A study of tailoring acoustic porous material properties when designing lightweight multilayered vehicle panels

par Eleonora Nordgren (Lind)

Thèse de doctorat en Mécanique

Le président du jury était Ulf Olofsson.

Le jury était composé de Roger Ohayon, Peter Göransson, Jean-François Deü, Ulf Olofsson, Olivier Dazel, Wim Desmet, Peter Davidsson, Nils-Erik Hörlin.

Les rapporteurs étaient Olivier Dazel, Wim Desmet.

  • Titre traduit

    Détermination des propriétés de matériaux poreux acoustiques en vue de la conception de panneaux multicouches légers


  • Résumé

    Le présent travail explore la possibilité d'adapter des matériaux poro-élastiques légers pour des applications spécifiques. En particulier, une approche de conception est présentée, combinant simulations par la méthodes des éléments finis et techniques d'optimisation, permettant ainsi d'améliorer les propriétés dynamiques et acoustiques de panneaux multicouches comprenant des matériaux poreux.Les modèles numériques sont fondés sur la théorie de Biot qui utilise des modèles équivalents fluide/solide avec des propriétés macroscopiques spatialement homogénéisées, décrivant le comportement physique des matériaux poro-élastiques. Afin de systématiquement identifier et comparer certaines propriétés spécifiques, bénéfiques ou défavorables, le modèle numérique est connecté à un optimiseur fondé sur les gradients. Les paramètres macroscopiques utilisés dans la théorie de Biot étant liés, il ne peuvent être utilisés comme variables indépendantes. Par conséquent, des lois d'échelle sont appliquées afin de connecter les propriétés macroscopiques du matériau aux propriétés géométriques microscopiques, qui elles peuvent être modifiées indépendamment.L'approche de conception est également combinée avec l'optimisation de la masse d'un panneau sandwich structure, afin d'examiner les possibilités de combiner exigences structurelles et acoustiques, qui peuvent être en conflit. En prenant le soin d'établir un équilibre entre composantes acoustiques et structurelles, des effets de synergie plutôt que destructifs peuvent être obtenus, donnant lieu à des panneaux multifonctionnels. Cela pourrait rendre l'ajout de traitements acoustiques redondant, qui par ailleurs annulerait tout ou partie du gain en masse obtenu par optimisation.Les résultats indiquent un véritable potentiel d'amélioration des propriétés dynamiques et acoustiques de panneaux multi-couches, pour un ajout minimum en termes de masse et volume. La technique de modélisation développée pourrait également être implémentée au sein d'outils numériques futures pour la conception de panneaux légers de véhicules. Cela aurait le potentiel de réduire substantiellement la masse tout en limitant, voire supprimant l'impact négatif sur les propriétés acoustiques et vibratoires, pourtant une conséquence courante de la réduction de la masse, participant ainsi à l'effort de développement de véhicules futures plus légers et efficaces.


  • Résumé

    The present work explores the possibilities of adapting poro-elastic lightweight acoustic materials to specific applications. More explicitly, a design approach is presented where finite element based numerical simulations are combined with optimization techniques to improve the dynamic and acoustic properties of lightweight multilayered panels containing poro-elastic acoustic materials.The numerical models are based on Biot theory which uses equivalent fluid/solid models with macroscopic space averaged material properties to describe the physical behaviour of poro-elastic materials. To systematically identify and compare specific beneficial or unfavourable material properties, the numerical model is connected to a gradient based optimizer. As the macroscopic material parameters used in Biot theory are interrelated, they are not suitable to be used as independent design variables. Instead scaling laws are applied to connect macroscopic material properties to the underlying microscopic geometrical properties that may be altered independently.The design approach is also combined with a structural sandwich panel mass optimization, to examine possible ways to handle the, sometimes contradicting, structural and acoustic demands. By carefully balancing structural and acoustic components, synergetic rather than contradictive effects could be achieved, resulting in multifunctional panels; hopefully making additional acoustic treatment, which may otherwise undo major parts of the weight reduction, redundant.The results indicate a significant potential to improve the dynamic and acoustic properties of multilayered panels with a minimum of added weight and volume. The developed modelling techniques could also be implemented in future computer based design tools for lightweight vehicle panels. This would possibly enable efficient mass reduction while limiting or, perhaps, totally avoiding the negative impact on sound and vibration properties that is, otherwise, a common side effect of reducing weight, thus helping to achieve lighter and more energy efficient vehicles in the future.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.