Reconnaissance de comportements de navires dans une zone portuaire sensible par approches probabiliste et événementielle : application au Grand Port Maritime de Marseille

par Salma Zouaoui-Elloumi

Thèse de doctorat en Contrôle, optimisation, prospective

Sous la direction de Valérie Roy.

Le président du jury était Pierre Bessière.

Le jury était composé de Valérie Roy, Annie Ressouche, Nadia Maïzi.

Les rapporteurs étaient Mekki Ksouri, Martin Richard.


  • Résumé

    Cette thèse s'est déroulée dans le cadre du projet SECMAR qui visait à sécuriser le Grand Port Maritime de Marseille. Notre objectif était d'aider les personnels du port à identifier les comportements menaçant des navires afin de pouvoir agir efficacement en cas de danger réel. A ce titre, nous avons développé un système d'analyse et de reconnaissance de comportements de navires formé de deux sous-modules complémentaires. Le premier est construit à partir de l'approche probabiliste Modèle de Markov Cachée et traite principalement des comportements nominaux des gros bateaux qui se caractérisent par un déplacement régulier et récurrent dans le port. Le second est construit à partir du langage réactif synchrone Esterel et prend en compte les comportements agressifs et transgressifs de tous types de navires, notamment ceux des petits bateaux qui circulent librement et aléatoirement dans le port. Le système global d'aide à la décision a permis une bonne reconnaissance en temps-réel des différents comportements de navires au cours de leurs évolutions dans le port. Au regard des résultats prometteurs que nous avons obtenu à travers ce module, il est envisageable de le généraliser à d'autres ports mondiaux ainsi qu'à d'autres domaines d'application, notamment le domaine aéroportuaire.

  • Titre traduit

    Ship behavior recognition in a sensitive port area using probabilistic and event-driven approaches : application to the Port of Marseilles


  • Résumé

    The overall aim of this thesis was to create a decision support system that identifies discrepancies in ship behavior. The thesis was a part of the SECMAR project that aimed to improve security at the Marseilles harbor by the creation of decision support system for port staff. For this purpose, we developed a recognition behavior system consisting of two complementary sub-systems.The first system was based on the probabilistic Hidden Markov model approach and deals with nominal behavior of large to medium size commercial ships showing regular and recurrent behavior. The second system was based on the reactive synchronous language Esterel and concerns aggressive and transgressive behavior of small ships that may navigate freely in the harbor. Real-time evaluations showed that the proposed decision support system efficiently captured and evaluated ship behaviors. The promising results of the system and its diversity in origin makes it suitable for applications in other harbors as well as other environment such as airports.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Mines ParisTech.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.