), the Darcy's law (2.68a) in Y pm, the
linear momentum balance (2.63b) within the constitutive hypothesis, the incompressibility
condition (2.58b) of the cavity �uid in Y cf , the �uid mass balance (2.72b) through the
interface and the �uid pressure continuity (2.71b) on Γ set up a pure hydraulic boundary-
value problem for ppm(1), vpm(0) and vcf(0), being given both upm(0) and ppm(0):

in Y pm, divyqpm(0) = 0

in Y pm, qpm(0) = −k@

(
∇xp

pm(0) +∇yp
pm(1)

)
in Y cf , 0 = ∇yp

cf(1) +∇xp
cf(0)

in Y cf , 0 = divy
(
vcf(0)

)
on Γ, qpm(0).n =

(
vcf(0) − u̇pm(0)

)
.n

on Γ, ppm(1) = pcf(1)

(2.100)

where, as already written in the (2.66b), qpm(0) = φr(v
pm(0)− u̇pm(0)), and the (2.100d) is

written taking into account that upm(0) is a macroscopic term.
This problem can be split in two sub-problems to be solved successively: a �rst one com-
posed by the (2.100a, 2.100b, 2.100c, 2.100f), the solution of which are ppm(1) and vpm(0);
then, a second one composed by the (2.100d, 2.100e) for vcf(0).

It is worth remarking that, as already written in the (2.64b) and as clear from the (2.100c),
pcf(1) is de�ned up to an additive constant. Then, given the (2.100f), it is possible to look
for a particular solution of the �rst sub-problem of the (2.100) which reads:

in Y pm, divyqpm(0) = 0

in Y pm, qpm(0) = −k@

(
∇xp

pm(0) +∇yp
pm(1)

)
on Γ, ppm(1) = −

(
∇xp

pm(0)
)
.y

(2.101)

Being ppm(1) determined up to an additive constant, then vpm(0) is uniquely determined
by the (2.101b).
Let us de�ne the space W of scalars functions w as:

W :=
{
w(x,y) | (x,y) ∈ Y pm,y-periodic,∇yw = 0 on Γ

}
(2.102)

Then the virtual power formulation of the problem (2.101) reads:

∀w ∈ W ,

∫
Y pm

(
k@(∇xp

pm(0) +∇yp
pm(1))

)
.∇yw dv = 0 (2.103)

Let ζ i(y) be the solution of the following problem:
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
in Y cf , ζ i(y) = −ei.y

on Γ, ∀w ∈ W ,

∫
Y pm

(
k@
(
ei +∇yζ

i(y)
))
.∇yw dv = 0

(2.104)

Given the linearity of the problem, it is easily deduced that:

ppm(1)(x,y) = ζ i(y)
∑
i

∇xp
pm(0)(x).ei (2.105)

And by de�ning the vector Z(y) as:

Z(y) =
∑
i

ζ i(y)ei (2.106)

then, the (2.105) is rewritten as:

ppm(1)(x,y) = ∇xp
pm(0)(x).Z(y) (2.107)

It is worth remarking that ppm(1) depends linearly from the gradient of the macroscopic
pressure ∇xp

pm(0); while, the dependency on the small length scale is concentrated in the
coe�cients ζ i(y).

Therefore, being given ppm(1) and vpm(0), the second sub-problem of the (2.100) in vcf(0)

reads:  in Y cf , divy
(
vcf(0) − u̇pm(0)

)
= 0

on Γ, qpm(0).n =
(
vcf(0) − u̇pm(0)

)
.n

(2.108)

and, as already known, by means of these equations vcf(0) is not determinable. Notwith-
standing that, it is shown in the calculus below that they enable to determine the integral∫
Y cf

(vcf(0) − u̇pm(0)) dv which is helpful to write the macroscopic equations.

A useful calculus. In this section, it is presented the calculus for determination of the
integral

∫
Y cf

(vcf(0) − u̇pm(0)) dv which is useful in the analytical developments leading to
the homogenized Darcy's law (section 2.4.5). Let us de�ne the spaceQ of scalars functions
q as:

Q :=
{
q(x,y) | (x,y) ∈ Y = Y pm ∪ Y cf

}
(2.109)

Then, the virtual power formulation of the (2.101a) reads:

∀q ∈ Q, −
∫
Y pm

qpm(0).∇yq dv +

∫
∂Y

qpm(0).n q ds+

∫
Γ

(
vcf(0) − u̇pm(0)

)
.n q ds = 0

(2.110)
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where the �uid mass balance (2.108b) through Γ is taken into account.
And the virtual power formulation of the (2.108a) reads: ∀q ∈ Q,∫

Y cf

(
vcf(0) − u̇pm(0)

)
.∇yq dv +

∫
Γ

q
(
vcf(0) − u̇pm(0)

)
.n ds = 0 (2.111)

where the signs are the consequence of the orientation of the unit normal vector n: inward
with respect to Y cf (�g. 2.7). The combination of the (2.110) and of the (2.111) yields
the weak formulation of the (2.101a, 2.108a, 2.108b): ∀q ∈ Q,

−
∫
Y pm

qpm(0).∇yq dv −
∫
Y cf

(
vcf(0) − u̇pm(0)

)
.∇yq dv +

∫
∂Y

qpm(0).n q ds = 0 (2.112)

Now, let us introduce a second and enriched space Q̃ of scalars functions q̃ as:

Q̃ :=
{
q̃(x,y) | (x,y) ∈ Y = Y pm ∪ Y cf , q̃ = a(x).y

}
(2.113)

The weak formulation (2.112) can be rewritten by using q̃ as test function instead of q
and it reads: ∀a(x),

a.

(
−
∫
Y pm

qpm(0) dv −
∫
Y cf

(
vcf(0) − u̇pm(0)

)
dv +

∫
∂Y

(
qpm(0).n

)
y ds

)
= 0 (2.114)

or, as a(x) is any vector:∫
Y cf

(
vcf(0) − u̇pm(0)

)
dv = −

∫
Y pm

qpm(0) dv +

∫
∂Y

(
qpm(0).n

)
y ds (2.115)

which proves that, just like vpm(0), also the investigated integral is uniquely determined.
With the aim of determining it, it is useful going back to the weak formulation (2.112)
and rewriting it by means of a y-periodic test function q = ζ i. So, given the (2.104a), it
reads:

−
∫
Y pm

qpm(0).∇yζ
i dv +

∫
Y cf

(
vcf(0) − u̇pm(0)

)
.ei dv = 0 (2.116)

which entails:

−
∑
i

[ ∫
Y pm

qpm(0).∇yζ
i dv
]
ei +

∑
i

[ ∫
Y cf

(
vcf(0) − u̇pm(0)

)
.ei dv

]
ei = 0 (2.117)

that is: ∫
Y cf

(
vcf(0) − u̇pm(0)

)
dv =

∫
Y pm

(∑
i

ei ⊗∇yζ
i
)

@qpm(0) dv (2.118)

Given the de�nition (2.106) of the vector Z(y), it follows that:

∇yZ(y) =
∑
i

ei ⊗∇yζ
i(y) (2.119)
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Finally, the (2.118) is rewritten as follows and provides a useful expression of the integral
at the left member: ∫

Y cf

(
vcf(0) − u̇pm(0)

)
dv =

∫
Y pm
∇yZ@qpm(0) dv (2.120)

2.3.5 Synopsis of asymptotic expansions

From the previous sections, upm(0) and ppm(0) are known to be the macroscopic contribu-
tion, respectively, to the displacement and pore �uid pressure �eld, (2.77) and (2.82):

upm(0) = upm(0)(x, t) ppm(0) = ppm(0)(x, t)

While the terms representative of the oscillations due to the meso-structure, upm(1) and
ppm(1), are linearly dependent on the macroscopic terms and the dependency on the small
length scale x/ε is respectively concentrated in the coe�cients ξlm and ζ i, as written in
the (2.98) and in the (2.105):

upm(1)
(
x,

x

ε

)
= ξlm(x/ε)exlm

(
upm(0)(x)

)
+ π(x/ε) ppm(0)(x)

and
ppm(1)

(
x,

x

ε

)
= ζ i(x/ε)

∑
i

∇xp
pm(0)(x).ei

Then the form of the asymptotic expansions of all the variables, from (2.51a) to (2.55b),
are updated as follows:

upm(ε)(x) = upm(0)(x) + εupm(1)
(
x,

x

ε

)
+ · · · (2.121a)

ppm(ε)(x) = ppm(0)(x) + ε ppm(1)
(
x,

x

ε

)
+ · · · (2.121b)

vcf(ε)(x) = vcf(0)(x,x/ε) + εvcf(1)
(
x,

x

ε

)
+ · · · (2.121c)

and

σcf(ε)(x) = σcf(0)(x) + εσcf(1)
(
x,

x

ε

)
+ · · · (2.122a)

σpm(ε)(x) = σpm(0)
(
x,

x

ε

)
+ εσpm(1)

(
x,

x

ε

)
+ · · · (2.122b)

vpm(ε)(x) = vpm(0)
(
x,

x

ε

)
+ εvpm(1)

(
x,

x

ε

)
+ · · · (2.122c)

φ(ε)
u (x) = φ(0)

u

(
x,

x

ε

)
+ ε φ(1)

u

(
x,

x

ε

)
+ · · · (2.122d)

and

qpm(ε)(x) = qpm(0)
(
x,

x

ε

)
+ εqpm(1)

(
x,

x

ε

)
+ · · · (2.123a)

η(ε)
u (x) = η(0)

u

(
x,

x

ε

)
+ ε η(1)

u

(
x,

x

ε

)
+ · · · (2.123b)
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2.4 Macroscopic description

2.4.1 Linear momentum balance

Let us de�ne the homogenized stress Σ over the unit cell Y as:

|Y |Σ :=

∫
Y

σ(0) dv (2.124)

where |Y | is the volume of the cell Y and σ(0) is such that:

σ(0) =

{
σpm(0) in Y pm

σcf(0) in Y cf
(2.125)

Then, the de�nition above also reads:

|Y |Σ =

∫
Y pm

σpm(0) dv +

∫
Y cf
σcf(0) dv (2.126)

Now, the linear momentum balance (2.62ac) is integrated over the unit cell:∫
Y

(
divxσ

(0) + divyσ
(1)
)

dv = 0 (2.127)

or equivalently:∫
Y

divxσ
(0) dv +

∫
Y pm

divyσ
pm(1) dv +

∫
Y cf

divyσ
cf(1) dv = 0 (2.128)

By taking into account both the y-periodicity and stress continuity on the interface for
σ(1), then the previous relation reads:∫

Y

divxσ
(0) dv = 0 (2.129)

It is worth remarking that the unit cell Y does not depend on the macroscopic space
variable x: in fact, it is assumed that the distribution of the cavities is periodic in the
body . Therefore, the divergence operator with respect to x can be pushed out from the
integral on Y and (2.129) becomes:

divxΣ = 0 (2.130)

2.4.2 Constitutive law

The constitutive relation (2.56b) of the porous matrix and the constitutive hypothesis
(2.57a) for the cavity �uid are substitutited in the de�nition (2.126) of the homogenized
stress, it yields:

|Y |Σ =

∫
Y pm

c@

(
ex
(
upm(0)

)
+ ey(u

pm(1))
)

dv − ppm(0)
(
b |Y pm|+ I

∣∣Y cf
∣∣ ) (2.131)
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According to the (2.97), upm(1) is a linear function of the macroscopic strain, ex
(
upm(0)

)
,

and of the macroscopic �uid pressure, ppm(0), then the previous equation is rewritten as:

Σ = C@ex
(
upm(0)

)
−Bppm(0) (2.132)

where C is the homogenized elastic tensor and B is the homogenized Biot's tensor.

2.4.2.1 Homogenized coe�cients.

By substituting (2.97) in (2.131), the formulae of the homogenized coe�cients read:

|Y |C(y) := c |Y pm|+
∫
Y pm

c@ey
(
ξkl
)
dv (2.133a)

|Y |B(y) := b |Y pm|+ I
∣∣Y cf

∣∣− ∫
Y pm

c@ey(π)dv (2.133b)

or, by using the index notation:

|Y |Cijkl := cijkl |Y pm|+
∫
Y pm

cijmneymn
(
ξkl
)
dv (2.134a)

|Y |Bij := bij |Y pm|+ δij
∣∣Y cf

∣∣− ∫
Y pm

cijkheykh(π)dv (2.134b)

2.4.3 Variation of macro-porosities

The macroscopic porosityH, already introduced in (1.34), is here re-de�ned with reference
to the unit cell Y as:

H :=

∣∣Y cf
∣∣+ ηr |Y pm|
|Y |

(2.135)

It is worth remarking that, being explicitily in the small transformation framework, there
is no need to distinguish between H and Hr: in fact, at the order zero in terms of dis-
placements, they are equal. In the same way, in the following, all the volume subdomains
involved are implicitly the ones of the reference con�guration.
The relation (1.53) describing the variation of the macroscopic porosity Hu, is here rewrit-
ten in terms of the asymptotic expansions: actually, the terms divxu and ηu are replaced
by their expansion at order zero:

Hu =
1

|Y |

(∫
Y pm

η(0)
u dv + (ηr − 1)

∫
Y pm

(
divxu

pm(0) + divyu
pm(1)

)
dv

)
+

1

|Y |
(1−H)

∫
Y

(
divxu

pm(0) + divyu
pm(1)

)
dv (2.136)

By taking into account the independence of divxu
pm(0) on y, the y-periodicity of upm(1)

and the following relation deduced by using the de�nition (2.135):
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(ηr − 1) |Y pm|+ (1−H) |Y | = 0 (2.137)

�nally, the (2.136) becomes:

Hu =
1

|Y |

(∫
Y pm

η(0)
u dv + (ηr − 1)

∫
Y pm

divyu
pm(1) dv

)
(2.138)

It is worth remarking that in those calculations, the �eld upm(1) is extended in Y cf by
continuity.

2.4.3.1 Homogenized coe�cients.

The constitutive relation (2.60b) of the Eulerian microscopic porosity is substitutited in
(2.138) and it yields:

Hu =
1

|Y |

∫
Y pm

(
(b− ηrI) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0) + (ηr − 1) divyu

pm(1)
)

dv

(2.139)
which also reads:

Hu =
1

|Y |

∫
Y pm

(
(b− I) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0) + (1− ηr) divxu

pm(0)
)

dv

(2.140)
or:

Hu =
1

|Y |

∫
Y pm

(
(b− I) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0)

)
dv

+
1

|Y |
(
|Y pm|+

∣∣Y cf
∣∣− ∣∣Y cf

∣∣− ηr |Y pm|
)

divxu
pm(0) (2.141)

By using the de�nition (2.135) of the Eulerian macroscopic porosity H, it also reads:

Hu =
1

|Y |

∫
Y pm

(
(b− I) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0)

)
dv + (1−H) divxu

pm(0)

(2.142)
or, by means of (1.60b), in terms of the Lagrangian macroscopic porosity Φu:

Φu =
1

|Y |

∫
Y pm

(
(b− I) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0)

)
dv + divxu

pm(0) (2.143)

Now, by taking into account (2.97), that is, upm(1) depends linearly on the macroscopic
strain ex

(
upm(0)

)
and on the macroscopic �uid pressure ppm(0) it is possible to de�ne the

homogenized Biot's tensor B̃ and the homogenized Biot's modulus S by:
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B̃ : ex(u
pm(0)) + S ppm(0)

=
1

|Y |

∫
Y pm

(
(b− I) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0)

)
dv + divxu

pm(0) (2.144)

By substituting (2.97) in(2.144), the formulae of the homogenized coe�cients follow:

|Y | B̃ := |Y pm| b + I
∣∣Y cf

∣∣+

∫
Y pm

(b− I) ◦ ey
(
ξij
)
dv (2.145a)

|Y | S := |Y pm| s+

∫
Y pm

(b− I) : ey(π)dv (2.145b)

By using the index notation, they reads:

|Y | B̃ij := |Y pm| bij + δij
∣∣Y cf

∣∣+

∫
Y pm

(bkl − δkl) eykl
(
ξij
)
dv (2.146a)

|Y | S := |Y pm| s+

∫
Y pm

(bkl − δkl) eykl
(
π
)
dv (2.146b)

2.4.3.2 Constitutive relations.

Then, the relation which describes the variation of the Eulerian macroscopic porosity Hu

as a function of the macroscopic strain ex(upm(0)) and of the macroscopic pressure ppm(0)

reads:

Hu = (B̃−HI) : ex(u
pm(0)) + S ppm(0) (2.147)

or equivalently, by using (1.60b), in terms of Lagrangian macroscopic porosity Φu as:

Φu = B̃ : ex(u
pm(0)) + S ppm(0) (2.148)

2.4.3.3 A proof

In the mesoscopic description, in reason of the thermodynamics, the Biot's coe�cient b
appears in both the constitutive relation (2.27) of the porous matrix and in the relation
(2.33) of the Lagrangian microporosity φu. Given that the homogenization does not a�ect
the thermodynamics and even at the macroscopic scale this equality must hold up. Then,
the macroscopic coe�cients B and B̃, de�ned in (2.133b, 2.145a), must be equal. The
proof is provided in this section.

The weak formulation (2.86) of the unit cell problem for upm(1) can be written for two
particular test functions z ∈ Z which are derived from the solution (2.98) of the same
problem. As �rst, the (2.86) is rewritten for the combination:

ex
(
upm(0)(x)

)
= I, ppm(0) = 0 (2.149)
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which implies that upm(1) = ξij, and by imposing z = π:∫
Y pm

c@ey(ξ
ij) : ey(π) dv = −

∫
Y pm

c@ey(π) : I dv (2.150)

Now, the (2.86) is rewritten for the combination ex
(
upm(0)(x)

)
= 0 and p(0) = 1 which

implies that upm(1) = π, and by imposing z = ξij:∫
Y pm

c@ey(π) : ey(ξ
ij) dv =

∫
Y pm

(b− I) : ey(ξ
ij) dv (2.151)

Given the symmetry of the tensors involved and the properties of the transpose matrix,
the comparison between (2.150) and (2.151) yields:∫

Y pm
(b− I) : ey(ξ

ij) dv +

∫
Y pm

c@ey(π) : I dv = 0 (2.152)

By using the de�nitions (2.133b, 2.145a) of the homogenized coe�cients B and (B̃), it
follows that:

|Y | (B̃−B) =

∫
Y pm

(
b + (b− I) ◦ ey

(
ξij
)
dv +

∫
Y pm

c@ey(π)dv (2.153)

which, given the (2.152), yields the expected result:

B̃ = B (2.154)

2.4.4 Fluid mass balance

The expansion (2.67c) of the �uid balance in terms of the absolute �uid velocity, vpm,
and of the variation of the Eulerian microscopic porosity, ηu, is integrated over the porous
part Y pm of the unit cell:

0 =

∫
Y pm

(
η̇(0)
u + divy

(
ηrv

pm(1)
)

+ divx
(
ηrv

pm(0)
))

dv (2.155)

which, by taking into account the y-periodicity of vpm(1) and upm(1), becomes:

0 =

∫
Y pm

(
η̇(0)
u + divx

(
ηrv

pm(0)
))

dv +

∫
Γ

ηr

(
vpm(1) − u̇pm(1)

)
.n ds+

∫
Γ

ηru̇
pm(1).n ds

(2.156)
Now, the �uid mass balance (2.72c) through the interface is introduced and, by means of
the divergence theorem, the previous equation is rewritten as:

0 =

∫
Y pm

(
η̇(0)
u +divx

(
ηrv

pm(0)
))

dv−
∫
Y cf

divyvcf(1) dv+

∫
Γ

(ηr− 1)u̇pm(1).n ds (2.157)
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which, by using the incompressibility condition (2.58b) of the cavity �uid and (2.138),
reads also:

0 = |Y | Ḣu +

∫
Y pm

divx
(
ηrv

pm(0)
)

dv +

∫
Y cf

divxvcf(0) dv (2.158)

So, by taking into account that the unit cell Y does not depend on the macroscopic space
variable x, the (2.158) reads:

0 = divx
(
VH

)
+ Ḣu (2.159)

where V denotes the macroscopic absolute �uid velocity which is de�ned as:

V :=
1

|Y |H

∫
Y

ṽ(0) dv =
1

|Y |H

(∫
Y pm

ηrv
pm(0) dv +

∫
Y cf

vcf(0) dv

)
(2.160)

where the absolute velocity �eld ṽ(0) is de�ned as:

ṽ(0) =

{
ηrv

pm(0) in Y pm

vcf(0) in Y cf
(2.161)

As an alternative, by using the (1.60b), the (2.158) can be rewritten as:

0 = divxQ + Φ̇u (2.162)

where Q denotes the macroscopic relative �ow vector of �uid volume which is de�ned as:

Q := H
(
V − u̇pm(0)

)
(2.163)

or, given (2.160), as:

Q :=
1

|Y |

∫
Y

q̃pm(0) dv =
1

|Y |

(∫
Y pm

qpm(0) dv +

∫
Y cf

(
vcf(0) − u̇pm(0)

)
dv

)
(2.164)

with the relative �uid vector q̃pm(0) de�ned as:

q̃pm(0) =

{
qpm(0) in Y pm

vcf(0) − u̇pm(0) in Y cf
(2.165)

In the end, as it was at the mesoscopic scale, (2.22, 2.20), even at the macroscopic one,
(2.159, 2.162), the �uid mass balance is written in two equivalent formulations: the one
in terms of absolute velocity and Eulerian porosity, the other one in terms of relative �ow
and Lagrangian porosity.
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2.4.5 Darcy's law

Given the de�nition (2.160) of the macroscopic absolute �uid velocity V and (2.163) of
the macroscopic relative �ow vector Q := H

(
V − u̇pm(0)

)
, it follows that:

Q =
1

|Y |

(∫
Y pm

ηrv
pm(0) dv +

∫
Y cf

vcf(0) dv

)
−

(∣∣Y cf
∣∣+ ηr |Y pm|
|Y |

)
u̇pm(0) (2.166)

where the de�nition (2.135) of the macroporosity H is applied. By taking into account
that u̇pm(0) does not depend on y, the (2.166) is rewritten as:

|Y |Q =

∫
Y pm

qpm(0) dv +

∫
Y cf

(
vcf(0) − u̇pm(0)

)
dv (2.167)

and, given the (2.120), it becomes:

|Y |Q =

∫
Y pm

(
I +∇yZ

)
@qpm(0) dv (2.168)

Now, the mesoscopic relative �ow vector qpm(0) is rewritten by means of the Darcy's law
and it yields:

|Y |Q = −
∫
Y pm

(
I +∇yZ

)
◦ k@

(
∇xp

pm(0) +∇yp
pm(1)

)
dv (2.169)

Given the (2.107), that is to say that ppm(1) depends linearly on the gradient of the
macroscopic pressure, ∇xp

pm(0), its di�erential with respect to the space variable y reads:

dppm(1) = ∇xp
pm(0).

(
∇yZ@dy

)
=
(
∇yZ

t
@∇xp

pm(0)
)
.dy (2.170)

which clearly implies that:

∇yp
pm(1) = ∇yZ

t
@∇xp

pm(0) (2.171)

In the end, by substituting the (2.171) in the (2.169), the macroscopic Darcy's law reads:

Q = −K@∇xp
pm(0) (2.172)

where K is the homogenized permeability and it is de�ned as:

|Y |K := −
∫
Y pm

(
I +∇yZ

)
◦ k ◦

(
I +∇yZ

t
)

dv (2.173)

or, by using (2.119), as follows:

|Y |K := −
∫
Y pm

(
I +

∑
i

ei ⊗∇yζ
i
)
◦ k ◦

(
I +

∑
i

∇yζ
i ⊗ ei

)
dv (2.174)
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2.4.6 Synopsis of macroscopic description

The macroscopic equations describing the hydro-mechanical behaviour of the equivalent
continuum to the porous solid with �uid-�lled cavities are listed below.
The equilibrium equation and the constitutive law,

divxΣ = 0, Σ = C@ex
(
upm(0)

)
−B ppm(0) (2.175)

where C is the homogenized elastic tensor and B is the homogenized Biot's tensor:

|Y | C := c |Y pm|+
∫
Y pm

c@ey
(
ξkl
)
dv (2.176a)

|Y | B := b |Y pm|+ I
∣∣Y cf

∣∣− ∫
Y pm

c@ey
(
π
)
dv (2.176b)

The �uid mass balance
0 = divxQ + Φ̇u (2.177)

with

Q := H
(
V − u̇pm(0)

)
, H :=

∣∣Y cf
∣∣+ ηr |Y pm|
|Y |

(2.178)

The constitutive relation for the variation of the macroscopic Lagrangian porosity:

Φu = B̃ : ex(u
pm(0)) + S ppm(0) (2.179)

where the homogenized Biot's tensor B̃ and the homogenized Biot's modulus S are de�ned
by:

|Y | B̃ :=b |Y pm|+ I
∣∣Y cf

∣∣+

∫
Y pm

(b− I) ◦ ey
(
ξij
)
dv (2.180a)

|Y | S :=s |Y pm|+
∫
Y pm

(b− I) : ey
(
π
)
dv (2.180b)

where it has been proved that B̃ = B. The Darcy's law:

Q = −K@∇xp
pm(0) (2.181)

where K(x,y) is the homogenized permeability and it is de�ned as:

|Y | K := −
∫
Y pm

(
I +∇yZ

)
◦ k ◦

(
I +∇yZ

t
)

dv (2.182)
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2.5 Numerical solution of unit cell problems

In this section the numerical evaluation of the homogenized coe�cients is presented.
Given the de�nitions (2.176, 2.180b) of the homogenized elasticity tensor C, the Biot's
coupling tensor B and Biot's modulus S, it is apparent that the characteristic functions
ξlm(y) and π(y) must be computed in order to evaluate the homogenized coe�cients.
That is, the corresponding unit cell problems have to be solved numerically and, once it is
done, the numerical evaluation of the homogenized coe�cients reduces to the evaluation
of the integrals appearing in their de�nitions.
Morevoer, even if the problems are quasi-static, this procedure is repeated for several
values of the cavity length.

Remark 2.5.1. It is worth remarking a limit of the model: given the hypothesis of meso-
scopic �uid-�lled cavities not connected in a network, that is, every single cavity exchanges
�uid only with the surrounding porous saturated solid, then the cavity length does not in-
�uence the homogenized permeability K.

The relation (2.98) de�nes upm(1) as follows:

eykh(upm(1)) = eykh(ξlm)exlm(upm(0))− eykh(π)ppm(0) (2.183)

and, by substitution in the constitutive relation (2.56b) of the porous medium, the pure
mechanical boundary value problem (2.85) of higher order reads

0 =
∂

∂yj

[
cijkh

(
exlm

(
upm(0))

(
δklδhm + eykh(ξlm)

)
− eykh(π)ppm(0)

)
− bijppm(0)

]
(2.184a)

−ppm(0)ni =

[
cijkh

(
exlm

(
upm(0)

)(
δklδhm + eykh(ξlm)

)
− eykh(π)ppm(0)

)
− bijppm(0)

]
nj

(2.184b)

Figure 2.8: Numerical solution of unit cell problems: unstructured mesh (left), plots of the

deformed con�guration and of the norm of ξ22 (center) and ξ12 (right).
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Figure 2.9: Terms of the homogenized elasticity tensor appearing in constitutive equation (2.175)

as a function of cavity length.

From a numerical point of view the (2.184) represents 3+1 boundary value problems: in
fact, for {

ppm(0) = 0

exlm = δklδhm = 1 with lm = 11, 22, 12, 21
(2.185)

we have that upm(1) = ξlm and we get the following 4 boundary value problems in the
unknown ξlm(y) with lm=11, 22, 12 and 22.

0 =
∂

∂yj

(
cijlm + cijkheykh(ξlm)

)
in Y pm

0 =
(
cijlm + cijkheykh(ξlm)

)
nj on Γ

Periodicity on ∂Y

(2.186)

While for {
ppm(0) = −1

exlm = 0
(2.187)

then upm(1) = π and we get the following boundary value problem in the unknown π(y)
∂

∂yj

(
cijkheykh(π) + bij

)
in Y pm,

1ni =
(
cijkheykh(π) + bij

)
nj on Γ

Periodicity on ∂Y

(2.188)
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Figure 2.10: Terms of the homogenized Biot's tensors appearing in constitutive equations (2.175,

2.179) as a function of cavity length

Figure 2.11: Homogenized storage modulus S appearing in constitutive equations (2.179) as a

function of cavity length d.

The implementation of this serie of unit cell problems in a Finite Element Code provides
the solution of the functions ξlm(y) (�g. 2.8) and π(y). Then, by evaluation of the
integrals appearing in the de�nitions of the homonized coe�cients, their numerical values
are obtained and they are represented as function of the cavity length in the �gures 2.9,
2.10 and 2.11.
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The following values of the mesoscopic parameters characterising the porous matrix were
used in the calculations:

E = 1GPa ν = 0.3 b = 0.8 s = 1 · 10−11 η = 0.4 (2.189)

while, concerning the geometry of cavity, the thickness is 0.01, that is, 1/100 of the entire
unit cell, and the egdes are modelled as semicircles.

2.6 Conclusions

In this chapter, we employed the method of homogenization based on asymptotic de-
velopments in order to deduce the macroscopic description of a solid with double-scale
�uid-�lled heterogeneities: the microscopic saturated pores and the mesoscopic crack-like
cavities. It worths noting that no phenomenological assumptions have been considered
for the macroscopic equations.
By the end of the chapter, the numerical evaluation of homogenized elasticity tensor,
Biot's coupling tensor and Biot's modulus (i.e. mechanical and capacity properties) is
presented.
The model will be used in the next chapter where the evolution of the �uid-�lled cavi-
ties will be taken into account. For this, the e�ective coe�cients obtained here will be
considered as functions of the length of the cavities playing the role of damage parameter.



Chapter 3

Energy analysis and damage evolution

law

3.1 Introduction

In the chapter 2, by means of the method of the asymptotic homogenization, the macro-
scopic description for the porous solid with �uid-�lled cavities is obtained. That is, for
the investigated geomaterial characterised by double-scale �uid-�lled heterogeneities, a
Biot-like model which describes the hydro-mechanical behaviour of the equivalent contin-
uum is deduced.
The objective of this chapter is to enrich the poroelastic model with damage, that is,
it is assumed that the mesoscopic �uid-�lled cavities may propagate. It means that a
link between the meso-structural fracture phenomena and the corresponding macroscopic
damage is required. This link is given by homogenization combined with mesoscopic
hydro-mechanical energy analysis leading to the damage evolution law.

The following assumptions about the geometry of the propagation are made (�g. 3.1):
the trajectory of propagation is smooth and a priori known; only the semi-circular edges
of the interface are moving and all their material points have the same velocity v; the

Figure 3.1: Geometrical assumption about the propagation of the mesoscopic �uid-�lled cavity.

Periodic cell Bε with cavity length l. Resized unit cell Y with cavity length d

55
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propagation of the cavity fronts is symmetric with respect to a middle point, then the
cavity evolution is completely described by the evolution of the cavity length, denoted by
l or d depending on the change of variables, which is referred to as damage variable.

In the section 3.2, in order to have a clear physical interpretation of the mesoscopic
energetic terms appearing in the following energy analysis, it is proposed a study of the
microsocpic structure. Actually, the strain energy of the solid phase and the dissipation
associated to the �ow of the pore �uid are de�ned and, then, the corresponding mesoscopic
terms are deduced by upscaling.
In the section 3.3, the aim is to de�ne the physical energy release rate. Then, following the
approach proposed by Gurtin (1979a), a mesoscopic energy analysis is performed in the
whole body and the exact �elds of the mesoscopic description (section 2.2) are considered.
Lastly, in the section 3.4, we extend to the case of evolving �uid-�lled cavities the method
developed in Dascalu, Bilbie and Agiaso�tou (2008) and Dascalu (2009), which combines
the mesoscopic cell energy analysis and the asymptotic homogenization method to obtain
e�ective damage evolution laws.

3.2 From micro- to meso-energy terms

In this section, starting from the de�nition of the volumetric density of the strain energy
of the solid phase and of the dissipation associated to the �ow of the pore �uid, the
corresponding mesoscopic terms are de�ned by means of asymptotic developments and
average values. Lastly, these latter ones are written in terms of poroelastic mesoscopic
coe�cients.

3.2.1 Strain energy

Let ψs(e), with e denoting the size of the microscopic periodic cell, be the microscopic
volumetric density of strain energy of the solid phase which is de�ned as follows:

ψs(e) :=
1

2
σs(e) : ex

(
us(e)

)
(3.1)

By means of the asymptotic expansions (B.4a, B.4b) of us(e) and ppf(e), the development
of ψs(e) reads:

ψs(e) = ψs(0) + e ψs(1) + ... (3.2)

with the term of order zero in the energy rate of e which, by means of the corresponding
term (B.5e) in the expansion of the constitutive law, reads as follows:

ψs(0) =
1

2
σs(0) :

(
ex
(
us(0)

)
+ ey

(
us(1)

))
(3.3)

Taking into account that the �uid is assumed to be incompressible, then the mesoscopic
volumetric density of strain energy ψpm(ε) of the porous matrix can be de�ned as the
average value of ψs(0) over the entire microscopic periodic cell Z (�g. 3.2):
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ψpm(ε) :=
1

|Z|

∫
Zs
ψs(0) ds (3.4)

where ds is the in�nitesimal surface element. Given the constitutive law (B.5e) for the
solid phase at order zero in the powers of e, its rate ψ̇pm(ε) reads:

ψ̇pm(ε) =
1

|Z|

∫
Zs
ψ̇s(0) ds =

1

|Z|

∫
Zs
σs(0) :

(
ex
(
u̇s(0)

)
+ ey

(
u̇s(1)

))
ds (3.5)

Given the equilibrium equation (B.5a) in the solid part Zs of the microscopic periodic
cell, it follows that:

σs(0) : ey
(
u̇s(1)

)
= σs(0) : ∇y(u̇

s(1)) = divy
(
σs(0)

@u̇s(1)
)

(3.6)

Then, by taking into account the term of order zero in the powers of e of the stress
continuity condition at the interface Γs−pf between the pore �uid and the solid phase,
and the periodicity on the external boundary ∂Z of the microscopic unit cell Z, the (3.5)
becomes:

ψ̇pm(ε) =
1

|Z|

[
ex
(
u̇s(0)

)
:

∫
Zs
σs(0) ds− ppf(0)

∫
Γs−pf

u̇s(1).n dλ
]

(3.7)

where dλ is the in�nitesimal line element. Let the mesoscopic stress tensor σpm(ε) of the
porous matrix be de�ned as the average value of the zero order term in the powers of e
of the microscopic stress tensor σ(e) over the entire microscopic periodic cell Z:

Figure 3.2: Mesoscopic and microscopic periodic structures. Bε and Be are the periodic cells,

their sizes are such that: ε >> e. Rescaling of Bε in Y = Y pm ∪Y cf , and of Be in Z = Zs ∪Zpf .
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σpm(ε) :=
1

|Z|

∫
Z

σ(0)ds =
1

|Z|

(∫
Zs
σs(0)ds−

∫
Zpf

σpf(0)ds
)

(3.8)

and, given the relation (B.5g) of order zero in the power of e of the constitutive law for
the pore �uid, it reads also:

σpm(ε) =
1

|Z|

∫
Zs
σs(0)ds− ηr ppf(0) I (3.9)

where ηr is theEulerian mesoscopic porosity in the reference con�guration (1.22).
By means of the no-slip condition (B.5k) on Γs−pf and of the incompressibility condition
(B.5c) of the pore �uid in Y pf , the following identities follow:

∫
Γs−pf

u̇s(1)n dλ =

∫
Γs−pf

vpf(1)n dλ = divx

∫
Y pf

vpf(0) ds = |Y pm| divxvpm(ε) (3.10)

where vpm(ε) is the mesoscopic pore �uid velocity and it is de�ned as the average value of
the microscopic pore �uid velocity on the entire periodic cell Z as follows:

vpm(ε) :=
1

|Zpf |

∫
Zpf

vpf(0) ds (3.11)

Let qpm(ε) be the relative �uid �ow vector de�ned as follows:

qpm(ε) = ηr
(
vpm(ε) − u̇pm(ε)

)
(3.12)

Remark 3.2.1. Di�erently from Auriault (2004) (see appendix B), where the mesoscopic
pore �uid velocity v

pm(ε)
Aur is de�ned as:

v
pm(ε)
Aur :=

1

|Z|

∫
Zpf

vpf(0)ds (3.13)

and implies

q
pm(ε)
Aur := v

pm(ε)
Aur − ηr u̇pm(ε) (3.14)

in this thesis the de�nition (3.11) is adopted and leads to (3.12).

Remark 3.2.2. In analogy with the remark 1.4.3, the microscopic terms of order zero
us(0) and ppf(0) in the power of e can be set as the mesoscopic displacement upm(ε) and
pore �uid pressure ppm(ε).

Then, by using the (3.8, 3.10), the expression (3.7) of the ψ̇pm(ε) is rewritten as follows:

ψ̇pm(ε) = σpm(ε) : ex
(
u̇pm(ε)

)
− ppm(ε) divxqpm(ε) (3.15)
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By taking into account the mesoscopic �uid mass balance (2.20), the mesoscopic Biot's
constitutive laws (2.27, 2.33) for the porous matrix and the variation of mesoscopic poros-
ity respectively, the volumetric density of the strain energy rate ψ̇pm(ε) in the porous matrix
reads:

ψ̇pm(ε) = c@ex
(
upm(ε)

)
: ex
(
u̇pm(ε)

)
+ s ppm(ε) ṗpm(ε) (3.16)

and, by integration in time, it follows that:

ψpm(ε) =
1

2

(
c@ex

(
upm(ε)

)
: ex
(
upm(ε)

)
+ s

(
ppm(ε)

)2
)

(3.17)

Remark 3.2.3. For an incompressible �uid, the (2.25) links the �uid mass content mpm

to the variation of the Lagrangian mesoscopic porosity φu. Then, the relation proposed
in Callari (2007) for the volumetric density of strain energy ψpm(ε) in terms of mpm is
rewritten below in terms of φu:

ψpm(ε) =
1

2
c@ex(u

pm(ε)) : ex(u
pm(ε))+

(
b : ex(u

pm(ε))
)2

2s
+
φ
pm(ε)
u

s

(
φ
pm(ε)
u

2
−b : ex(u

pm(ε))

)
(3.18)

And, by means of the constitutive relation (2.33) for φpm(ε)
u , it is easily proved1 that the

relations (3.18) and (3.17) are identical.

3.2.2 Dissipation in the pore �uid

As already written in the (2.29), the viscosity of the pore �uid is of order two in the powers
of the microscopic scale parameter e. Moreover, it is assumed to be incompressible.
Then, the pore �uid is not capable to store any energy. However, a dissipation of energy
is associated to its motion through the pores.
Let Dpf(e) be the volumetric dissipation of the pore �uid at the microscopic scale which
is de�ned as follows:

Dpf(e) := −σpf(e) : Dx(v
pf(e)) (3.19)

where Dx(v
pf(e)) denotes the strain rate tensor, that is the symmetric part of the gradient

of the velocity �eld vpf(e) of the pore �uid.
By means of the asymptotic expansions (B.5f) of Dx(v

pf(e)), the development of Dpf(e)

reads:
1For b = bI, the following identities hold:

b(I⊗ I)ex(upm(ε)) : ex(upm(ε)) =
(
b : ex(upm(ε))

)2
b(I⊗ I)ijkhexkh(upm(ε))exij(u

pm(ε)) = b2δijexij(u
pm(ε))δkhexkh(u) =

(
bδijexij(u

pm(ε))
)2
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Dpf(e) = Dpf(0) + eDpf(1) + ... (3.20)

with the term of order zero in the powers of e which reads as follows:

Dpf(0) = −σpf(1) : Dy(v
pf(0)) = −2µDy

(
vpf(0)

)
: Dy

(
vpf(0)

)
(3.21)

where the corresponding terms in the expansion of the constitutive law (B.5h) and the
�uid incompressibility (B.5b) are taken into account.
At the mesoscopic scale, the volumetric density of dissipation Dpm(ε) in porous matrix is
de�ned as the average value of Dpf(0) over the entire microscopic periodic cell Z:

Dpm(ε) :=
1

|Z|

∫
Zpf
Dpf(0) ds (3.22)

With the aim of writing Dpm(ε) in terms of mesoscopic quantities, the following calculus is
developed. The equilibrium equation at order zero (B.5a) is multiplied by the pore �uid
velocity at the order zero vpf(0) and integrated over the pore �uid subdomain Zpf of the
microscopic periodic unit cell:∫

Zpf
vpf(0).

(
divxσpf(0) + divyσpf(1)

)
ds = 0 (3.23)

By using the constitutive law (B.5g) of the �uid pore at order zero in the power of e and
the integration by parts, it follows that:

−∇xp
pf(0).

∫
Zpf

vpf(0)ds+

∫
Zpf
σpf(1) : Dy(v

pf(0))ds+

∫
Γs−f

σpf(1)
@n.vpf(0) dλ = 0 (3.24)

Given the no-slip condition (B.5j) on the interface Γs−pf , then it follows that:∫
Γs−pf

σpf(1)
@n.vpf(0) dλ = −u̇s(0).

∫
Zpf

divy
(
σpf(1)

)
ds

= u̇s(0).

∫
Zpf

divx
(
σpf(0)

)
ds =

∣∣Zpf
∣∣ u̇s(0).∇xp

pf(0) (3.25)

Then, by using the de�nition (3.22) of Dpf and given the remark 3.2.2, the energy rate
balance (3.24) is rewritten as:

Dpm(ε) = −qpm(ε).∇xp
pm(ε) = k@∇xp

pm(ε).∇xp
pm(ε) (3.26)

where it has been used also the mesoscopic Darcy's law (2.35).
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3.3 Global energy analysis at the mesoscale

Following Gurtin (1979a), a mesoscopic energy analysis is performed in the whole body
Ω (�g. 3.3) before applying the homogenization method, that is, the exact �elds of the
mesoscopic description (section 2.2) are taken into account. Then, the physical de�nition
of the fracture energy release rate is obtained.
In the physical space, the mesoscopic structure is locally periodic, in the sense that the
length of the cavities may vary smoothly with respect to the spatial variable, being ε the
size of the period, l the cavity length and dΛ the in�nitesimal line element.

As already written in the section 2.2, at the mesoscopic scale of observation, the whole
body Ω appears as a porous solid which contains a distribution of �uid-�lled cavities. So,
it is can be described as the union of two disjoint subdomains: the porous matrix subdo-
main Ωpm and the set of �uid-�lled cavities Ωcf ; that is, Ω = Ωpm∪Ωcf and ∅ = Ωpm∩Ωcf

(�g. 2.2).
The �uid-�lled cavity volume subdomain is de�ned as Ωcf =

⋃A
α=1 cα where cα is the α-th

cavity out of A cavities. The boundary ∂Ωpm of the porous matrix is composed by an
external part ∂Ω and an internal one ∂Ωcf =

⋃A
α=1 ∂cα, such that ∂Ωpm = ∂Ω ∪ ∂Ωcf .

A synopsis of the mesoscopic equations governing the hydro-mechanical behaviour of the
porous solid with �uid-�lled cavities is already provided in the section 2.2.6. However, in
order to perform the global energy analysis, the condition on the external boundary ∂Ω
have to be added and they are introduced below2:

σpm(ε)
@n = F on ∂Ω (3.27a)

qpm(ε).n = W on ∂Ω (3.27b)

2It is worth pointing out that in the section 2.2.6 the exact mesoscopic �elds are not denoted by the
superscript (ε) simply because the idea of a serie of periodic mesoscopic structures of period ε → 0 was
not yet introduced.

Figure 3.3: The body Ω with its mesoscopic and locally periodic structure. The unit vector n
is the outward normal of the porous matrix Ωpm and it is denoted as nα on the boundary of the

αth cavity.
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where n is the outward normal to Ωpm (�g. 3.3).

3.3.1 Weak formulation of linear momentum balance

The virtual power formulation of the equilibrium equation (2.47a) in the whole body Ω
reads: ∀w,

0 = −
∫

Ω

σ(ε) : ex(w) dS +

∫
∂Ω

(σ(ε)
@n).w dΛ (3.28)

where dS and dΛ are the in�nitesimal surface and line element respectively. By taking into
account the constitutive relations (2.47e) and (2.47f) and the stress boundary condition
(3.27a) on ∂Ω, it becomes: ∀w,

0 = −
∫

Ωpm

(
c@ex(u

pm(ε))− b ppm(ε)
)

: ex(w) dS −
A∑
α=1

pcf(ε)
α

∫
∂cα

w.nα dΛ +

∫
∂Ω

F.w dΛ

(3.29)
with nα being the inward unit normal vector to the cavity cα (�g. 3.3) and the �uid
pressure pcf(ε)

α being homogeneous in every single cavity.

3.3.2 Weak formulation of �uid mass balance

The virtual power formulation of the �uid volume balance (2.47c) in the porous matrix
Ωpm reads: ∀h,

0 =

∫
Ωpm

(
φ̇(ε)
u h− qpm(ε).∇xh

)
dS +

∫
∂Ωpm

hqpm(ε).n dΛ (3.30)

Given the boundary condition (3.27b), the �uid volume conservation across the cavity
interface (2.47j), the cavity �uid incompressibility (2.47b) and by imposing to the test
function h to be homogeneous in every single cavity cα, just like the cavity �uid pressure,
it becomes: ∀h s.t. h = hα in cα,

0 =

∫
Ωpm

(
φ̇(ε)
u h− qpm(ε).∇xh

)
dS +

∫
∂Ω

hW dΛ−
A∑
α=1

hα

∫
∂cα

u̇pm(ε).nα dΛ (3.31)

By inserting also the constitutive law (2.47g), it follows that: ∀h s.t. h = hα in cα,

0 =

∫
Ωpm

((
b : ex(u̇

pm(ε)) + s ṗpm(ε)
)
h− qpm(ε).∇xh

)
dS

+

∫
∂Ω

hW dΛ−
A∑
α=1

hα

∫
∂cα

u̇pm(ε).nα dΛ (3.32)
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3.3.3 Weak formulation of cavity �uid incompressibility

The virtual power formulation of the cavity �uid incompressibility (2.47b) reads: ∀h,

0 =

∫
Ωcf

(
divx

(
hvcf(ε)

)
− vcf(ε).∇xh

)
dS (3.33)

or: ∀h s.t. h = hα in cα,

0 =
A∑
α=1

hα

∫
∂cα

vcf(ε).nα dΛ +
A∑
α=1

∫
cα

vcf(ε).∇xhα dS (3.34)

where, because of ∇xhα = 0, the second term vanishes. In the end, by also making use of
the interface condition (2.47j), the (3.34) becomes:

0 =
A∑
α=1

hα

∫
∂cα

(
qpm(ε) + u̇pm(ε)

)
.nα dΛ (3.35)

3.3.4 Energy rate balance

3.3.4.1 Stationary cavities

The weak formulation of the full mesoscopic problem (2.47, 3.27) is obtained by combining
the relations (3.29) and (3.32) as follows:

0 =

∫
∂Ω

(F.w − hW ) dΛ +
A∑
α=1

(
hα

∫
∂cα

u̇pm(ε).nα dΛ− pcf(ε)
α

∫
∂cα

w.nα dΛ

)

−
∫

Ωpm

((
c@ex(u

pm(ε))−b ppm(ε)
)

: ex(w) +
(
b : ex(u̇

pm(ε)) + s ṗpm(ε)
)
h−qpm(ε).∇xh

)
dS

(3.36)
In order to get the real power involved in the deformation of the medium, let us set
w = u̇pm(ε), h = ppm(ε) and hα = p

cf(ε)
α . Moreover, the �uid pressure continuity (2.47h) on

the cavity boundary is taken into account and so the previous relation can be rewritten
as:

−
∫

Ωpm
qpm(ε).∇xp

pm(ε) dS =

∫
∂Ω

(F.u̇− ppm(ε) W ) dΛ

−
∫

Ωpm

(
c@ex(u

pm(ε)) : ex(u̇
pm(ε)) + s ppm(ε) ṗpm(ε)

)
dS (3.37)

which, given the de�nitions (3.17, 3.26) of the mesoscopic volumetric density of the strain
energy ψpm(ε) respectively, and of the dissipationDpm(ε) associated to the pore �uid motion
at the mesoscopic scale, becomes:∫

Ωpm
Dpm(ε) dS =

∫
∂Ω

(F.u̇pm(ε) − ppm(ε) W ) dΛ−
∫

Ωpm

∂ψpm(ε)

∂t
dS (3.38)
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The physical meaning of which is clear: the power supplied through the boundary ∂Ω is
both stored in the poroelastic matrix Ωpm and dissipated because of the �uid �ow through
the porous matrix.

Remark 3.3.1. In the (3.38), the integral de�ned on ∂Ω can be rewritten by means of
the divergence theorem and of the boundary conditions (3.27a, 3.27b) as:∫

∂Ω

(F.u̇pm(ε) − ppm(ε) W ) dΛ =

∫
∂Ω

(σpm@n.u̇pm(ε) − ppm(ε) qpm.n) dΛ

=

∫
Ωpm

divx
(
σpm(ε)

@u̇− ppm(ε) qpm(ε)
)
dS − ppm(ε)

∫
∂Ωcf

(
qpm(ε) + u̇pm(ε)

)
.n dΛ (3.39)

where the second term of the last expression is a zero as already shown in the (3.35).
Then, by also taking into account the linear momentum balance in Ωpm and the symmetry
of the second order tensor σpm(ε), it follows that:∫

∂Ω

(F.u̇pm(ε)− ppm(ε) W ) dΛ =

∫
Ωpm

(
σpm(ε) : ex(u̇

pm(ε))− divx(ppm(ε) qpm(ε))
)
dS (3.40)

Taking into account the remark above, the energy balance (3.38) reads also:

∫
Ωpm
Dpm(ε) dS =

∫
Ωpm

(
σpm(ε) : ex(u̇

pm(ε))− divx(ppm(ε) qpm(ε))− ψ̇pm(ε)
)
dS (3.41)

or

0 =

∫
Ωpm

(
σpm(ε) : ex(u̇

pm(ε)) + ppm(ε)φ̇(ε)
u − ψ̇pm(ε)

)
dS (3.42)

Remark 3.3.2. By writing the weak formulations in a subdomain of Ω and not on the
entire domain, as done in this section, given the arbitrariness of Ωpm, both the (3.41,
3.42) can be written in a local form as:

Dpm(ε) = σpm(ε) : ex(u̇
pm(ε))− divx(ppm(ε) qpm(ε))− ψ̇pm(ε) (3.43)

or equivalently:
0 = σpm(ε) : ex(u̇

pm(ε)) + ppm(ε)φ̇(ε)
u − ψ̇pm(ε) (3.44)
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3.3.4.2 Evolving cavities and fracture energy release rate

Now the possible propagation of the mesoscopic �uid-�lled cavities is taken into account
and the porous subdomain Ωpm becomes dependent on time through the length lα of the
αth cavity : Ωpm = Ωpm

[
lα(t)

]
. So, by means of an adaptation of the Reynolds transport

theorem (see appendix D) and of the conditions (2.47i, 2.47f) at the cavity boundary, the
energy rate balance (3.38) is rewritten as:

∫
Ωpm
Dpm(ε) dS +

A∑
α=1

∫
∂cfrα

−ψpm(ε)vα.nα dΛ

=

∫
∂Ω

(F.u̇pm(ε) − ppm(ε) W ) dΛ− d
dt

∫
Ωpm

ψpm(ε) dS (3.45)

where ∂cfrα is the union of the left and right front of the αth cavity which move with
a propagation speed vector vα = (l̇α/2)mα, l̇α is the cavity length rate and nα is the
inward normal to the cavity cα (�g. 3.3.4.2). And its physical meaning is clear: the power
supplied through the boundary ∂Ω is partially stored in the poroelastic matrix Ωpm and
partially dissipated because of both the �uid �ow and the cavity propagation. In the same
way, the (3.42) becomes:

∫
Ωpm
Dpm(ε) dS +

A∑
α=1

∫
∂cfrα

−ψpm(ε)vα.nα dΛ

=

∫
Ωpm

(
σpm(ε) : ex(u̇

pm(ε))− divx(ppm(ε) qpm(ε))
)
dS − d

dt

∫
Ωpm

ψpm(ε) dS (3.46)

From the energy rate balances (3.45) or (3.46), the fracture energy release rate per unit
length G(ε)

α of the αth cavity (�g. 3.3.4.2) is de�ned as the integral on the cavity fronts
∂cfrα divided by l̇α and it reads:

Figure 3.4: Nomenclature in the αth periodic cell: ∂cfrα is the set of the two cavity fronts; nα
is the inward normal unit vector to the cavity boundary; mα is the unit vector in the direction

of the propagation.
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G(ε)
α :=

1

l̇α

∫
∂cfrα

−ψpm(ε)vα.n dΛ =

∫
∂cfrα

−1

2
ψpm(ε)mα.nα dΛ (3.47)

It is worth remarking that the fracture energy release rate depends on the cavity length
lα through both the strain energy density ψpm(ε) and the cavity fronts ∂cfrα .

3.3.5 Modeling of cavity propagation

Let us assume a Gri�th-type energy criterion, that is, the propagation occurs when the
fracture energy release rate G(ε)

α reaches a critical energy threshold Gf , also called critical
fracture energy rate of the material. The cavity propagation is completely described by
the following laws:

G(ε)
α − Gf ≤0 (3.48a)

l̇α ≥0 (3.48b)

l̇α(G(ε)
α − Gf ) =0 (3.48c)

The (3.48a) says that the fracture energy release rate cannot become bigger than the
critical fracture energy rate. The (3.48b) asserts the damage irreversibility. While the
(3.48c) expresses an energy rate balance when the cavity is propagating (l̇α 6= 0): the
energy that the body is ready to spend per unit cavity length advance is equal with the
critical energy necessary to break the bonds in the speci�c material.
It is worth remarking that the relations (3.48) have the form of the Kuhn-Tucker condi-
tions (Koiter 1960; Maier 1970) for the Plasticity Theory (Hill 1950; Lubliner 1990; Simo
and Hughes 1998).

3.3.6 Fracture criteria

In the case of brittle fracture, the critical fracture energy Gf is a material constant Gc:

Gf = Gc (3.49)

On the contrary, in the case of quasi-brittle fracture, Gf is a constitutive function which
depends on the crack length lα and, eventually, also on its rate l̇α, that is:

Gf = Gf (lα, l̇α) (3.50)

In the case of no-time dependence, an example of constitutive function for quasi-brittle
materials is proposed by Bazant and Planas (1997) who considered an equivalent elastic
medium in which the presence of the process zone near the crack tip is replaced by a
special propagation law which reads:

Gf =
Gc (lα − lα0)

cf
(3.51)
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where lα0 is the initial crack length and cf is the material length governing the fracture
process zone size.
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3.4 Cell energy analysis at the mesoscale

In this section, it is performed a mesoscopic cell energy analysis coupled with homoge-
nization which leads to the damage evolution law. It is worth remarking that the involved
�elds are terms of the asymptotic developments which are cut to the �rst order in the
powers of ε (par. 2.3.2), that is, this energy analysis is performed in an approximated
framework.

3.4.1 From meso- to macro-energy terms

3.4.1.1 Strain energy

At the mesoscopic scale, let us expand asymptotically the volumetric density of strain
energy ψpm(ε) as follows:

ψpm(ε) = ψpm(0) + ε ψpm(1) + · · · (3.52)

From the (3.17) about ψpm(ε), it follows that:

ψpm(0) =
1

2

(
c@

(
ex
(
upm(0)

)
+ ey

(
upm(1)

))
:
(
ex
(
upm(0)

)
+ ey

(
upm(1)

))
+ s

(
ppm(0)

)2
)

(3.53)
In analogy with the procedure presented in the section 3.2.1, being assumed that the �uid
is incompressible, the volumetric density of macroscopic strain energy Ψ can be de�ned
as the average value of ψpm(0) over the entire mesoscopic periodic cell Y (�g. 3.2):

Ψ :=
1

|Y |

∫
Y pm

ψpm(0) ds (3.54)

that, given the expression (3.53) of ψpm(0), reads also:

Figure 3.5: Nomenclature in the αth periodic cell and in the corresponding unit cell.
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Ψ =
1

|Y |

∫
Y pm

1

2

[
c@

(
ex
(
upm(0)

)
+ey

(
upm(1)

))
:
(
ex
(
upm(0)

)
+ey

(
upm(1)

))
+s
(
ppm(0)

)2
]
ds

(3.55)
By taking into account the constitutive law (2.85b) for the porous matrix at order zero
in the powers of ε, and the weak formulation (2.86) of the equilibrium equation (2.85a)
with z = upm(1), it follows that:

Ψ =
1

|Y |

∫
Y pm

1

2

[(
σpm(0) +p(0)b

)
: ex
(
upm(0)

)
+ppm(0) (b− I) : ey

(
upm(1)

)
+s
(
ppm(0)

)2
]
ds

(3.56)
or

Ψ =
1

|Y |

∫
Y pm

1

2

[
σpm(0) : ex

(
upm(0)

)
+ p(0) I : ex

(
upm(0)

)
+ ppm(0) (b− I) :

(
ex
(
upm(0)

)
+ ey

(
upm(1)

))
+ s

(
ppm(0)

)2
]
ds (3.57)

which, given the de�nition (2.126) of the macroscopic stress tensor Σ, entails:

Ψ =
1

2

[
Σ : ex

(
upm(0)

)
+ ppm(0) I : ex

(
upm(0)

)
+

1

|Y |
ppm(0)

∫
Y pm

(
(b− I) :

(
ex
(
upm(0)

)
+ ey

(
upm(1)

))
+ s ppm(0)

)
ds

]
(3.58)

where the relation (2.143) about the variation of macroscopic Lagrangian porosity Φu is
recognized. Then, by substitution in (3.58), it yields:

Ψ =
1

2

(
Σ : ex

(
upm(0)

)
+ Φu p

pm(0)
)

(3.59)

or, by means of the macroscopic constitutive relations (2.175b, 2.179), also as a function
of the homogenized coe�cients C and S:

Ψ =
1

2

(
C@ex

(
upm(0)

)
: ex
(
upm(0)

)
+ S

(
ppm(0)

)2
)

(3.60)

3.4.1.2 Dissipation in the �uid

At the mesoscopic scale, let us expand asymptotically the dissipation Dpm(ε) in the pore
�uid as follows:

Dpm(ε) = Dpm(0) + εDpm(1) + · · · (3.61)

From the relation (3.26) about Dpm(ε), it follows that:
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Dpm(0) = −qpm(0).(∇xp
pm(0) +∇yp

pm(1)) = k@(∇xp
pm(0) +∇yp

pm(1)).(∇xp
pm(0) +∇yp

pm(1))
(3.62)

At the macroscopic scale, let us de�ne the dissipation D in the �uid as the average of
Dpm(0) over the entire mesoscopic periodic cell Y :

D :=
1

|Y |

∫
Y pm
Dpm(0) ds (3.63)

The virtual power formulation of the �uid volume balance (2.101a) within h = ppm(1)

reads:

0 = −
∫
Y pm

qpm(0).∇yp
pm(1) ds+

∫
Γ

pcf(1)
(
vcf(0) − u̇pm(0)

)
.n dλ (3.64)

where the �uid pressure continuity (2.70b) and the �uid mass balance (2.72b) at the cavity
boundary have been taken into account. Given the (2.58a), it is kwown that vcf(0) does
not depend on the mesoscopic structure and it follows that:

0 =

∫
Y pm

qpm(0).∇yp
pm(1) ds+

∫
Y cf
∇yp

cf(1).
(
vcf(0) − u̇pm(0)

)
ds (3.65)

The �uid pressure at the order zero in the powers of ε is homogeneous in the whole
mesoscopic unit cell Y , that is, ppm(0) = pcf(0). Then, by taking into account the linear
momentum balance (2.63b) in the cavity, the (3.65) becomes:

∫
Y pm

qpm(0).
(
∇xp

pm(0)+∇yp
pm(1)

)
ds = ∇xp

pm(0).

[ ∫
Y pm

qpm(0) ds+
∫
Y cf

(
vcf(0)−u̇pm(0)

)
ds
]

(3.66)
where, among square brackets, it is easily recognized the de�nition (2.164) of the macro-
scopic relative �ow vector of �uid volume Q. While, the left member is the dissipation in
the �uid phase D at the macroscopic scale as de�ned in the (3.63) and multiplied by the
measure of the unit cell |Y |. Then the rewriting of the (3.66) provides an expression of
D in terms of only macroscopic quantities:

D = −Q.∇xp
pm(0) = K@∇xp

pm(0).∇xp
pm(0) (3.67)

where K is the homogenized permeability tensor.

3.4.2 Energy rate balance

As already done in the section 3.3.4 for the entire body and with the exact �elds, the
energy rate balance is here built for the resized periodic cell y and by taking into account
the asymptotic developments of the involved �elds. With this aim, the linear momentum
balance in Y , the �uid volume balance in Y pm and the cavity �uid incompressibility are
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taken into account.

By setting z = u̇pm(1), the weak formulation (2.86) of the balance equation (2.85a) reads:

0 =

∫
Y pm

(
σpm(0) + ppm(0) I

)
: ey(u̇

pm(1)) ds (3.68)

It is useful to rewrite it as follows:

0 =

∫
Y pm

((
σpm(0) +ppm(0) I

)
:
(
ey(u̇

pm(1))+(1−1) ex(u̇
pm(0))

)
+(1−1) s ppm(0) ṗpm(0)

)
ds

(3.69)
Moreover, with the same logic already applied in the writing of the energy balance for the
global problem, the virtual power formulation (3.64) of the �uid mass balance is added
to the (3.69) and it yields:

0 = −
∫
Y pm

qpm(0).
(
∇xp

pm(0) +∇yp
pm(1)

)
ds

+∇xp
pm(0).

[ ∫
Y pm

qpm(0) ds+

∫
Y cf

(
vcf(0) − u̇pm(0)

)
ds
]

+

∫
Y pm

((
σpm(0) + ppm(0) I

)
:
(
ey(u̇

pm(1)) + (1− 1) ex(u̇
pm(0))

)
+ (1− 1) s ppm(0) ṗpm(0)

)
ds

(3.70)

3.4.2.1 Stationary cavity

By using the constitutive law (2.85b) for the stress tensor at order zero and by regrouping
properly the terms, the (3.70) becomes:

−
∫
Y pm

qpm(0).
(
∇xp

pm(0) +∇yp
pm(1)

)
ds =

[ ∫
Y pm

σpm(0) ds−
∣∣Y cf

∣∣ ppm(0)I

]
: ex(u̇

pm(0))

−∇xp
pm(0).

[ ∫
Y pm

qpm(0) ds+

∫
Y cf

(
vcf(0) − u̇pm(0)

)
ds
]

+ ppm(0)

[
|Y | divx

(
u̇pm(0)

)
+

∫
Y pm

∂f poro(0)

∂t
ds
]
−
∫
Y pm

∂ψpm(0)

∂t
ds (3.71)

where fporo(0) is de�ned as:

fporo(0) = (b− I) :
(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0) (3.72)

or equivalently, given the expansion (2.59b) of the variation of the Lagrangian mesoscopic
porosity φu, as:

fporo(0) = φ(0)
u −

(
divx(upm(0)) + divy(upm(1))

)
(3.73)
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Then, by using the time derivative of the (2.143), the de�nition (2.126) of the homogenized
stress Σ, the de�nition (3.55) of the macroscopic strain energy Ψ and the de�nition (3.67)
of the dissipation in the �uid D, the (3.71) is rewritten as:

D = Σ : ex(u̇
pm(0))− divx

(
ppm(0)Q

)
− Ψ̇ (3.74)

or equivalently as:

0 = Σ : ex(u̇
pm(0)) + ppm(0)Φ̇u − Ψ̇ (3.75)

3.4.2.2 Evolving cavity

It is taken into account that the cavities may propagate. Then, the porous domain Y pm

depends on the time through the damage variable d, Y pm = Y pm
[
d(t)

]
. So, by means of

an adaptation of the Reynolds transport theorem (D.1), the following relations hold:∫
Y pm

∂f poro(0)

∂t
ds =

d
dt

∫
Y pm

fporo(0) ds−
∫

Γfr

fporo(0) v.n dλ (3.76)

∫
Y pm

∂ψpm(0)

∂t
ds =

d
dt

∫
Y pm

ψpm(0) ds−
∫

Γfr

ψpm(0) v.n dλ (3.77)

where v = (ḋ/2)m is the propagation speed of all the material points belonging to the
crack fronts Γfr, n is the outward normal to the boundary ∂Y pm. The (3.76, 3.77) are
inserted in the (3.71) which becomes:

∫
Γfr

(
− ψpm(0) + ppm(0)fporo(0)

)
v.n dλ−

∫
Y pm

qpm(0).
(
∇xp

pm(0) +∇yp
pm(1)

)
ds

= −∇xp
pm(0).

[ ∫
Y pm

qpm(0) ds+

∫
Y cf

(
vcf(0) − u̇pm(0)

)
ds
]

+ppm(0) d
dt

[
|Y | divx

(
upm(0)

)
+

∫
Y pm

fporo(0) ds
]

+

(∫
Y pm

σpm(0) ds−
∣∣Y cf

∣∣ ppm(0)I

)
: ex(u̇

pm(0))− d
dt

∫
Y pm

ψpm(0) ds (3.78)

As already done in the no-propagation case, by using the time derivative of the (2.143),
the de�nition (2.126) of the homogenized stress Σ, the de�nition (3.55) of the macroscopic
strain energy Ψ and the de�nition (3.67) of the dissipation in the �uid D, the (3.78) is
rewritten as:

ḋ

2

∫
Γfr

(
−ψpm(0) +ppm(0)fporo(0)

)
m.n dλ+D = Σ : ex(u̇

pm(0))−divx
(
ppm(0)Q

)
−Ψ̇ (3.79)

or equivalently:
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ḋ

2

∫
Γfr

(
− ψpm(0) + ppm(0)fporo(0)

)
m.n dλ = Σ : ex(u̇

pm(0)) + ppm(0)Φ̇u − Ψ̇ (3.80)

3.4.2.3 Damage energy release rate

By taking into account the macroscopic constitutive relations (2.175b, 2.179) and by
remarking that the homogenized coe�cients depend on time, it follows that:

Σ : ex(u̇
pm(0)) + Φ̇u p

pm(0) =
(
C@ex

(
upm(0)

)
−B ppm(0)

)
: ex(u̇

pm(0))

+
(
Ḃ : ex(u

pm(0)) + Ṡ ppm(0) + B : ex(u̇
pm(0)) + S ṗpm(0)

)
ppm(0) (3.81)

or, by means of the relation (3.60) which gives the macroscopic strain energy Ψ as a
function of the homogenized parameters C and S, equivalently:

Σ : ex(u̇
pm(0)) + Φ̇u p

pm(0) − Ψ̇

= −1

2
Ċ@ex

(
upm(0)

)
: ex(u

pm(0)) + Ḃ ppm(0) : ex(u
pm(0)) +

1

2
Ṡ
(
ppm(0)

)2
(3.82)

Moreover, the homogenized coe�cients are time dependent through the characteristic
functions, that is, through the damage variable d = d(x):

Ċ =
dC

dt
=

dC

dd
ḋ, Ḃ =

dB

dt
=

dB

dd
ḋ, Ṡ =

dS
dt

=
dS
dd

ḋ. (3.83)

By using the relations (3.82, 3.83), the energy rate balance (3.80) becomes: ∀ḋ,

ḋ

[ ∫
Γfr

1

2

(
− ψpm(0) + ppm(0)fporo(0)

)
m.n dλ− Yd(d)

]
= 0 (3.84)

where Yd(d) is the simpli�ed notation of Yd = Yd

(
d, ex

(
upm(0)

)
, ppm(0)

)
and denotes the

damage energy release rate which is de�ned as follows:

Yd = Yd

(
d, ex

(
upm(0)

)
, ppm(0)

)
:= −1

2

dC

dd
@ex
(
upm(0)

)
: ex(u

pm(0)) +
dB

dd
ppm(0) : ex(u

pm(0)) +
1

2

dS
dd

(
ppm(0)

)2
(3.85)

Given the arbitrariness of ḋ, the local form of the (3.84) reads:

Yd(d) =

∫
Γfr

1

2

(
− ψpm(0) + ppm(0)fporo(0)

)
m.n dλ (3.86)
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3.4.2.4 Approximation due to small thickness of the cavity

It is worth remarking that the objective of this work is to model �uid-�lled cracks or
cavities of small thickness. When such a cavity approaches a line crack, the �elds near
the tip converge to the crack �elds, with the corresponding singularities.
Let us focus the attention on the integral of the energy rate balance (3.86). By means of
the de�nitions (3.53) of ψpm(0) and (3.72) of fporo(0), it follows that:∫

Γfr

(
− ψpm(0) + ppm(0)fporo(0)

)
m.n dλ =

−
∫

Γfr

1

2

(
c@

(
ex
(
upm(0)

)
+ ey

(
upm(1)

))
:
(
ex
(
upm(0)

)
+ ey

(
upm(1)

))
+ s

(
ppm(0)

)2
)

m.n dλ

+ ppm(0)

∫
Γfr

(
(b− I) :

(
ey(u

pm(1)) + ex(u
pm(0))

)
+ s ppm(0)

)
m.n dλ (3.87)

By comparing the two integrals of the right member, it is clear that the �rst one has as a
limit a 1/r singularity, while the second one tends to a 1/

√
r singularity. This is clearly

due to the second order term in ey(upm(1)) appearing in ψpm(0).
Then, the second integral of the (3.87) vanishes in the limit at the crack tip and it can be
neglected with respect to the �rst one for small thickness of the cavity close to the line
crack. In what follows, only the �rst term will be considered:

∫
Γfr

(
− ψpm(0) + ppm(0)fporo(0)

)
m.n dλ = −

∫
Γfr

ψpm(0)m.n dλ+ ... (3.88)

Then, the energy rate balance (3.86) becomes

Yd(d) =

∫
Γfr
−1

2
ψpm(0)m.n dλ (3.89)

3.4.2.5 Asymptotic expansion of the fracture energy release rate

The fracture energy release rate G(ε)
α , previously de�ned in (3.47), can be asymptotically

developed in the powers of ε by using the asymptotic expansion (3.52) of the strain energy
ψpm, by taking into account that the cavity fronts ∂cfrα depends on ε and the following
relations between the correspondent quantities in the periodic cell and in the resized one
(�g. 3.6):

lα = ε d, dΛ = ε dλ (3.90)

Then, the change of variables x ↔ y = x/ε between the space variables provides the
aimed asymptotic development which starts with a term of order one in the powers of ε
and reads:

G(ε)
α = εG(1)

α + ε2 G(2)
α + · · · (3.91)
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Figure 3.6: Nomenclature in the αth periodic cell and in the corresponding unit cell.

with

G(1)
α :=

∫
∂Γfrα

−1

2
ψpm(0)m.n dλ (3.92)

It is worth remarking that the unit vectors m and n are not a�ected by the change of
variables (�g. 3.6).
Then, the energy rate balance (3.89) for a propagating cavity gets the following �nal form:

Yd(d) = G(1)
α (3.93)

with the damage energy release rate Yd(d) already de�ned in the (3.85).

Remark 3.4.1. We note that, for the case without �uid, when the last two terms of the
damage energy release rate Yd are missing, the obtained energy rate balance reduces to the
one proposed by Dascalu, Bilbie and Agiaso�tou (2008) and Dascalu (2009).

Remark 3.4.2. The energy rate balance (3.93) here proposed has the same form of the
one proposed by Dormieux, Kondo and Ulm (2006a) for the case of a non porous solid
with �uid-�lled cracks. It is important to note that in our approach the energy rate bal-
ance is completely obtained by homogenization, that is, by upscaling the energy analysis
performed at the mesoscopic scale; while in their work it is proposed by thermodynamic
arguments directly applied to the macroscopic scale.

3.4.3 Modeling of cavity propagation

In the section 3.3.5, with reference to a real mesoscopic structure fully described by a
periodic cell of �nite size ε, it is presented the modeling of the propagation of a cavity
of length lα. Now, it is considered a (virtual) limit process for ε going to zero and it is
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rewritten by means of the relation (3.90), lα = ε d(x), and of the asymptotic development
(3.91) of G(ε)

α cut at the �rst term:

G(ε)
α = εG(1)

α + ... (3.94)

Then, it is necessary and logic to consider that, in the same mesoscopic structure, the
critical fracture energy rate Gf depends on ε also and it can be approximated by the
following asymptotic development:

Gf = εG(1)
f + ... (3.95)

and it is consistent with the assumptions made in (Dascalu 2009). Then, by substituting
the (3.95) in the (3.48), the cavity propagation is completely described by the following
laws:

G(1)
α − G

(1)
f ≤0 (3.96a)

ḋ ≥0 (3.96b)

ḋ(G(1)
α − G

(1)
f ) =0 (3.96c)

As already remarked for the (3.48) in the section 3.3.5, the (3.96a) says that the fracture
energy release rate cannot become bigger than the critical fracture energy rate; the (3.96b)
asserts the damage irreversibility; while the (3.96c) expresses an energy rate balance when
the cavity is propagating (ḋ 6= 0): the energy that the body is ready to spend per unit
cavity length advance is equal with the critical energy necessary to break the bonds in
the speci�c material. As expected, the relations (3.96) have the form of the Kuhn-Tucker
conditions.

3.5 Damage laws

The combination of the energy rate balance (3.93) and of the description of the cavity
propagation (3.96) provides the following damage laws:

Yd(d)− Gf
ε
≤0 (3.97a)

ḋ ≥0 (3.97b)

ḋ
(
Yd(d)− Gf

ε

)
=0 (3.97c)

The (3.97a) says that damage energy release rate Yd(d) cannot become bigger than the
critical fracture energy rate G(1)

f ; the (3.97b) asserts the damage irreversibility; while the
(3.97c) expresses the damage evolution law: when the cavity is evolving, (ḋ 6= 0), the
damage energy release rate Yd(d) is equal with the critical energy G(1)

f necessary to break
the bonds in the speci�c material. As expected, the relations (3.97) have the form of the
Kuhn-Tucker conditions.
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Lastly, it is worth remarking that, given the use of the asymptotic development (3.95),
these damage laws have the mesostructural length ε as a variable, such that, they are also
able to reproduce the well known size e�ect of fracture at the mesoscopic scale. This is
the main di�erence with respect to the damage models obtained by a phenomenological
approach which do not have this property.

3.6 Conclusions

In this chapter, we deduced an evolution law for damage for evolving �uid-�lled cavities
in a porous material.
The damage law was completely obtained from the mesoscopic equations by using ho-
mogenization based on asymptotic developments and energy analysis.
These developments extend the previous results concerning the case of evolving micro-
cracks without �uid and lead to a form of the damage law similar to other models of �uid
coupling damage obtained by phenomenological arguments.
Numerical investigations of the predictions of the damage law and, speci�cally, the �uid
pressure in�uence on damage evolution will be given in the next chapter.





Chapter 4

Numerical study of macroscopic local

behaviour

In the previous chapters a poroelastic damage model has been developed by means of
homogenization and energy analysis. In this chapter the objective is to investigate the
in�uence of the macroscopic �uid pressure and of the macroscopic deformation on damage
evolution. Then, some representative predictions of this model obtained by means of
numerical integration are presented.
Hereafter, in order to simplify the notation, the macroscopic deformation tensor ex(u(0))
and the macroscopic pressure ppm(0) are denoted by Ex and P respectively.

4.1 Employed poroelastic damage model

The model is fully described by the following set of equations, composed by the macro-
scopic balances of linear momentum (4.1a) and �uid mass (4.1b), the damage evolution
law (4.1c) and the damage irreversibility condition (4.1d):

0 = divxΣ (4.1a)

0 = divxQ + Φ̇u (4.1b)

0 = ḋ

[
Yd −

Gf
ε

]
(4.1c)

ḋ ≥ 0 (4.1d)

the macroscopic Biot's constitutive relations:

Σ = C@Ex −BP (4.2a)

Φu = B : Ex + S P (4.2b)

the damage energy release rate Yd is already de�ned in (3.85) and rewritten as follows:

− Yd =
1

2

dC

dd
@Ex : Ex −

dB

dd
P : Ex −

1

2

dS
dd

P 2 (4.3)
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4.2 Homogenized parameters and their derivatives

The dependence of the homogenized coe�cients C,B and S on the damage variable d
was presented in the chapter 2.5 (�gures 2.9, 2.10, 2.11). Now, given the expression (4.3)
for the damage energy release rate Yd and with the aim of solving the damage equation
(4.1c), it is clear that the derivatives of the homogenized coe�cients with respect to the
damage variable must be calculated.
In particular, the numerical values of both the homogenized coe�cients and of their
derivatives are required ∀d ∈ [d0, 1]. On the contrary, as described in the section 2.5,
the homogenized coe�cients have been computed for about thirty values of d. Hence,
the numerical continuous functions C(d),B(d) and S(d) are obtained by interpolation of
these sampling values.

4.3 Incremental resolution algorithm

An integration algorithm for the investigation of the local hydro-mechanical behaviour
and of the damage evolution predicted by the set of the governing equations (4.1, 4.2,
4.3) is described in the following. In conditions of increasing damage, that is, ḋ > 0, the
term in parenthesis appearing in the damage evolution law (4.1c) vanishes. So, for given
macroscopic �uid pressure P and deformation Ex, the resolution of the damage equation
consists in the resolution of an algebraic equation in the variable d.1

Then, it is possible to formulate an algorithm where the macroscopic balances (4.1a, 4.1b)
and the damage evolution law (4.1c) are not solved simultaneously.
In the considered incremental approach, the solution dn+1 satisfying (4.1c) for ḋ > 0 is
determined by means of a bisection root-�nding method where the irreversibility condition
(4.1d) is imposed by searching a solution dn+1 larger than the solution dn at the previous
step. If such a solution is not found, then the damage is not evolving (ḋ = 0).
Hence, the algorithm reads:

1. Data inizialization:

• n = 0;

• d = d0 = 0.05;

• Evaluation for d = d0 of the homogenized coe�cients:

C0 := C(d0), B0, S0; (4.4)

and of their derivatives:(
dC

dd

)0

,

(
dB

dd

)0

,

(
dS
dd

)0

(4.5)

1It is worth remarking that in the case of a time dependent constitutive function Gf = Gf (l̇α), the
damage equation is not algebraic anymore, but di�erential as shown by Dascalu (2009) in the context of
homogenization for damage.
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2. Computation of dn+1 ∈ [dn, 1] by solving the damage equation (4.1c) by means of
the bisection method.

3. Evaluation for d = dn+1 of the homogenized coe�cients:

Cn+1, Bn+1, Sn+1; (4.6)

and of their derivatives:(
dC

dd

)n+1

,

(
dB

dd

)n+1

,

(
dS
dd

)n+1

. (4.7)

4. Computation for d = dn+1 of the stress:

Σn+1 = Cn+1
@En+1

x −Bn+1 P n+1 (4.8)

and of the induced variation of the porosity:

Φn+1
u = Bn+1 : En+1

x + Sn+1 P n+1 (4.9)

5. If n < nmax, then n = n+ 1 and go back to item 3. Otherwise go to item 7.

6. End.

4.4 Numerical examples

In order to investigate the in�uence of the macroscopic �uid pressure P and of the macro-
scopic deformation Ex on the damage evolution, two di�erent tests are performed, assum-
ing a fully drained response for both of them.

Both quasi-brittle and brittle damage are considered with a Gri�th-type energy criterion,
that is, the propagation occurs when the physical energy release rate G(1) (3.92) reaches
the critical energy threshold G(1)

f :

G(1) = G(1)
f (4.10)

For the case of quasi-brittle damage, the equivalent fracture criterion proposed by Bazant
and Planas (1997) is adopted. It was already introduced in (3.51) for the physical space
and G(1)

f is rewritten as follows for the resized unit cell Y :

G(1)
f (d) =

Gc (d− d0)ε

cf
(4.11)

where d0 is the initial cavity length, cf is the material length governing the fracture process
zone size, ε is the size of the mesoscopic periodic cell and Gc is a material constant. In
such a case, the critical energy fracture G(1)

f is a constitutive function, that is, it evolves
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with damage and, in reason of that, the damage evolution is expected to be smooth.
For the case of brittle damage, it is assumed that Gf is a material constant:

G(1)
f = Gc (4.12)

and the damage evolution is expected to happen abruptly, evolving directly from the
initial value d0 = 0.05 to the �nal one d = 1.
With the exception of the plots corresponding to the variation of the parameter, the
reported in the �gures from 4.2 to 4.4 are obtained from calculations performed by setting
cf = 8 · 10−4 and Gc = 50 J/m2.
In both the tests described below, the expectations concerning the smooth damage evo-
lution for the the quasi-brittle case and the abrupt one for the brittle case are matched.

The �rst test (�test 1� in the captions of the �gures) consists in imposing a strain tensor
which has only the component Ex22 not vanishing and an increasing �uid pressure P .
This is repeated for di�erent values of imposed constant strain Ex22 (�g. 4.1).
In the quasi-brittle case (�g. 4.2), Ex22 ranges in 0.0÷ 7.0 · 10−3. It is apparent that, for
increasing strain Ex22, the cavity propagation is faster, in the sense that, the unit cell is
completely damaged d = 1 for lower values of the imposed pressure P . At the same time,
a threshold for the strain is detected: already for zero pressure P = 0, that is, at the �rst
loading step, the cavity length jumps from the initial value d0 = 0.05 to a larger one if
Ex22 ≥ 0.6 · 10−3.
The test is repeated for the case of brittle damage (�g. 4.3) and above all it worths noting
that Ex22 ranges in 0.0 ÷ 3.0 · 10−4, that is, one order of magnitude lower with respect
to the quasi-brittle case (�g. 4.2). Notwithstanding that, it is observed that tendency is
similar: for increasing imposed strain, the cavity propagation is triggered at decreasing
values of pore pressure.
Moreover, in the �gure 4.4, for the brittle case it is observed that, for an increasing ma-
terial constant Gc, the cavity propagation is slower and it was expected because Gc is a
strength of the material.

Figure 4.1: Orientation of the axes 1 and 2 in the periodic unit cell Y .
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In the second test (�test 2� in the captions of the �gures), an increasing Ex22 is imposed
with all the other components of the macroscopic strain tensor vanishing and for di�erent
values of imposed constant �uid pressure P .
In the quasi-brittle case (�g. 4.5), P ranges in 0.0 ÷ 7.5 MPa and it is apparent that
for increasing pressure P , the cavity propagation is faster. The numerical investigation
also provides a threshold of P ≈ 533 kPa: that is, if the �uid pressure is higher than this
value, then the cavities propagate d ≥ d0 = 0.05 even for zero strain Ex22 = 0.
As expected, by performing a cross check for the two threshold, each one detected in one
of the two test, a perfect correspondence is found: that is, the threshold for the strain
coming from the �rst test is exactly con�rmed from the results of the second test, and
viceversa. Moreover, in the same simulation, the variation of the Lagrangian porosity is
computed (4.9) and it is clear that Φu increases with damage.
The test is repeated for the case of brittle damage (�g. 4.6) and above all it worths noting
that Ex22 ranges in 0.0 ÷ 0.5 MPa, that is, one order of magnitude lower with respect
to the quasi-brittle case (�g. 4.5). Notwithstanding that, it is observed that tendency is
similar: for increasing imposed pressure, the cavity propagation is triggered at decreasing
values of strain.
Moreover, for the quasi-brittle case, a parametric analysis is performed to investigate the
in�uence of the parameters characterising the constitutive function G

(1)
f (d) (4.11): the

material constant Gc and the material length governing the fracture process zone size cf .
In �gure 4.7, it is shown that, for increasing Gc in the range 10 ÷ 400 J/m2, the cavity
propagation is slower, as expected. In the �gure 4.8, for an increasing fracture process
zone around the tip such that cf ranges in 0.2÷ 1.0 · 10−3m, it is observed that the cavity
propagation is faster.

During the calculations it is observed that a smaller time step amplitude ∆t allows to
�nd roots which are closer to d = 1 but this is extremely expensive in terms of the com-
putation time. That's the reason why ∆t is set to be varying along the loading path from
∆t = 0.1 in the beginning to ∆t = 0.001 in the end.

In summary, the obtained results show that damage signi�cantly increases for imposed
increasing values of macroscopic �uid pressure. This response is qualitatively consistent
with experimental results of drained tests (e.g. see references cited by Bart, Shao and
Lydzba (2000)) However, we plan to perform further investigations for a fully satisfying
model calibration, considering the BVPs of more realistic test setting and the e�ects of
hydromechanical coupling.
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Figure 4.2: Quasi-brittle damage (Test 1): stress Σ22 (top) and damage variable d (bottom)

versus the imposed macroscopic pressure P and for di�erent values of imposed constant strain:

Ex22 = 0.0000 (magenta), Ex22 = 0.0010 (black), Ex22 = 0.0025 (red), Ex22 = 0.0050 (blue) and

Ex22 = 0.0075 (green).
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Figure 4.3: Brittle damage (Test 1): stress Σ22 (top) and damage variable d (bottom) as

functions of imposed macroscopic pressure P and for di�erent values of imposed constant strain:

Ex22 = 0.0000 (magenta), Ex22 = 0.0001 (black), Ex22 = 0.0002 (red), Ex22 = 0.0003 (blue).
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Figure 4.4: Brittle damage (Test 1): stress Σ22 (top) and damage variable d (bottom) as

functions of imposed macroscopic pressure P and for di�erent values of constant fracture energy:

Gc = 400 J/m2 (magenta), Gc = 200 J/m2 (black), Gc = 100 J/m2 (red), Gc = 50 J/m2 (blue)

and Gc = 10 J/m2 (green).
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Figure 4.5: Quasi-brittle damage (Test 2): stress Σ22 (top) and damage variable d (bottom)

as functions of imposed macroscopic strain Ex22 and for di�erent values of constant pressure:

P = 0.0MPa (magenta), P = 1MPa (black), P = 2.5MPa (red), P = 5MPa (blue) and

P = 7.5MPa (green).
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Figure 4.6: Brittle damage (Test 2): stress Σ22 (top) and damage variable d (bottom) as

functions of imposed macroscopic strain Ex22 and for di�erent values of constant pressure: P =
0.0MPa (magenta), P = 0.1MPa (black), P = 0.3MPa (red) and P = 0.5MPa (blue).
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Figure 4.7: Quasi-brittle damage (Test 2): stress Σ22 (top) and damage variable d (bottom) as

functions of imposed macroscopic strain Ex22 and for di�erent values of constant fracture energy:

Gc = 400 J/m2 (magenta), Gc = 200 J/m2 (black), Gc = 100 J/m2 (red), Gc = 50 J/m2 (blue)

and Gc = 10 J/m2 (green).
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Figure 4.8: Quasi-brittle damage (Test 2): stress Σ22 (top) and damage variable d (bottom) as

functions of imposed macroscopic strain Ex22 and for di�erent values of the size of fracture process

zone: cf = 1.0 · 10−3m (green), cf = 0.8 · 10−3m (blue), cf = 0.6 · 10−3m (red), cf = 0.4 · 10−3m

(black), cf = 0.2 · 10−3m (magenta)

.
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Figure 4.9: Quasi-brittle damage (Test 2): porosity variation Φu (top) and damage variable d
(bottom) as functions of imposed macroscopic strain Ex22 and for di�erent values of constant

pressure: P = 0.0MPa (magenta), P = 1MPa (black), P = 2.5MPa (red), P = 5MPa (blue)

and P = 7.5MPa (green).





Chapter 5

Conclusions and perspectives

5.1 General conclusions

In this dissertation the constitutive modeling of damage evolution in a geomaterial con-
sisting of a deformable and saturated porous solid with a (quasi-)periodic distribution of
�uid-�lled cavities (cracks) has been presented.
The objective of this thesis was the development of a macroscopic damage evolution law
based only on an explicit description of the mesoscopic scale level which could be success-
fully employed to describe damage behavior and to assess long-term safety of underground
storage facilities and of civil engineering works. With this aim, a homogenization-based
approach was used in both the two main parts composing this work.

The �rst part was concentrated on the upscaling of the �nely heterogeneous mesoscopic
structure to an equivalent continuum. In order to get this goal, three steps were developed:

• A multiscale study of the porosity was developed, both in the framework of large
and small deformations, with the aim of understanding how the porosity, at dif-
ferent scales of observation, is varying in reason of the motion of the surrounding
porous solid. So, the �rst chapter presents di�erent relations governing mesoscopic
and macroscopic porosities in Eulerian and Lagrangian descriptions. They were
developed by means of Taylor developments and, at an intermediate step, they are
consistent with relations already available in the literature, e. g. in Callari and
Abati (2011).

• A description of the mesoscopic body has been investigated by referring to the
orginal poroelastic model deduced by means of a phenomenological approach by
Biot (1941), and reobtained by (Auriault 2004; Auriault and Sanchez-Palencia 1977)
using homogenization by asymptotic developments. Then, it has been proposed a
set of governing equations for the mesoscopic structure which can be seen as a
modi�ed version of that one proposed by Auriault and Sanchez-Palencia: actually,
the �uid mass balance for the porous solid is presented separated from the Biot's
constitutive law for the �uid content; moreover a di�erent de�nition of average �uid
�ow is chosen.

93
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• Homogeneization of a solid with periodic mesoscale structure characterized by a
saturated porous matrix including �uid-�lled cracks. Among the results of this step
there was a realistic description of the e�ects of crack-length variation on macro-
scopic poroelastic parameters, that is, the numerical evaluation of homogenized
elasticity tensor, Biot's coupling tensor and Biot modulus (i.e. mechanical and ca-
pacity properties). It was done for di�erent mesoscopic cavity lengths, considered
as the damage parameter; then, by means of polynomial interpolation, continuous
functions of the damage have been obtained.

The second part of the work is dedicated to the construction of the poroelastic damage
model. We considered a quasi-periodic family of �uid-�lled cavities that may propagate
under the action of the external loading. Then, the objective is to write a damage evolution
law deduced from the meso-structural fracture phenomena. This was done in the following
steps:

• An energy analysis for the poro-mechanical solid with a large number of cavity
allowed us to determine the exact (before homogenization) expression of the hydro-
mechanical energy relase rate during mesoscopic fracture and to interpret the dif-
ferent terms contributing to the energy balance.

• A combination of asymptotic homogenization and energy analysis allowed us to
deduce a macroscopic damage evolution law. This result extends previous develop-
ments concerning the case of a fractured non porous solid without �uid coupling
(Dascalu, Bilbie and Agiaso�tou 2008). A mesostructural length is present in the
damage law and this allows for the prediction of size e�ects. We showed that, under
some approximation, the obtained damage law is similar in form with the model
based on phenomenological and thermodynamic arguments proposed by Dormieux,
Kondo and Ulm (2006a) for a non porous solid with �uid-�lled cracks.

• By means of numerical time-integration analysis of the local macroscopic hydro-
mechanical damage behaviour, we have evaluated the proposed model predictions for
particular paths of macroscopic strain and �uid pressure. The obtained results show
that damage signi�cantly increases for imposed increasing values of macroscopic
�uid pressure. This response is qualitatively consistent with experimental results of
drained tests (e.g. see references cited by Bart, Shao and Lydzba (2000)). Moreover,
we deduce that the model is capable to predict also other physical behaviours like
the presence of size e�ects related to failure of the solid.

5.2 Perspectives

A natural continuation of the present study are the numerical simulations, by �nite ele-
ments, of macroscopic structures phenomena like localization of damage and strains and
the in�uence of the �uid on such behaviours would be of much interest for the complete
understanding of the model. So, we plan to perform further investigations for a complete
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calibration of the model, considering the analysis of BVPs with hydromechanical coupling,
such as laboratory tests and underground works.
To this aim, we will extend existing �nite element formulations for porous media (e.g.
Callari and Abati (2009)) to include the laws presented herein for the modeling of damage.

Possible extensions of the proposed mesocale model to better describe the e�ects of dam-
age on transport parameters (e.g. the macroscopic permeability) could be devised, for
example by means of the following alternative approaches:

1. The consideration of a new periodic cell, with connected cracks saturated by viscid
�uid.

2. The modeling of damage e�ects on transport only at the macroscale. In fact, the
attainment of fully damaged conditions (d=1) often leads to the coalescence of
cracks in macroscopic discontinuities (e.g. see Souley, Homand, Pepa and Hoxha
(2001)), which could be treated by means of strong discontinuities, following Callari
and Armero (2002); Callari, Armero and Abati (2010).

Lastly, a more realistic model, which could be a generalisation of the one presented in this
dissertation, would be a 3D model obtained by homogenization starting from 3D meso-
structural aspects. The di�erences of geometry of the mesostructure may essentially
in�uence the e�ective 3D response as compared with the 2D one.





Appendix A

Porosity rate and volumetric strain

In this appendix, some relations from Callari and Abati (2011) are reported for a com-
parison with the relation (1.26) proposed herein.

A.1 De�nitions

With reference to , the Jacobian Jα, with α = pm, s, of the deformation function ϕα is
de�ned as:

Jα :=
V α

V α
r

(A.1)

The volumetric strain Eα
v of the α-phase is de�ned as:

Eα
v :=

∆V α

V α
r

(A.2)

where the notation ∆(·) indicates a �nite increment, that is to say the di�erence between
the values in the current and in the reference con�guration of (·). Then, the corresponding
strain rate is de�ned as:

Ėα
v = J̇α (A.3)

The logarithmic volumetric strain λα and its rate λ̇α are de�ned as:

λα := ln Jα λ̇α :=
J̇α

Jα
(A.4)

The symmetric part of the displacement gradient eα of the α-phase is de�ned as:

eα := ∇sym
X uα(X, t) (A.5)

and its trace εαv reads:
εαv := eα : 1 = divX uα (A.6)

The spatial strain rate tensor Dα of the α-phase is de�ned as:

Dα := ∇sym
x vα(x, t) (A.7)
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where vα(x, t) is the Eulerian velocity �eld. And its trace dαv reads:

dαv := Dα : 1 = divx v =
J̇α

Jα
(A.8)

A.2 Useful relations

From the comparison between the relations (A.3) and (A.8), the following relation between
the rates of the volumetric strain and of trace of the spatial strain is deduced:

Ėα
v = Jαdαv (A.9)

By using the relations (A.4) and (A.8), the Eulerian microscopic porosity rate η̇ reads:

η̇ :=
d

dt

(
V pm − V s

V pm

)
= (1− η)(dpmv − λ̇s) (A.10)

By using the de�nition (A.1) of the Jα and by means of a simple manipulation, the
increment of the Eulerian microscopic porosity ∆η reads:

∆η = (1− ηr)
(

1− Js

Jpm

)
(A.11)

where ηr is the value of the microscopic porosity in the reference con�guration, as already
written in the (1.23a).

A.3 Small transformations framework

In the framework of the small transformations, the symmetric part of the displacement
gradient eα (A.5) acquires a physical meaning: it is the in�nitesimal strain tensor. Then,
the exact volumetric strain Eα

v can be approximated with the trace of eα:

Eα
v = εαv + · · · (A.12)

Moreover, the Lagrangian and the Eulerian system are almost identical and it follows
that:

vα(x, t) = u̇α(X, t) + · · · (A.13)

and it yields a further approximation:

ε̇αv = dαv + · · · (A.14)

Also the exact logarithmic volumetric strain rate of the solid phase λ̇α (A.4b), and the
Jacobian of the deformation Jα (A.1) can be approximated by means of the Taylor's
development (C.6) as follows:
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λ̇s =
ε̇sv + · · ·

1 + εpmv + · · ·
= (ε̇sv + · · · )(1− εpmv + · · · ) = ε̇sv + · · · (A.15)

and
Jα = 1 + div uα + · · · = 1 + εαv + · · · (A.16)

In the same way, the microscopic porosity increment ∆η is rewritten as:

∆η = (1− ηr)
(

1− 1 + εsv + · · ·
1 + εpmv + · · ·

)
= (1− ηr)

[
1− (1 + εsv + · · · )(1− εpmv + · · · )

]
= (1− ηr)(εpmv − εsv) + · · · (A.17)

Lastly, in order to evaluate the microscopic porosity rate, the relation (A.17) is useful to
show the presence of second-order terms in the product between the current microscopic
porosity and an in�nitesimal strain measure:

η ε̇αv = ηr ε̇
α
v + (1− ηr)(εpmv − εsv)ε̇αv = ηr ε̇

α
v + · · · (A.18)

so, the (A.10) becomes:

η̇ = (1− ηr)(ε̇pmv − ε̇sv) (A.19)





Appendix B

From microscale to mesoscale

In this appendix, it is proposed a recall of the work presented in (Auriault 2004; Auriault
and Sanchez-Palencia 1977) which are the main references of this thesis project for what
concerns the homogenization of porous media by asymptotic homogenization.
A porous saturated solid is upscaled and the obtained �mesoscopic� description is equiva-
lent to the model prposed by Biot (1941) which was deduce by means of a phenomenologi-
cal approach. Notwithstanding that, in their formulation, the �uid mass balance equation
and the Biot's constitutive law for the �uid mass content are merged in a single equa-
tion, while for this thesis it was decided to split in (2.20, 2.33) in order to start from the
classical form of the Biot's model. Moreover, the (2.33) is written in term of Lagrangian
porosity which is equivalent to the �uid mass content used in the original version of the
consolidation equations proposed in (Biot 1941). Lastly, also the average value of the pore
�uid velocity used in the thesis (3.11) is di�erent from the one presented below (3.13).

Figure B.1: Mesoscopic and microscopic scales of observation. Condition of scale separation

satis�ed: lε >> le. Random distributions of saturated microscopic pores.
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B.0.1 Microscopic description

The porous saturated solid Ω is the union of two disjoint subdomains: the solid subdomain
Ωs and the set of �uid-saturated pores Ωpf , that is, Ω = Ωs ∪Ωpf and ∅ = Ωs ∩Ωpf . And
∂Ωs−pf denotes the set of interfaces between the pores and the surrounding solid phase.
The governing equations which describes the microscopic hydro-mechanical problem read:

0 = divxσ linear momentum balance in Ωpm (B.1a)

0 = divxvpf �uid incompressibility in Ωpf (B.1b)

σs = a@ex(u
s) solid elastic matrix in Ωs (B.1c)

σpf = 2µDx − ppf I viscous Newtonian �uid in Ωpf (B.1d)

σs@n = σpf@n stress continuity on ∂Ωs−pf (B.1e)

vpf = u̇s no-slip condition on ∂Ωs−pf (B.1f)

where a is the elastic tensor, n is the normal vector to the solid-�uid interface ∂Ωs−pf

outward oriented with respect to the solid phase, and Dx is the strain rate tensor de�ned
as

Dx(v
pf ) =

1

2

(
∇xv

pf +∇t
xv

pf
)

(B.2)

B.0.1.1 Assumptions and useful asymptotic expansions

It is assumed that the heterogeneities, that is, the saturated pores are periodically dis-
tributed. Then a periodic cell Be of size e is identi�ed and then resized by means of e
in the unit cell Z (�g. B.2). A serie of saturated porous solid of period e with e → 0
are considered, then, all the �elds depend on this scale parameter and the all notation
changes from us to us(e), for istance.
Moreover, by means of an heuristic reasoning, it is assumed that the symmetrical part of
the strain rate tensor D

(e)
x of the �uid velocity is of order two with respect to the scale

Figure B.2: Periodic distributions of saturated microscopic pores. Periodic cell Be ofsize e.
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Figure B.3: Microscopic periodic cell Be and corresponding resized unit cell Z.

parameter e:
D(e)
x := Dx(v

pf(e), e) = e2 Dx(v
pf(e)) (B.3)

then, the viscosity of the �uid can be neglected at the order zero. The homogenization
method based on the double-scale asymptotic expansions is applied to the microscopic
description and the main expansions are listed below.
The primary microscopic variables us(e) and pf(e) are searched for in the form:

us(e)(x) = us(0)(x,x/e) + eus(1)(x,x/e) + . . . in Zs (B.4a)

ppf(e)(x) = ppf(0)(x,x/e) + e ppf(1)(x,x/e
)

+ . . . in Zpf (B.4b)

where z is the microscopic or fast space variable. Then, the governing equations of the
microscopic problem (B.1) are expanded by using the (B.4) and the most useful expansions
are the following:

divxσ(0) + divzσ(1) = 0 in Zpm = Zs ∪ Zpf (B.5a)

divzvpf(0) = 0 in Zpf (B.5b)

divxvpf(0) + divzvpf(1) = 0 in Zpf (B.5c)

e(0)
x (us) = ex

(
us(0)

)
+ ez

(
us(1)

)
in Zs (B.5d)

σs(0) = a@

(
ex
(
us(0)

)
+ ez

(
us(1)

))
in Zs (B.5e)

D(1)
x (vpf ) = Dz

(
vpf(0)

)
in Zpf (B.5f)

σpf(0) = −ppf(0)I in Zpf (B.5g)

σpf(1) = 2µDz

(
vpf(0)

)
− ppf(1) I in Zpf (B.5h)

σs(0)
@n = −ppf(0)n on Γs−pf (B.5i)

vpf(0) = u̇s(0) on Γs−pf (B.5j)

vpf(1) = u̇s(1) on Γs−pf (B.5k)
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B.0.2 Mesoscopic description

At the end of this work, the following homogenized equations are obtained:

0 = divxσpm in Zpm (B.6a)

σpm = c@ex(u
pm)− b ppm in Zpm (B.6b)

−divxqpmAur = b : ex
(
u̇pm

)
+ s ṗpm in Zpm (B.6c)

qpmAur = −k@∇xp
pm in Zpm (B.6d)

with
qpmAur := v

pm(ε)
Aur − ηr u̇pm(ε) (B.7)

where

vpmAur :=
1

|Z|

∫
Zpf

vpf(0)dv (B.8)

Remark B.0.1. On the contrary in this work, the (3.12, 3.11) are used and they read as
follows:

qpm = ηr
(
vpm − u̇pm

)
(B.9)

with

vpm :=
1

|Zpf |

∫
Zpf

vpf(0) dv (B.10)



Appendix C

Useful Taylor developments

In this appendix, the Taylor developments used in the chapter 1 are shown and proved.

C.1 Taylor formula

A real-valued function f(x) of one variable and N times di�erentiable at a point x can be
represented by means of the Taylor formula as the sum of the Taylor polynomial PN(x, dx)
of degree N and of a remainder term RN(x, dx) (Abramowitz and Stegun 1970):

f(x+ dx) = PN(x, dx) +RN(x, dx) (C.1)

with

Pn(x, dx) =
∑N

n=0

f (n)(x)

n!
dxn = f(x) + f

′
(x) dx+

f
′′
(x)

2!
dx2 + · · ·+ f (N)(x)

N !
dxN (C.2)

and

Rn(x, dx) = dxN+1ε(x, dx) for dx→ 0 (C.3)

In the following developments proposed in this appendix, it is useful the case of a function
f(x, y) of two variables and N times di�erentiable at a point (x, y); in such a case the
Taylor formula reads:

f (x+ dx, y + dy) = f (x, y) +
∂f

∂x
dx+

∂f

∂y
dy+

1

2

(
∂2f

∂x2
(dx)2 + 2

∂2f

∂x∂y
dxdy +

∂2f

∂y2
(dy)2

)

+ · · ·+ 1

N !

(
N∑
p=0

Cp
N

∂pf

∂xp
∂N−pf

∂yN−p
∂N−pf

∂yN−p
(dx)p (dy)N−p

)
+
(
dx2 + dy2

)(N+1)/2
ε (x, y, dx, dy)

(C.4)
with:

ε (x, y, dx, dy)→ 0 for
(
dx2 + dy2

)1/2 → 0 (C.5)
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106 Chapter C. Useful Taylor developments

A basic but useful Taylor development is the following one:

1

1− x
= 1 + x+ · · · (C.6)

C.2

Let a1, a2, a3 be three elements of the vector space V , let A ∈ L(V) be a linear transforma-
tion and let (a1, a2, a3) denote the mixed product. Then, the de�nition of the determinant
implies that:

∀a1, a2, a3 ∈ V , det(I+δA)(a1, a2, a3) =
(

(I+δA)@a1, (I+δA)@a2, (I+δA)@a3

)
(C.7)

that is:

det(I + δA)(a1, a2, a3) = (a1 + δA@a1, a2 + δA@a2, a3 + δA@a3) (C.8)

Given the trilinearity of the mixed product, it follows that:

det(I + δA)(a1, a2, a3) = (a1, a2, a3)

+ δ
(

(A@a1, a2, a3), (a1,A@a2, a3), (a1, a2,A@a3)
)

+ δ2(...) (C.9)

which, for three linear indipendent vectors a1, a2, a3, becomes:

det(I + δA)(a1, a2, a3) = (a1, a2, a3) + δtrA(a1, a2, a3) + δ2(...) (C.10)

By dividing for a non zero (a1, a2, a3), it �nally reads:

det(I + δA) = 1 + δ trA+ · · · (C.11)

C.3

By using the Taylor formula (C.4), the Jacobian J(X, t) can be written as a Taylor
development for dt→ 0:

J(X, t+ dt) = J(X, t) + J̇(X, t) dt+ · · · (C.12)

By de�nition the Jacobian id de�ned as the determinant of the gradient F of the defor-
mation function, then it reads:

J(X, t+dt) = det[F(X, t+dt)] = det[F+Ḟdt+· · · ] = det[(I+Ḟ◦F−1dt+· · · )◦F] (C.13)

and, given that the determinant of the product of functions is equal to the product of the
determinants, it follows that:
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J(X, t+ dt) = det[(I + Ḟ ◦ F−1dt+ · · · ) ◦ F] = detF det(I + Ḟ ◦ F−1dt+ · · · ) (C.14)

By using the (C.11) and the (C.13), then the (C.14) becomes:

J(X, t+ dt) = J [1 + tr(Ḟ ◦ F−1)dt+ · · · ] (C.15)

In the end, by comparison with the (C.12), it is deduced that:

J̇ = J tr(Ḟ ◦ F−1) (C.16)

C.4

Given the hypothesis of small transformation, it can be searched for F−1 in the following
form:

F−1 = F(0) + δF(1) + · · · (C.17)

The identity tensor I can be written in a special form:

I = F◦F−1 = (I+∇Xu)◦ (A(0) + δA(1) + · · · ) = A(0) ◦ I+A(0) ◦∇Xu+ δA(1) ◦ I (C.18)

Then, by identifying the terms of the same order and by comparison with the (C.17), it
is deduced that:

F−1 = I−∇Xu + · · · (C.19)





Appendix D

Reynolds transport theorem

This theorem was presented in Reynolds, Brightmore and H.Moorby (1903) and it can
be �nd also in many books of Continuum Mechanics (e. g. (Gurtin 1981; Truesdell and
Toupin 1960)).
It is worth remarking that it was proved for a domain which is moving with time. On
the contrary, in this thesis, the domain is not only moving but also evolving with time in
reason of the evolution of the mesoscopic �uid-�lled cavities. Then, in order to verify the
applicability of the theorem to the studied case, an original proof is presented below.
The theorem considers that, during the motion, the volume of the part may change with
respect to its volume in the reference con�guration; then, it is a generalization of the
Transport Theorem which is true only for ridig motions.

THEOREM: let Φ be a smooth spatial �eld, either scalar valued or vector valued, then
for any time t and part Ω

d
dt

∫
Ωpmt

ΦdV =

∫
Ωpmt

∂Φ

∂t
dV +

∫
∂Ωt

Φv.nda (D.1)

where v is the velocity and n the outward normal to the boundary of Ωt, ∂Ωt.

PROOF:
to be added, case of evolvinig domain!

Remark D.0.1. ∫
Ωt

∂Φ

∂t
dV =

[
d
dt

∫
Ωt

ΦdV
]
τ=t

(D.2)

Then, it is clearly evident that the (D.1) asserts that the rate at which the integral of Φ
over Ωt is changing is equal to the rate computed as if Ωt was �xed in its current position
plus the rate at which Φ is carried out of this region across its boundary.
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Abstract 
This work presents the constitutive modeling of a geomaterial consisting of a deformable 
and saturated porous matrix including a periodic distribution of evolving fluid-filled 
cavities. The homogenization method based on two-scale asymptotic developments is 
used in order to deduce a model able to describe the macroscopic hydro-mechanical 
coupling. By taking into account the cavity growth and without any phenomenological 
assumption, it is proposed a mesoscopic energy analysis coupled with the homogenization 
scheme which provides a damage evolution law. In this way, a direct link between the 
meso-structural fracture phenomena and the corresponding macroscopic damage is 
established. Lastly, a numerical study of the local macroscopic hydro-mechanical damage 
behaviour is presented. 
Keywords: homogenization; meso-fracture; damage; porous media; hydro-mechanical 
coupling. 

 
Resumé 
Le présent travail montre la modélisation constitutive d'un géomatériau composé d'une 
matrice poreuse saturée et déformable contenant une distribution périodique de fissures 
évolutives remplies de fluide. La méthode d'homogénéisation des développements 
asymptotiques est utilisée afin de déduire un modèle capable de décrire le couplage 
hydro-mécanique macroscopique. Prenant en considération l'évolution de fissures et sans 
faire des hypothèses phénoménologiques, un'analyse énergétique mésoscopique couplé 
avec un schéma d'homogénéisation a été développée et elle fournit une loi d'évolution 
d'endommagement macroscopique. De cette façon, un lien direct entre les phénomènes 
de rupture de la structure mésoscopique et l'endommagement macroscopique 
correspondant est établie. Finalement, on présente une étude numérique du 
comportement macroscopique d'endommagement hydro-mécanique. 
Mots clés: homogénéisation; méso-fissuration; endommagement; milieux poreux; 
couplage hydro-mécanique. 

 
Sommario 
In questa tesi si presenta la modellazione costitutiva di un geomateriale composto da una 
matrice porosa satura e deformabile contenente una distribuzione periodica di cavità 
riempite da fluido che si propagano. Il metodo di omogeneizzazione basato sugli sviluppi 
asintotici a doppia scala viene utilizzato con l'obiettivo di dedurre un modello capace di 
descrivere l'accoppiamento idro-meccanico macroscopico. Prendendo in considerazione la 
propagazione delle cavità e senza nessuna ipotesi fenomenologica, si propone un'analisi 
energetica mesoscopica accoppiata ad uno schema di omogeneizzazione che fornisce una 
legge di evoluzione del danno.In questo modo, una relazione diretta tra i fenomeni di 
frattura meso-strutturali ed il corrispondente danno macroscopico viene stabilita. Infine, 
uno studio numerico del comportamento macroscopico locale di danno idro-meccanico 
viene presentato. 
Parole chiave: omogeneizzazione; meso-frattura; danno; mezzi porosi; accoppiamento 
idromeccanico. 
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