Filtrage PHD multicapteur avec application à la gestion de capteurs

par Emmanuel Delande

Thèse de doctorat en Automatique, génie informatique, traitement du signal et image

Sous la direction de Emmanuel Duflos et de Philippe Vanheeghe.

Le président du jury était Pierre Del Moral.

Le jury était composé de Frédéric Dambreville.

Les rapporteurs étaient Daniel E. Clark, Simon J. Godsill.


  • Résumé

    Le filtrage multiobjet est une technique de résolution du problème de détection et/ou suivi dans un contexte multicible. Cette thèse s'intéresse au filtre PHD (Probability Hypothesis Density), une célèbre approximation du filtre RFS (Random Finite Set) adaptée au cas où les observations sont le fruit d'un seul capteur. La première partie propose une construction rigoureuse du filtre PHD multicapteur exact et son expression simplifiée, sans approximation, grâce à un partitionnement joint de l'espace d'état des cibles et des capteurs. Avec cette nouvelle méthode, la solution exacte du filtre PHD multicapteur peut être propagée dans des scénarios de surveillance simples. La deuxième partie aborde le problème de gestion des capteurs dans le cadre du PHD. A chaque itération, le BET (Balanced Explorer and Tracker) construit une prédiction du PHD multicapteur a posteriori grâce au PIMS (Predicted Ideal Measurement Set) et définit un contrôle multicapteur en respectant quelques critères opérationnels simples adaptés aux missions de surveillance

  • Titre traduit

    Multi-sensor PHD filtering with application to sensor management


  • Résumé

    The aim of multi-object filtering is to address the multiple target detection and/or tracking problem. This thesis focuses on the Probability Hypothesis Density (PHD) filter, a well-known tractable approximation of the Random Finite Set (RFS) filter when the observation process is realized by a single sensor. The first part proposes the rigorous construction of the exact multi-sensor PHD filter and its simplified expression, without approximation, through a joint partitioning of the target state space and the sensors. With this new method, the exact multi-sensor PHD can be propagated in simple surveillance scenarii. The second part deals with the sensor management problem in the PHD framework. At each iteration, the Balanced Explorer and Tracker (BET) builds a prediction of the posterior multi-sensor PHD thanks to the Predicted Ideal Measurement Set (PIMS) and produces a multi-sensor control according to a few simple operational principles adapted to surveillance activities


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Ecole Centrale de Lille (Villeneuve d'Ascq, Nord). Centre de documentation.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.