Mesure du capital réglementaire par des modèles de risque de marché

par Lancine Kourouma

Thèse de doctorat en Sciences de gestion

Sous la direction de Denis Dupré.

Soutenue le 11-05-2012

à Grenoble , dans le cadre de École doctorale sciences de gestion (Grenoble) , en partenariat avec Centre d'études et de recherches appliquées à la gestion (Grenoble) (équipe de recherche) .

Le président du jury était Ollivier Taramasco.

Le jury était composé de Denis Dupré, Sonia Jimenez-Garces, Christophe Couturier.

Les rapporteurs étaient Radu Burlacu, Christophe Jean Godlewski.


  • Résumé

    Suite à la crise financière et économique de 2008, il a été constaté sur le portefeuille de négociation des banques un montant de capital réglementaire significativement inférieur aux pertes réelles. Pour comprendre les causes de cette insuffisance de capital réglementaire, il nous a paru important d'évaluer la fiabilité des modèles de mesure de risque de marché et de proposer des méthodologies de stress test pour la gestion des risques extrêmes. L'objectif est de mesurer le capital réglementaire sur un portefeuille de négociation composé d'actions et de matières premières par la mesure de la Value at Risk (VaR) et l'Expected Shortfall. Pour réaliser cet objectif, nous avons utilisé le modèle Generalized Pareto Distribution (GPD) et deux modèles internes utilisés par les banques : méthode de simulation historique et modèle de la loi normale. Une première évaluation de la fiabilité effectuée sur les trois modèles de risque sous l'hypothèse de volatilité constante, montre que les modèles internes des banques et le modèle GPD ne mesurent pas correctement le risque du portefeuille d'étude pendant les périodes de crise. Néanmoins, le modèle GPD est fiable en période de faible volatilité mais avec une forte surestimation du risque réel ; cela peut conduire les banques à bloquer plus de fonds propres réglementaires qu'il est nécessaire. Une seconde évaluation de la fiabilité des modèles de risque a été effectuée sous l'hypothèse du changement de la volatilité et par la prise en compte de l'effet asymétrique des rentabilités financières. Le modèle GPD s'est révélé le plus fiable quelles que soient les conditions des marchés. La prise en compte du changement de la volatilité a amélioré la performance des modèles internes des banques. L'intégration des scénarios historiques et hypothétiques dans les modèles de risque a permis d'évaluer le risque extrême tout en diminuant la subjectivité reprochée aux techniques de stress test. Le stress test réalisé avec les modèles internes des banques ne permet pas une mesure correcte du risque extrême. Le modèle GPD est mieux adapté pour le stress test. Nous avons développé un algorithme de stress test qui permettra aux banques d'évaluer le risque extrême de leurs portefeuilles et d'identifier les facteurs de risque responsables de ce risque. Le calcul du capital réglementaire sur la base de la somme de la VaR et du stress VaR n'est pas logique et entraîne un doublement des fonds propres réglementaires des banques. Le doublement de ces fonds propres aura pour conséquence le resserrement du crédit à l'économie. Nous observons que le coefficient multiplicateur et le principe de la racine carrée du temps de l'accord de Bâle conduisent les banques à faire un arbitrage en faveur des modèles de risque non fiables.

  • Titre traduit

    Measure of capital requirement by market risk models


  • Résumé

    During the financial and economic crisis of 2008, it was noticed that the amount of capital required for banks' trading portfolio was significantly less than the real losses. To understand the causes of this low capital requirement, it seemed important to estimate the reliability of the market risk models and to propose stress testing methodologies for the management of extreme risks. The objective is to measure the capital requirement on a trading portfolio, composed of shares and commodities by the measure of the Value at Risk (VaR) and Expected Shortfall. To achieve this goal, we use the Generalized Pareto Distribution (GPD) and two internal models commonly used by banks: historical simulation method and model of the normal law. A first evaluation of the reliability made on the three risk models under the hypothesis of constant volatility, shows that the internal banks' models and the GPD model do not measure correctly the risk of the portfolio during the crisis periods. However, GPD model is reliable in periods of low volatility but with a strong overestimation of the real risk; it can lead banks to block more capital requirement than necessary. A second evaluation of the reliability of the risk models was made under the hypothesis of the change of the volatility and by considering the asymmetric effect of the financial returns. GPD model is the most reliable of all, irrespective of market conditions. The performance of the internal banks' risk models improves when considering the change of the volatility. The integration of the historic and hypothetical scenarios in the risk models, improves the estimation of the extreme risk, while decreasing the subjectivity blamed to the stress testing techniques. The stress testing realized with the internal models of banks does not allow a correct measure of the extreme risk. GPD model is better adapted for the stress testing techniques. We developed an algorithm of stress testing which allow banks to estimate the extreme risk of their portfolios and to identify the risk factors causing this risk. The calculation of the capital requirement based on the sum of the VaR and the stress VaR is not logical and leads to doubling the capital requirement of banks. Consequently, it conducts to a credit crunch in the economy. We observe that the multiplier coefficient and the principle of square root of time of the Basel's agreement lead banks to make arbitration in favor of risk models that are not reliable.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.