Gestion de l'énergie des piles à combustible microbiennes

par Nicolas Degrenne

Thèse de doctorat en Electronique, Electrotechnique et Automatique

Sous la direction de François Buret et de Bruno Allard.

Le président du jury était Paolo Pavan.

Le jury était composé de Sven Kerzenmacher.

Les rapporteurs étaient Yves Lembeye, Ioannis Ieropoulos.


  • Résumé

    Les Piles à Combustible Microbiennes (PCMs) mettent en œuvre le métabolisme de micro-organismes et utilisent de la matière organique pour générer de l’énergie électrique. Les applications potentielles incluent le traitement de l’eau autonome en énergie, les bio-batteries, et le grappillage d’énergie ambiante. Les PCMs sont des équipements basse-tension et basse-puissance dont le comportement est influencé par la vitesse à laquelle l’énergie électrique est récupérée. Dans cette thèse, on étudie des méthodes pour récupérer l’énergie électrique de façon efficace. La tension à laquelle l’énergie est récupérée des PCMs influence leur fonctionnement et leurs performances électriques. La puissance délivrée est maximum pour une tension spécifique (environ 1/3 de la tension en circuit-ouvert). Les PCMs peuvent être testées à ce point en utilisant une charge contrôlée automatiquement qui inclut un algorithme de recherche de puissance maximale. Un tel outil a été utilisé pour évaluer la puissance maximum, la vitesse de consommation du combustible, le rendement Coulombic et le rendement de conversion de 10 PCMs à chambre unique de 1.3 L construites de façon similaire. Bien que d’autres choix structurels et opératoires peuvent permettre d’améliorer ces performances, ces résultats ont étudié pour la première fois les performances des PCMs en condition de production d’énergie de point de puissance maximal et testé les PCMs avec des conditions de récupération d’énergie réalistes. Récupérer un maximum d’énergie des PCMs est la ligne directrice de ce rapport. C’est rendu possible par des circuits dédiés de gestion de l’énergie qui embarquent un contrôle contre-réactif pour réguler la tension des PCMs à une valeur de référence qui est égale à une fraction de leur tension en circuit ouvert. Deux scénarios typiques sont développés dans la suite. Une application critique des PCMs concerne le grappillage autonome de petites énergies, pour alimenter des équipements électroniques basse-puissance (e.g. capteurs sans fil). Dans ce cas, les contraintes basse-puissance et basse-tension imposées par les PCMs nécessitent des fonctionnalités de démarrage autonomes. L’oscillateur d’Armstrong, composé d’inductances couplées à fort rapport d’enroulement et d’un interrupteur normalement-fermé permet d’élever des tensions de façon autonome à partir de sources basse-tension continue comme les PCMs. Ce circuit a été associé à des convertisseurs d’électronique de puissance AC/DC et DC/DC pour réaliser respectivement un élévateur-de-tension et une unité de gestion de l’énergie (UGE) auto-démarrante basée sur une architecture flyback. La première est adaptée pour les puissances inférieures à 1mW, alors que la seconde peut être dimensionnée pour des niveaux de puissance de quelques mW et permet de mettre en œuvre une commande qui recherche le point de puissance maximale du générateur. Une seconde application d’intérêt concerne le cas où de l’énergie est récupérée depuis plusieurs PCMs. L’association série peut être utilisée pour élever la tension de sortie mais elle peut avoir des conséquences négatives en terme de performances à cause des non-uniformités entre cellules. Cet aspect peut être résolu avec des circuits d’équilibrage de tension. Trois de ces circuits ont été analysés et évalués. Le circuit “complete disconnection” déconnecte une cellule défectueuse de l’association pour s’assurer qu’elle ne diminue pas le rendement global. Le circuit “switched-capacitor” transfère de l’énergie depuis les MFCs fortes vers les faibles pour équilibrer les tensions de toutes les cellules de l’association. Le circuit “switched-MFCs” connecte les PCMs en parallèle et en série de façon alternée. Chacune des trois méthodes peut être mise en œuvre à bas prix et à haut rendement, la plus efficace étant la “switchedcapacitor”qui permet de récupérer plus de 85% de la puissance maximum idéale d’une association très largement non uniforme.

  • Titre traduit

    Power management for microbial fuel cells


  • Résumé

    Microbial fuel cells (MFCs) harness the metabolism of micro-organisms and utilize organic matter to generate electrical energy. They are interesting because they accept a wide range of organic matter as a fuel. Potential applications include autonomous wastewater treatment, bio-batteries, and ambient energy scavenging. MFCs are low-voltage, low-power devices that are influenced by the rate at which electrical energy is harvested at their output. In this thesis, we study methods to harvest electrical energy efficiently. The voltage at which energy is harvested from MFCs influences their operation and electrical performance. The output power is maximum for a certain voltage value (approx. 1/3rd the open-circuit voltage). This noteworthy operating point is favorable in some applications where MFCs are used as a power supply. MFCs can be tested at this point using an automatic load adjuster which includes a maximum power point tracking algorithm. Such a tool was used to evaluate the maximum power, the fuel consumption rate, the Coulombic efficiency and the energy conversion efficiency of ten similarly built 1.3 L single-chamber MFCs. Although structural and operating condition choices will lead to improved performance, these results investigate for the first time the performance of MFCs in continuous maximum power point condition and characterize MFCs in realistic energy harvesting conditions. Harvesting energy at maximum power point is the main thread of the manuscript. This is made possible with dedicated energy processing circuits embedding control feedback to regulate the MFC voltage to a fraction of its open-circuit voltage. Two typical scenarios are developed as outlined below. One critical application concerns autonomous low-power energy scavenging, to supply remote low-power electronic devices (e.g. wireless sensors). In this case, the low-power and low-voltage constraints imposed by MFCs require dedicated self start-up features. The Armstrong oscillator, composed of high turn-ratio coupled inductors and of a normally-on switch, permits to autonomously step-up voltages from a low DC source like MFCs. Although the circuit requires few components, its operation is not trivial because it partly relies on the parasitic elements of the inductors and the switch. Proper sizing of the inductors enables an optimized operation. This circuit can be associated with power electronic AC/DCand DC/DC converters to realize a voltage-lifter and a fly back-based self-starting Power Management Unit (PMU) respectively. The former is suitable for powering levels below 1mW, while the latter can be scaled for power levels of a few units of mW and facilitates implementation of maximum power point control. A second application of interest concerns the case where energy is harvested from several MFCs.Serial association can be used to step-up voltage but may lead to detrimental consequences in terms of performances because of hydraulic couplings between MFCs sharing the same electrolyte (e.g. if the MFCs are running in continuous flow) or because of electrical non-uniformities between cells. Whereas the former issue can be addressed with galvanically insulated PMUs, the latter can be solved with voltagebalancing circuits. Three of these latter circuits were analyzed and evaluated. The “complete disconnection” circuit isolates a faulty cell from the configuration to ensure it does not impede the overall efficiency. The “switched-capacitor” circuit transfers energy from the strong to the weak MFCs to equilibrate the voltages of the individual cells in the stack. The “switched-MFC” circuit alternatively connects MFCs in parallel and in series. Each of the three methods can be implemented at low-cost and at high efficiency, the most efficient one being the “switched-capacitor”, that permits to harvest more that 85% of the ideal maximum energy of a strongly-non-uniform MFC association.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Ecole centrale de Lyon. Bibliothèque Michel Serres.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.