Thèse soutenue

Turbulence barocline : effets couplés de rotation, stratification et cisaillement
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Alexandre Pieri
Direction : Claude CambonFabien Godeferd
Type : Thèse de doctorat
Discipline(s) : Mécanique, Energétique, Génie Civil et Acoustique
Date : Soutenance le 23/11/2012
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : Ecole Doctorale Mecanique, Energetique, Genie Civil, Acoustique (MEGA) (Villeurbanne)
Jury : Président / Présidente : Jean-Marc Chomaz
Examinateurs / Examinatrices : Antonello Provenzale, Abdelaziz Salhi, Philippe Fraunié
Rapporteurs / Rapporteuses : Bérengère Dubrulle, Riwal Plougonven

Résumé

FR  |  
EN

La finalité de cette thèse est de fournir une meilleure compréhension de la turbulence homogène anisotrope soumise à un forçage barocline. À cette fin, nous utilisons une approche numérique pseudo-spectrale basée sur la transformation de Rogallo. L’utilisation d’un tel algorithme nous permet de considérer une asymétrie des fonctions de probabilité en faveur des évènements négatifs est observée. Le lien entre la distribution de vorticité potentielle et celle d’un scalaire passif est également étudié. Il est montré qu’à faible nombre de Richardson, c’est le mode vortex (à vorticité potentielle nulle) qui contient les plus importantes fuctuations de scalaire. Un écoulement homogène dans les trois directions de l’espace. Plusieurs simulations numériques directes (DNS) sont effectuées dans un contexte assez proche des écoulements géophysiques que l’on retrouve entre autre dans la stratosphère, où un gradient constant de vitesse zonale vient se coupler à un gradient constant de densité dans un repère tournant. Les résultats obtenus s’articulent autour de quatre axes principaux. Tout d’abord, une étude linéaire à temps fini est présentée en vue de compléter les résultats existants sur la dynamique linéaire asymptotique. La solution linéaire est décomposée en une partie ‘onde’ (qui se propage) et une partie dite ‘vortex’(stationnaire). L’étude analytique est complétée par un modèle synthétique de turbulence (Kinematic Simulation ou KS) basé sur la théorie de la distorsion rapide(RDT). Nous montrons qu’une distribution initiale non nulle de vorticité potentielle linéarisée peut conduire à d’importantes croissances transitoires. Ce résultat pourrait s’étendre à des modélisations du climat ou météorologique, où la distribution initiale de vorticité potentielle semble avoir autant d’importance que la distribution initiale de température ou de vitesse. Ensuite, nous consacrons une partie de notre étude à l’analyse paramétrique et à la stabilité de l’écoulement. Plusieurs DNS sont effectuées pour différents taux de rotation et stratification. Le diagramme de stabilité obtenu montre que pour de faibles taux de rotation, la limite de stabilité est identique à celle connue des écoulements sans rotation. À plus faible nombre de Rossby — lorsque la baroclinicité devient importante — la limite linéaire de stabilité Ri = 1 relative à l’instabilité symétrique est confirmée. La coexistance de l’instabilité barocline avec l’instabilité symétrique est également clarifiée. Une analyse énergétique détaillée mène à la conclusion suivante : la stratification doit être suffisamment importante (Ri ' 1) pour que l’instabilité barocline soit dominante i.e. que la conversion d’énergie potentielle soit la source principale d’énergie cinétique turbulente. Dans le cas contraire, l’instabilité symétrique — qui tire son énergie de l’énergie cinétique de l’écoulement moyen et non de son énergie potentielle — domine la dynamique de l’écoulement. Le troisième axe d’étude concerne la turbulence à proprement parler. En conséquence de l’ajustement géostrophique, le vent thermique force la turbulence d’une manière naturelle, en opposition à d’autres méthodes de forçage stochastique. L’émergence de structures dans le contexte barocline est approfondie. Des statistiques Euleriennes sont présentées afin de fournir une caractérisation fine de l’anisotropie de l’écoulement. Enfin, nous étendons notre étude à la caractérisation de la vorticité potentielle turbulente. Les fonctions de probabilité de la vorticité potentielle d’Ertel montrent que des anomalies sont présentes dans les configurations instables. En particulier, une asymétrie des fonctions de probabilité en faveur des évènements négatifs est observée. Le lien entre la distribution de vorticité potentielle et celle d’un scalaire passif est également étudié. Il est montré qu’à faible nombre de Richardson, c’est le mode vortex (à vorticité potentielle nulle) qui contient les plus importantes fuctuations de scalaire.