Molecularly imprinted polymer nanostructures by controlled / living radical polymerization with multi-iniferters

par Pinar Çakir

Thèse de doctorat en Biotechnologie

Sous la direction de Karsten Haupt.

Soutenue en 2012

à Compiègne .

  • Titre traduit

    Polymères nanostructures à empreintes moléculaires obtenues par polymérisation radicalaire contrôlée / vivante via l'utilisation de multi-iniferters


  • Résumé

    Les polymères à empreintes moléculaires (MIPs) sont des matériaux synthétiques contenant des cavités capables de reconnaître spécifiquement une molécule cible. Ils se présentent comme une alternative intéressante face aux anticorps biologiques en raison de leur meilleure stabilité chimique et physique, leur meilleure disponibilité et leur moindre coût. Traditionnellement, les MIPs sont synthétisés par polymérisation de monolithes, qui sont ensuite broyés mécaniquement, engendrant des particules de taille micrométrique et de formes irrégulières. Durant ces dernières années, de nombreuses techniques de polymérisation ont été développées afin d’obtenir des particules MIP sphériques de tailles micro et nanométriques, et plus particulièrement des nanogels quasi-solubles. Dans l’optique d’une application en biologie, des tailles de quelques nanomètres - de l’ordre de grandeur de la taille des protéines – sont souhaitées, ce qui pose un réel défi pour leur synthèse, car la faible densité du matériau (une particule ne consiste que de quelques chaines de polymère) s'oppose à l'impression d'une mémoire moléculaire. Nous avons développé une nouvelle approche de synthèse de MIP nanogels dont la taille est proche de celle des anticorps naturels. Notre stratégie est basée sur l’utilisation d’un nouveau type d'amorceur pour la polymérisation radicalaire contrôlée comprenant des fonctions iniferter multiples attachées à un noyau dendritique. Cela permet de générer une concentration localement élevée de radicaux et ainsi, d'obtenir des nanogels de polymère dont la densité est augmentée. Ces travaux de thèse ont conduit à l’obtention des nanogels de MIP de 17 nm de diamètre avec un effet impression appréciable, une bonne affinité pour la cible, le beta-antagoniste propranolol, et une sélectivité moléculaire prononcée. En plus de la synthèse des nanogels solubles de MIP, des motifs de MIP micro et nanostructurés ont été greffés sur des surfaces planes de silicium. Le multiiniferter a été imprimé à la surface par lithographie douce, et fixé chimiquement par son groupement carboxyle central. Les MIPs ont ensuite été synthétisés par une approche « bottom up », caractérisés par spectroscopie d'émission optique, la spectroscopie Raman et la microscopie à force atomique, et la reconnaissance moléculaire de la cible a été visualisée par microscopie de fluorescence. Ces nouveaux matériaux, nanogels et surfaces imprimées offrent de nombreuses perspectives pour la détection par biocapteurs et biopuces, en particulier dans le domaine du biomédical.


  • Résumé

    Molecularly imprinted polymers (MIPs) are synthetic materials with specific recognition properties for target molecules. They are considered an alternative to antibodies and are characterized by a higher chemical and physical stability, better availability and lower cost. Historically, MIPs were synthesized as bulk monoliths that were subsequently broken down mechanically in order to form particles of a size in the micrometer range, with irregular shapes. During the last decade, research has focused on the direct synthesis of spherical MIP micro and nanoparticles, and, more recently, on protein-sized, quasi-soluble MIP nanogels in order to widen the application range of MIPs in the biological field. The main difficulty of synthesizing MIPs with diameters in the low nm region is the low density of the resulting polymer network consisting only of a few polymer chains, which makes it difficult to imprint and maintain a molecular memory. In this thesis, we propose an original approach to the synthesis of quasisoluble MIP nanogels with a size in the low nm range, close to that of real antibodies. The proposed procedure involves a new type of initiator for controlled/living radical polymerization, based on multiple iniferter moieties attached to a dendritic core. This allows for the generation of a higher local radical density, and thus for the synthesis of denser nanogels. By using this strategy, MIP Nanogels of 17 nm size with an appreciable molecular imprinting effect, a good affinity for the target molecule, the chiral drug propranolol, and a good selectivity were obtained. In addition, these multiiniferters were also used for the bottom-up synthesis of thin MIP patterns on silicon wafers, by surface-initiated polymerization. The multi-iniferter was printed on to the surface by soft lithography and chemically attached through its carboxyl-functionalized core, followed by the in-situ synthesis of the MIP. Well defined MIP patterns were obtained, which were characterized by optical emission spectroscopy, Raman spectroscopy, atomic force microscopy, and the specific binding of the target molecule was visualized by fluorescence microscopy. We believe that the synthesis, in solution and at surfaces, of protein-size MIP nanogels with specific recognition properties will provide new opportunities for biosensors and biochips technologies in biomedical applications.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (177 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. 162 réf.

Où se trouve cette thèse ?

  • Bibliothèque : Université de Technologie de Compiègne. Service Commun de la Documentation.
  • Disponible pour le PEB
  • Cote : 2012 CAK 2018
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.