Intégrabilité des équations différentielles

par Lanouar Lazrag

Thèse de doctorat en Mathématiques

Sous la direction de Alexei Tsygvintsev.

Le président du jury était Jacques-Arthur Weil.

Le jury était composé de Alexei Tsygvintsev, Jacques-Arthur Weil, Jean-Pierre Marco, Maria Przybylska, Sergi Simon.

Les rapporteurs étaient Juan José Morales-Ruiz, Jean-Pierre Marco.


  • Résumé

    Cette thèse est divisée en trois parties. Dans la première partie, nous commençons par décrire les théories de Ziglin, Yoshida et Morales-Ramis et les motiver. Dans la deuxième partie, on étudie l’intégrabilité des équations différentielles de Newton à trois degrés de liberté dont les forces sont des polynômes homogènes de degrés trois. En utilisant une analyse du groupe de Galois différentiel des équations aux variations d’ordre supérieur, nous faisons une classification (presque) complète des forces génériques et intégrables. Dans une dernière partie, nous intéressons à l’intégrabilité d’un système d’équations différentielles homogènes d’ordre un (système A). L’application directe de la théorie de Morales-Ramis ne donne des obstructions à l’intégrabilité. En dérivant le système A par rapport au temps, nous obtenons un système différentiel de Newton homogène d’ordre 2 (système B). L’avantage est que ce dernier possède des solutions particulières algébriquement non triviales et le critère classique de Morales-Ramis nous permet d’établir des conditions nécessaires d’intégrabilité. Nous prouvons qu’il existe des relations explicites entre les intégrales premières des deux systèmes et nous introduisons une nouvelle méthode de recherche d’intégrales premières que l’on appelle « Extension tangente double ». Nous appliquons cette méthode à des systèmes planaires homogènes quadratiques. Comme deuxième application, nous montrons que, sous certaines conditions, les racines newtoniennes d’un système différentiel de Newton avec force centrale sont intégrables par quadratures. Nous présentons plusieurs systèmes intégrables avec deux, trois et quatre degrés de liberté.

  • Titre traduit

    Integrability of differential equations


  • Résumé

    This thesis is divided into three parts. In the first part we begin by describing the theories of Ziglin, Yoshida and Morales-Ramis and motivating them. In the second part we study the integrability of three-dimensional differential Newton equations with homogeneous polynomial forces of degree three. Using an analysis of differential Galois group of higher order variational equations, we give an almost complete classification of integrable generic forces. The last part is devoted to a study of the integrability of a system of first order homogeneous differential equations (system A ). The direct application of the Morales-Ramis theory does not lead to obstructions to the integrability. If we differentiate the differential system A with respect to time, we obtain a homogeneous Newtonian system (system B). The advantage is that the system B has a non-trivial particular solution and the classical criterion of Morales-Ramis allows us to establish necessary conditions for integrability. We prove that there are explicit relationships between first integrals of the both systems and we introduce a new method for finding first integrals called ``Double tangent extension method''. We apply the obtained results for a detailed analysis of homogeneous planar differential system. Using the double tangent extension method, we formulate some conditions under which the Newtonian roots of Newton's system with central force are integrable by quadratures. Some new cases of integrability with two, three and four degrees of freedom are found.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Bibliothèque Diderot . Bibliothèque électronique (Lyon).
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.