Thèse soutenue

Méthodologie de détection des défauts de surface par vision artificielle avec magnetic particle inspection sur le matériel tubulaire

FR  |  
EN
Auteur / Autrice : Adhiguna Mahendra
Direction : Fabrice MériaudeauChristophe Stolz
Type : Thèse de doctorat
Discipline(s) : Instrumentation et informatique de l'image
Date : Soutenance le 08/11/2012
Etablissement(s) : Dijon
Ecole(s) doctorale(s) : École doctorale Sciences Physiques pour l'Ingénieur et Microtechniques (Besançon ; 1991-....)
Partenaire(s) de recherche : Laboratoire : Laboratoire Electronique, Informatique et Image (LE2i) (Dijon, Côte d'Or ; Auxerre, Yonne ; Chalon-sur-Saône, Saône-et-Loire ; Le Creusot, Saône-et-Loire ; 1996-2018)
Jury : Président / Présidente : David Fofi
Examinateurs / Examinatrices : Fabien Degoutin
Rapporteurs / Rapporteuses : Abdelaziz Bensrhair, Pierre Bonton

Résumé

FR  |  
EN

[...]L’inspection des surfaces considérées est basée sur la technique d’Inspection par Particules Magnétiques (Magnetic Particle Inspection (MPI)) qui révèle les défauts de surfaces après les traitements suivants : la surface est enduite d’une solution contenant les particules, puis magnétisées et soumise à un éclairage Ultra-Violet. La technique de contrôle non destructif MPI est une méthode bien connue qui permet de révéler la présence de fissures en surface d’un matériau métallique. Cependant, une fois le défaut révélé par le procédé, ladétection automatique sans intervention de l’opérateur en toujours problématique et à ce jour l'inspection basée sur le procédé MPI des matériaux tubulaires sur les sites de production deVallourec est toujours effectuée sur le jugement d’un opérateur humain. Dans cette thèse, nous proposons une approche par vision artificielle pour détecter automatiquement les défauts à partir des images de la surface de tubes après traitement MPI. Nous avons développé étape par étape une méthodologie de vision artificielle de l'acquisition d'images à la classification.[...] La première étape est la mise au point d’un prototype d'acquisition d’images de la surface des tubes. Une série d’images a tout d’abord été stockée afin de produire une base de données. La version actuelle du logiciel permet soit d’enrichir la base de donnée soit d’effectuer le traitement direct d’une nouvelle image : segmentation et saisie de la géométrie (caractéristiques de courbure) des défauts. Mis à part les caractéristiques géométriques et d’intensité, une analyse multi résolution a été réalisée sur les images pour extraire des caractéristiques texturales. Enfin la classification est effectuée selon deux classes : défauts et de non-défauts. Celle ci est réalisée avec le classificateur des forêts aléatoires (Random Forest) dont les résultats sontcomparés avec les méthodes Support Vector Machine et les arbres de décision.La principale contribution de cette thèse est l'optimisation des paramètres utilisées dans les étapes de segmentations dont ceux des filtres de morphologie mathématique, du filtrage linéaire utilisé et de la classification avec la méthode robuste des plans d’expériences (Taguchi), très utilisée dans le secteur de la fabrication. Cette étape d’optimisation a été complétée par les algorithmes génétiques. Cette méthodologie d’optimisation des paramètres des algorithmes a permis un gain de temps et d’efficacité significatif. La seconde contribution concerne la méthode d’extraction et de sélection des caractéristiques des défauts. Au cours de cette thèse, nous avons travaillé sur deux bases de données d’images correspondant à deux types de tubes : « Tool Joints » et « Tubes Coupling ». Dans chaque cas un tiers des images est utilisé pour l’apprentissage. Nous concluons que le classifieur du type« Random Forest » combiné avec les caractéristiques géométriques et les caractéristiques detexture extraites à partir d’une décomposition en ondelettes donne le meilleur taux declassification pour les défauts sur des pièces de « Tool Joints »(95,5%) (Figure 1). Dans le cas des « coupling tubes », le meilleur taux de classification a été obtenu par les SVM avec l’analyse multirésolution (89.2%) (figure.2) mais l’approche Random Forest donne un bon compromis à 82.4%. En conclusion la principale contrainte industrielle d’obtenir un taux de détection de défaut de 100% est ici approchée mais avec un taux de l’ordre de 90%. Les taux de mauvaises détections (Faux positifs ou Faux Négatifs) peuvent être améliorés, leur origine étant dans l’aspect de l’usinage du tube dans certaines parties, « Hard Bending ».De plus, la méthodologie développée peut être appliquée à l’inspection, par MPI ou non, de différentes lignes de produits métalliques